
Received March 29, 2019, accepted April 30, 2019, date of publication May 20, 2019, date of current version June 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917721

GPU Sparse Ray-Traced Segmentation
LUCIAN PETRESCU, ANCA MORAR , FLORICA MOLDOVEANU , (Member, IEEE),
AND ALIN MOLDOVEANU
Department of Computer Science, Faculty of Automatic Control and Computers, Politehnica University of Bucharest, RO-060042 Bucharest, Romania

Corresponding authors: Lucian Petrescu (lucian.petrescu.24@gmail.com) and Anca Morar (anca.morar@cs.pub.ro)

This work was supported by the European Union’s Horizon 2020 Research and Innovation Program under Agreement 643636 (Sound of
Vision project – www.soundofvision.net).

ABSTRACT This paper introduces a real-time region growing segmentation algorithm, designed for graphics
processing units (GPUs), which labels only a fraction of the input elements. Instead of searching locally
around each element for strong similarity, like state-of-the-art segmentation and pre-segmentation methods
do, the proposed algorithm searches both locally and remotely, using a unique ray tracing-based search
strategy, which quickly covers the segmentation search space. The presented algorithm fully exploits the
parallelism of the GPUs, sparsely segmenting high-resolution images (4K) in real-time on low range laptops
and other mobile devices, approximately 5× times faster than the state-of-the-art simple linear iterative
clustering (SLIC).While this paper demonstrates the results with images, the algorithm is triviallymodifiable
to work with input sets of any dimension. In contrast to the state-of-the-art real-time GPU methods,
this algorithm doesn’t require additional merging steps, as pre-segmentation methods do, and it produces
complete segmentation. Additionally, post-segmentation optional stages for complete labeling and region
merging on the GPU are also provided, although they are not always necessary.

INDEX TERMS GPU, image segmentation, parallel processing, ray tracing search strategy, sparse
segmentation.

I. INTRODUCTION
Segmentation algorithms play an important role in computer
vision, partitioning sets into unique non-overlapping sub-
sets, where each sub-set has similar elements. Segmentation
methods are common building blocks for a large variety of
algorithms and data processing pipelines, being used in many
industries.

Due to segmentation being a critical step in a large num-
ber of problems, there is now a vast amount of research
on this subject, with many different approaches: clustering
and dual clustering [1]–[3], histogram [11], edge detec-
tion [7], [11], region growing [3]–[5], graph partition-
ing [8]–[11], watershed [11], [26], adaptive thresholds [6],
split and merge [7], [11], mean shift and mode seek-
ing [10], [13], [24], [31], hierarchical [11], [15] and active
contours [11], [17], [18].

Recent research has focused on trainable segmentation
methods [11], [19]–[22] and co-segmentation [11], [16] using
machine learning techniques to produce highly accurate

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiachen Yang.

results, with weak supervision. Nevertheless, these methods
do not present themselves as solutions to real-time segmenta-
tion, as their execution costs dwarf the computational budgets
of non-specialized hardware, especially on consumer laptops
and mobile hardware.

Since the computational cost is a critical aspect of algo-
rithm usefulness, another recent trend is to exploit hard-
ware parallelism in order to maximize speed. This has led
to the development of quick iterative GPU segmentation
methods [1], [5], [10], [13], [23]–[27] and pre-segmentation
techniques. Pre-segmentation methods [2], [6], [7], [13],
[28]–[33] create precise local micro clusters, based on local
similarity, but afterwards require an expensive clustering pro-
cess.Without the costly final clustering process, they produce
the fastest local results out of all the segmentation methods.
Still, even these fast methods require iterative processes.

It is worth noting that the aim of segmentation is to help in
extracting information from the input set. In such processes
a good enough solution is sufficient for a large majority of
the encountered cases. In many industrial applications of
real-time segmentation, an acceptable quality at a very high
speed is particularly more useful than superior quality at

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

68511

https://orcid.org/0000-0002-1368-7249
https://orcid.org/0000-0002-4773-6862
https://orcid.org/0000-0002-8357-5840

L. Petrescu et al.: GPU Sparse Ray-Traced Segmentation

a comparatively much lower speed. Low cost segmentation
is essential for object tracking and recognition, navigation
and perception for autonomous robots, perception enhancing
devices or computer controlled medical tools.

FIGURE 1. Results of sparse ray-traced segmentation with different
sparsity settings.

In this paper a novel segmentation algorithm is introduced,
which sparsely labels input sets by growing regions with ray
tracing, starting from initial seeds. It is designed to fully
harness the parallelism of GPUs, and benefit from many
ray tracing optimizations (packet tracing [32], Digital Dif-
ferential Analyzer (DDA) [33]). Figure 1 shows how sparse
segmentation looks like in 2D, on a classic segmentation test
image, and how different levels of precision can be obtained
with different sparsity settings. The sparsity, or the seed
density, is parameter controlled. Even with a high sparsity
the resulting segmentation is of sufficient quality for many
real-time applications. In this paper, the algorithm is mostly
discussed in 2D, but it can be implemented in any dimension.

Our sparse ray-traced segmentation includes the following
contributions:

1) ray-traced based region growing, leading to sparse seg-
mentation, prioritizing the fast space coverage of the
set over exact local coverage;

2) a constant number of GPU passes, conducting to a
constant execution speed, without affecting quality;

3) low bandwidth usage due to sparsity;
4) a complexity of O(N/tsize), where N is the number

of elements from the input set (pixels) and tsize is the
tile size for which a seed is generated (e.g. 16 × 16).
The state-of-the-art SLIC [28], [29] and Really Quick
Shift [13] methods have complexities of O(N) and
O(d ·N 2) where d is the dimensionality of the input set.

The purpose of the algorithm described in this paper is
to provide a very fast low-level image segmentation on low
power GPUs. This algorithm is suitable for applications
which require a real-time processing of the environment
images (navigation systems, robotics, automotive, surveil-
lance), especially of depth images.

Our GPU sparse ray-traced segmentation has proven its
usefulness in the Sound of Vision project [34], where it was
included in a real-time processing pipeline of an assistive
system for visually impaired people.

The Sound of Vision system’s goal is to scan the environ-
ment, extract information of interest from RGBD or depth
images and send it to the user, codified through haptics and
sounds. The codification of the information from the environ-
ment requires object recognition. In our system, the object
recognition uses the result of the low-level segmentation
described in this paper, which produces regions representing
planar surfaces. The regions are merged into objects, which
are then assigned to different semantic classes (ground, walls,
ceiling, stairs, doors, generic static and dynamic objects),
using regions adjacency, geometric heuristics and inter-frame
consistency. Each detected object is described by its semantic
label, 3D position and bounding box relative to the cam-
era. The Sound of Vision processing pipeline is detailed
in [35] and [38]. In the initial prototypes of the Sound of
Vision system, a scan-line planar segmentation described
in [36] was included in the pipeline. However, in the final pro-
totype this segmentation was replaced with our GPU sparse
ray-traced segmentation, leading to faster and more accurate
results in detecting objects of interest in indoor environments.

II. RELATED WORK
Segmentation on GPUs is generally achieved through iter-
ative methods, where a sizeable number of iterations is
necessary to converge the labeling to a final state. GPU pre-
segmentation methods follow a similar strategy, which leads
to over-segmentation with high quality local labeling.

Most of the early GPU segmentation work was done
with medical applications in mind, motivated by large
tridimensional datasets which benefitted most from GPU
acceleration. Schenke et al. [5] investigated early opportu-
nities presented by parallel computation hardware and intro-
duced a hybrid CPU-GPU segmentation algorithm, based on
seeded region growing through dilate and erode operations.
Hagan and Zhao [1] used an extended Lattice Boltzmann
Model (LBM) to solve the level set equation, in an itera-
tive approach which generates high quality labeling at the
expense of a large number of iterations with CPU-GPU
synchronization.

Vineet and Narayanan [10] adapted the maxflow/mincut
algorithm to CUDA, in which graph cuts are used to partition
an initially single labeled set into a multitude of indepen-
dently non-overlapping labeled sets. A costly synchroniza-
tion for the graph re-labeling stage is used between each of
the many graph cut iterations. Roberts et al. [24] used a level-
set based iterative algorithm with O(N · log (N)) complexity.

68512 VOLUME 7, 2019

L. Petrescu et al.: GPU Sparse Ray-Traced Segmentation

Körbes et al. [26] introduced an iterative parallel watershed
algorithm, where an image is divided into 16 × 16 tiles, and
each tile computes a small local watershed transformation, for
each iteration of the algorithm. Collins et al. [25] mapped the
co-segmentation problem to linear algebra operations, which
were then solvedwith CUDA, offering a high-quality solution
at a high computational cost. Ramírez et al. [27] segmented
volumes with a GPU adaptation of GrabCut, a flow network
algorithm designed to partition images. Like [10], the push-
relabel algorithm is implemented in CUDA, requiring costly
synchronizations.

Recent GPU segmentation investigations are based on
trainable methods [11], [19]–[22], in which various weakly
supervised machine learning algorithms are used to learn
and detect information in datasets. Segmentation is thus
performed with machine learning methods such as Support
Vector Machines (SVM), Markov Random Fields (MRF),
Conditional Random Fields (CRF) or Fully Convoluted Net-
works (FCN). However, most of these methods are not
adequate for real-time segmentation yet.

Pre-segmentation algorithms solve the segmentation prob-
lem only locally, usually with gradient ascent strategies,
where seeds are moved iteratively in local vicinities, labeling
the image at a local level, in small clusters named super-
pixels. Pre-segmentation algorithms have the highest per-
formance levels out of all segmentation methods. Because
of their speed, the pre-segmentation methods are excel-
lent candidates for real-time processing pipelines, as pre-
segmentation methods can be combined with cheap region
merging strategies. Thus, they are preferred over complete
segmentation algorithms in performance critical applications.
Fulkerson et al. [31] used conservative over-estimation of
small regions to produce superpixels, which are not fixed in
approximate size or number. Levinshtein et al. [30] intro-
duced TurboPixels, which are superpixels computed with
geometric flows, where initial seeds are iteratively perturbed
to cover local vicinities. The algorithm has a complexity
of O(N), and it works as a series of dilation operations.

Fulkerson and Soatto [13] provide a CUDA compatible
alteration of the quick shift algorithm, in which a five-
dimensional feature-space is used to establish the connection
strength between pixels and clusters. The implementation has
O(d ·N 2) complexity, but it is very fast in practice as it is non-
iterative, its only obstruction being the weak control over the
size and compactness of the resulting superpixels.

Achanta et al. [28] introduced SLIC superpixels, clustering
pixels by color and similarity in an iterative fashion but
limiting the search space to a region proportional to the
superpixel size. The complexity of the algorithm is O(N).
Achanta et al. [29] improved upon [28] with a zero-parameter
variant of the SLIC algorithm. Li et al. [7] improved the
quality of SLIC segmentation by using an iterative split-
and-merge strategy. For each iteration the superpixels are
split with an edge-map and then are merged with the adja-
cent superpixel with the shortest Bhattacharyya distance.
This method trades off execution speed for better quality.

Li and Chen [2] used linear spectral clustering to further
increase the segmentation accuracy of SLIC, albeit at a large
increase in computational costs.

Out of all segmentation and pre-segmentation methods
discussed in this section, the ones that are the most pertinent
towards real-time segmentation are Really Quick Shift [13]
and SLIC [29]. Both methods use a local gradient ascent clus-
tering strategy and they also offer good enough segmentation
quality and the best time performance.

III. METHOD
A. REGION GROWING STRATEGIES
K-dimensional segmentation is a partitioning problem in
which a set S containing N K-dimensional elements needs to
be partitioned into non-overlapping sub-sets, based on both
local and global similarity between elements. This problem
is solved by searching S for the non-overlapping sub-sets and
picking the best solution, given a fitness function.

FIGURE 2. Segmentation search space strategies, in 2D: k-means (left),
superpixel methods (center), sparse ray-traced segmentation (right).

Region growing or clustering methods determine this par-
titioning by iteratively trying to link elements outside the
cluster, as shown in Fig. 2. The blue object represents a
current cluster and the red pixels represent the search space
for potential new cluster elements. Traditional methods such
as k-means [3] explore the entirety of the set, produc-
ing extremely large search spaces, which are expensive to
explore. Pre-segmentation region growingmethods like SLIC
or other superpixel methods [28], [29] limit the search space
to only a small neighboring vicinity of the cluster, guarantee-
ing a quick search space exploration but also not being able
to entirely detect very large segments. The strategy proposed
by sparse ray-traced segmentation combines the best of both
approaches: the small number of elements explored by the
SLIC kernel approach and the large search space of the
traditional methods, resulting in both fast execution speed
and set-wide connection. Given the search space strategy,
the proposed method leads to both small and large segments,
in accordance to the particularities of the segmented space.

While the sparse ray-traced segmentation algorithm works
identically on sets of any dimension, the algorithm is pre-
sented in the following sections in its 2D form. The output
of the algorithm is a matrix with the resolution of the input
image, containing the label for each pixel.

B. RAY TRACED REGION GROWING
The complete proposed algorithm is summarily depicted in
Fig. 3. This section covers all the stages besides the optional

VOLUME 7, 2019 68513

L. Petrescu et al.: GPU Sparse Ray-Traced Segmentation

FIGURE 3. The sparse ray-traced segmentation pipeline, shown on a 2D depth image: Input depth image (1), flux computed based on input depth image
and normal map (2), region seeds (3), net created by each seed (4), connected nets (5), result of complete labeling and region merging (6).

complete labeling and region merging: flux computation,
seed generation, ray-traced search space exploration and
connection of traced regions. All stages are parallelized on
the GPU, using compute shaders (GLSL version 4.50). For
each computation that runs in parallel, unidimensional or
bi-dimensional workgroups of different size are used.

1) FLUX COMPUTATION
The flux represents the rate of change of the input set. It can
be a simple adaptive gradient for color images, and it is thus
extremely cheap to compute on the GPU.

In the Sound of Vision project, for depth images an expo-
nential decay adaptive gradient (adjusted with the error of
the acquisition device, Structure Sensor) was used. Depth
images allow the reconstruction of the environment into 3D
point clouds. Indoor environments are usually characterized
by man-made planar surfaces, i.e., regions with the same
normal in all their points. Therefore, for an indoor planar
segmentation of depth images, the normal map [36] was also
used in computing the flux. An example of flux generated
based on a depth image is seen in Figure 3. 2.

In the Sound of Vision project [34], we used ((W +
7)/8, (H + 7)/8, 1) workgroups of size 8× 8 for the normal
estimation and flux computation, where W and H represent
the width and the height of the image, respectively.

2) SEED GENERATION
The positions of the clustering seeds are first generated in a
pseudo-random pattern across the entire set. For instance, any
of the Sobol, van der Corput or Hammersly series can be used
for an image.

After seed generation, the seeds use a gradient ascent
strategy in order to distance themselves from high flux areas,
using Pseudocode 1.

Pseudocode 1 Seed Positioning
1: seedPos ← getPseudoRandomPosition()
2: iterations ← 0
3: flux ← getFlux(seedPos)
4: while flux > Threshold and iterations < MaxIterations
5: fluxDirection← getFluxDirection(seedPos)
6: seedPos ← seedPos + fluxDirection
7: flux ← getFlux(seedPos)
8: iterations ← iterations + 1
9: return seedPos

Each seed is processed in parallel (in our implementation
we used ((S + 31)/32, 1, 1) workgroups, each workgroup
containing 32 threads, where S represents the number of
seeds).

An example of the resulting seed distribution can be seen
in Fig. 3.3, colored with a Jenkins hash function applied over
the seed index.

3) RAY-TRACED EXPLORATION AND CONNECTION
OF SIMILAR REGIONS
After the seed positions have been generated, each seed traces
multiple rays through the image in order to quickly cover the
entire image, as illustrated in Figure 4: on the left, the input
image and its pixels are illustrated, with an object shown in
gray. In the middle, the result of applying the algorithm to
the input image is illustrated (for simplicity, we use two rays
per seed, with maximum 7 iterations per ray and without con-
servative rasterization). On the right, the sparse segmentation
result on a high-resolution input image is shown (after seeds
of rays with similar properties were connected).

Each ray is processed in parallel with a thread.
In our implementation, we used 8 rays per seed, leading

68514 VOLUME 7, 2019

L. Petrescu et al.: GPU Sparse Ray-Traced Segmentation

FIGURE 4. Input simplified image (left), result of applying the proposed method on the simplified image (middle), sparse segmentation result of a
high-resolution image after seeds of rays with similar properties were connected (right).

FIGURE 5. Input image with a low-density flux (left) and different ray
tracing scenarios (right): Rays 1 and 4 end after a maximum number of
steps, ray 2 ends because of accumulated flux and ray 3 ends on contact
with another ray with different properties.

FIGURE 6. Input image with a flux of varying density (left), ray scattering
depending on the strength of the flux (right).

to ((S+31)/32 ·8, 1, 1) workgroups, each workgroup having
32 threads.

The rays have multiple termination cases, including:
encountering a pixel where another ray with different prop-
erties was traced, encountering a high flux (edge) pixel or
accumulating enough flux, as shown in Figure 5.

The rays also support multiple reflection on the edges of
the image and on high flux (edge) pixels, making them effi-
cient explorers even for complicated tracing cases. The many
traced rays are easily distributed over all available compute
cores. The result of the traced but unconnected rays can be
observed in Fig. 3.4. Furthermore, direction scattering is used
if the ray accumulates sufficient flux, in order to guide the ray
from high flux to low flux areas, on the same principles as
the watershed transform. The stochastic reflectance of rays
towards low local flux deters the rays from choosing risky
connections in high flux areas, as illustrated in Fig. 6.

A forest structure is created over the seeds, linking all
the starting seeds over the entire image. Initially all seeds
start as separate trees, having themselves as parents, and
with each ray connection the number of single sized trees
in the forest decreases. In order to minimize the height of
the trees, when two rays connect, only the greatest ancestor

Pseudocode 2 Connecting Two Seeds
getGreatestParent(initial_seedId)
1: seedId ← initial_seedId
2:while seedId 6= getParentId(seedId)
3: seedId ← getParentId(seedId)
4: return seedId

ConnectSeeds (seedId1,seedId2)
1: parent1.id ← getGreatestParent(seedId1)
2: parent2.id ← getGreatestParent(seedId2)
3: if parent1.id < parent2.id
4: atomicExchange(parent2.parentId, parent1.id)
5: else
6: atomicExchange(parent1.parentId, parent2.id)

FIGURE 7. The difference between not using (left) and using (right)
conservative rasterization for tracing.

seeds are connected. Because GPU data synchronization can
only be efficiently implemented with lockless programming
(atomic operations), a relationship order needs to be defined
between seeds on a successful connection. The proposed
method uses the minimum of the indices of the potentially
connecting seeds. The algorithm for connecting two seeds is
described in Pseudocode 2.

Conservative staircase tracing (conservative rasteriza-
tion [37]) is used if the ray direction does not perfectly align
to the image axes in order to guarantee the detection of ray
connections even in aliased tracing scenarios, such as the one
showcased in Fig. 7. Without conservative rasterization of
rays some contact scenarios are lost (the two rays from the
left image do not intersect themselves in any pixel).

Each ray maintains a set of properties about the traced
input, including accumulated flux, average input value,
variance and the average value for the last T traced pixels.
The traced properties are written in an auxiliary buffer (the
traced properties matrix TProps from Pseudocode 3).

VOLUME 7, 2019 68515

L. Petrescu et al.: GPU Sparse Ray-Traced Segmentation

Pseudocode 3 Ray tracing
Initialization Pass:
1: initialize label matrix Labels to empty
2: initialize traced properties matrix TProps to empty

Ray Tracing Pass (1 thread per each ray per seed):
1: seed ← getSeed (ray.id)
2: rayProperties ← initializeRayProperties()
3: iterations ← 0
4: pos ← seed.pos
5: while iterations < MaxIterations
6: flux ← readFlux (pos) //from flux matrix
7: if flux > MaxFlux
9: end //high flux (edge) termination case
10: input ← readInput (pos) //from input image
11: updateRayPropertiesInputFlux (rayProperties,
input,
12: flux)
13: if rayPropertiesDeviateFromCluster(rayProperties)
14: end //average value of the last T traced pixels
15: //deviates from average value of the ray
16: if (rayProperties.accumulatedFlux > AccMaxFlux)
17: end //accumulating enough flux termination
case
18: scatterDir ← getScatteringBasedOnAccumFlux()
19: //see Figure 6
20: id ← readLabel (pos)
21: if id is undefined
22: //the pixel has not been traversed by other
rays
23: writeLabel (pos, seed.id)
24: writeTraceProperties(pos, rayProperties)
25: else
26: if alreadyConnectedNets(seed.id,id)
27: end //the seeds are already part of the
same
28: //forest (they have the same greatest parent)
29: posProperties ← readProperties(pos)
30: if rayProperties not_similar posProperties
31: end
32: updateRayProper-
ties(rayProperties,posProperties)
33://update with the properties of the other ray traced
through pos
34: writeTraceProperties(pos, rayProperties)
35: ConnectSeeds(seed.id, id)
36: if (ray.dir + scatterDir) aligned to image axes
37: pos ← pos + ray.dir + scatterDir
38: else
39: pos ← StaircaseTracing (ray.dir + scatter-
Dir)

A potential seed connection occurs when a ray is about
to be traced over another. The connection is successful
only if there are both local and global matches between

the potentially connected seeds. The following pseudocode
describes this process:

Finally, after all the rays are traced, there remains a small
possibility that two rays end near one another but neither
initiates a connection case, therefore an extra pass is needed
to enforce connectivity. The algorithm for the enforced
connectivity is presented in Pseudocode 4.

Pseudocode 4 Enforce Connectivity Pass (per Each Pixel)
1: pos ← getPos(pixel)
2: seedId ← readLabel (pos)
3: properties ← readProperties(pos)
4: flux ← readFlux(pos)
5: foreach posN neighbor of pos
6: seedNId ← readLabel(posN)
7: propertiesN ← readProperties(posN)
8: fluxN ← readFlux(posN)
9: if properties similar propertiesN
10: if max(flux, fluxN) < MaxFlux
11: ConnectSeeds (seedId, seedNId)

The final pass updates each pixel to its greatest parent. The
final parentless seeds, acting as roots in the forest constructed
over the image, represent the unique sparse segmentation ids,
as illustrated in Fig. 3.5.

In our implementation, this final pass is done in paral-
lel using ((W + 31)/32, (H + 31)/32, 1) workgroups of
size 32× 32.
The bandwidth of the presented method is low, as the

number of memory operations is small. Packet tracing [32]
can be used on the rays. Packing by seed leads to good results
as each seed normally traces rays with comparable length
and similar connections. The staircase tracing pattern can be
improved upon by modifying the classic DDA [33] rasteriza-
tion algorithm and making it conservative. This eliminates a
sizeable number of unnecessary memory operations. Using
predefined directions can also further decrease the tracing
computational costs.

Many of the constants from Pseudocode 3 (MaxFlux, Acc-
MaxFlux, etc.), were established experimentally in the Sound
of Vision project [34], for optimal results in segmenting
depth maps of indoor environments. These constants rep-
resent a weakness of the approach, and we are currently
researching ways to automatically parametrize the boundary
exploration.

C. COMPLETE LABELING AND REGION MERGING
Sparse segmentation is sufficient for a large number of practi-
cal applications, but sometimes a full segmentation is desired.
The complete labeling and region growing optional steps are
presented for this purpose.

1) COMPLETE LABELING
After the initial sparse labeling described in the previous
section, the unique segmentation ids can be considered as a
sparse net over the image. Full labeling is implemented by

68516 VOLUME 7, 2019

L. Petrescu et al.: GPU Sparse Ray-Traced Segmentation

connecting the pixels lacking labels to this net, in two stages.
In the first stage the pixels are connected under the same
principles of ray tracing connection, as used in the previous
section. In the second stage the pixels are connected based on
a similarity search inside a kernel.

The first stage of the complete labeling is described in
Pseudocode 5.

Pseudocode 5 Full labeling – first stage (per each pixel)
1: pos ← getPos(pixel)
2: if readLabel(pos) not undefined
3: end
4: steps ← 0
5: for rayId ← 1, rayId < NumRays, rayId ++
6: alive[rayId] ← true
7: rayProperties[rayId] ← empty
8:for steps ← 1, steps < MaxSteps, steps ++
9: for rayId ← 1, rayId < NumRays, rayId ++
10: if not alive[rayId]
11: continue
12: ray ← getRay(rayId)
13: if ray.dir aligned to image axes
14: rpos ← pos + steps · ray.dir
15: else
16: rpos ← StaircaseTracing(ray.dir)
17: flux ← readFlux(rpos)
18: if flux > MaxFlux
19: alive[rayId] ← false
20: continue
21: input ← readInput(rpos)
22: updateRayProperties(properties[rayId],
input)
23: seedId ← readLabel(rpos)
24: if seedId not undefined
25: posProperties ← readProperties(rpos)
26: if properties[rayId] similar posProp-
erties
27: writeLabel(pos, seedId)
28: end
29: else
30: alive[rayId] ← false

After the first stage, most of the pixels will be labeled.
In the second stage, the unlabeled pixels which are not posi-
tioned on an edge (high flux) are processed in the following
manner: for each pixel, the neighboring area is sampled with
rays which intersect the regions inside the vicinity. The pixel
will be assigned to the region with the most similar properties
(with the minimum difference between the pixel’s intensity
and the average intensity inside the region).

The complete labeling process is applied iteratively, until
all the pixels are labeled. Experimentally we have reached
the conclusion that a very small number of iterations (∼2-3)
is required to fully label most segmentation cases.

2) REGION MERGING
Regionmerging is another optional process, which can lead to
significant quality improvements, as showcased in Fig. 8. It is
used to combine similar regions which could not be united
because of high flux variations. Like full labeling, it is an
iterative multi-stage process.

In the first stage the fully labeled image is taken and
each initial seed traces short rays to gather data and average
properties of the local labeling.

FIGURE 8. Before (left) and after (right) the region merging step.

Then, in the second stage, the data that characterizes each
initial seed (gathered in the first stage) is accumulated in the
greatest parent of each initial seed, using atomic operations to
synchronize the writes. Since this is an accumulation method,
special care must be taken to protect against overflows. In the
third stage a per-pixel method is ran which compares all
potential neighbors in a kernel to the center pixel. If the
properties match but the labeling is different, then the two
labels are merged.

Similarly to the complete labeling process, we have deter-
mined experimentally that two or three iterations of region
merging are enough for obtaining a high-quality segmenta-
tion, as can be observed in Fig. 8.

Both full labeling and region merging increase the quality
of the labeling, and the extra costs still lead to compara-
ble overall processing times to those of the state-of-the-art
(pre)segmentation methods, as shown in Table 1.

IV. EVALUATION AND RESULTS
The evaluation methodology is to compare sparse ray-traced
segmentation both qualitatively and speed-wise to the fastest
state-of-the-art GPU segmentation methods, that is, with
Really Quick Shift [13] and SLIC [29]. While these meth-
ods are pre-segmentation algorithms and require additional
processing to produce full segmentation, they represent the
only category of methods which are comparable in execution
speed to the presented algorithm. We have also chosen these
segmentation algorithms since they produce visual results
which are comparable to our algorithm. Sparse ray-traced
segmentation could also be used as a pre-segmenter, but
it would produce super-pixel sized segments only in very
textured areas and large segments in homogenous areas.

From a speed standpoint, sparse ray-traced segmenta-
tion has an O(N/tsize) complexity which makes it much
faster than any full GPU segmentation algorithm, the fastest
being O(N).

VOLUME 7, 2019 68517

L. Petrescu et al.: GPU Sparse Ray-Traced Segmentation

TABLE 1. Speed results. This image compares various execution speeds. all measurements (besides image size) are in milliseconds. The highlighted
columns show the total execution speed for sparse ray-traced segmentation with one seed per 4 × 4 pixels (4 × 4) and one seed per
16 × 16 pixels (16 × 16). Both timings are clearly superior to the state-of-the-art results, SLIC without connectivity, SLIC with
connectivity [29] and really quick shift [13].

TABLE 2. Ratios between computing times for sparse ray-traced
segmentation with one seed per 4 × 4 pixels (4 × 4), one seed per
16 × 16 pixels (16 × 16), full segmentation with our algorithm (4 × 4
and 16 × 16), SLIC with/without connectivity and really quick shift.

Results show that the proposed algorithm has good local
quality results, as shown in Figure 9, and exceptional speed
results, as illustrated in Table 1, making it ideal for real-time
segmentation pipelines. Furthermore, the results demonstrate
that the new method finds complete segmentations in less
time than the state-of-the-art methods need to finish their
local segmentations. Table 1 shows the computing times for
the flux computation, the creation of the sparse net, the com-
plete labeling step and themerging step, our full segmentation
and our sparse segmentation, in comparison with the results
of SLIC [29] and Really Quick Shift [13].

All measurements were made on an NVIDIA GTX 960M
graphics card. Table 2 simplifies the performance comparison
between our sparse segmentation and the other two methods,
as well as the performance assessment of our algorithm for
different seed densities. We chose the most important com-
puting times from Table 1 (full segmentation, sparse segmen-
tation, SLIC and Really Quick Shift) and compared them by
computing several ratios, which can be observed in Table 2.

From the Ratio SLIC without connectivity/SPARSE
(16× 16) and the Ratio Really Quick Shift/SPARSE
(16× 16) we can conclude that our sparse ray-traced segmen-
tation consistently has running times approximately 5× faster
than SLIC and approximately 25× faster than Really Quick
Shift.

The obtained results indicate that even the full variant of
our segmentation method has a running time approximately
equal to the computation of the fastest algorithm, SLIC with-
out connectivity, which does not produce a complete segmen-
tation, but only super-pixels (Table 2, Ratio SLIC without
connectivity / Full (16× 16)).
Table 1 and 2 also show that the presented algorithm has

a performance degradation which is sub-linear in the number
of pixels, making it ideal for large and very large images.

Even if the algorithm is highly parallel, the overall com-
plexity of the sparse ray-traced segmentation method is influ-
enced by the number of threads, since the connection of seeds,
described in Pseudocode 2, assumes that all the threads access
the same array when updating the parent seed id. However,
due to the spatial distribution of the rays, there are few cases
when the atomicExchange() function delays the threads writ-
ing operations. Therefore, from the Ratio SPARSE (16×16)/
SPARSE (4× 4) column in Table 2 we can observe that 16×
more seeds only double the computing time. However, from
the Ratio FULL (16×16) – FULL (4×4) we can conclude that
the full segmentation is not affected by the number of seeds,
since the gain obtained by the sparse segmentation with one
seed per 16×16 pixels over the sparse segmentation with one
seed per 4 × 4 pixels is lost by the additional time spent for
the complete labeling and the merging steps.

Figure 9 shows the qualitative results of sparse ray-traced
segmentation, where different types of images are segmented
and compared to the state-of-the-art results.

The qualitative testing includes both sparse and complete
labeling variants of the presented algorithm, as well as dif-
ferent tile sizes, which directly affect the number of seeds.
Therefore, the fourth column in Fig. 9might require zooming,
as it has results obtained with a very low sparsity (seed
density) value.

Sparse ray-traced segmentation shows comparable
perception-based quality to the state-of-the-art methods. Fur-
thermore, the presented algorithm outputs complete segmen-
tations, while both SLIC and Really Quick Shift need further
region merging processing due to their over-segmentation
strategies.

68518 VOLUME 7, 2019

L. Petrescu et al.: GPU Sparse Ray-Traced Segmentation

FIGURE 9. Qualitative results: test image (1st column), sparse ray-traced segmentation with one seed each 16 × 16 pixels (sparse – 2nd column – and
complete – 3rd column), sparse ray-traced segmentation with one seed each 4 × 4 pixels (sparse – 4th column and complete – 5th column), Really Quick
Shift [13] (6th column), SLIC [29] (7th column).

In the first and third rows from Fig. 9, the result of the
segmentation with Really Quick Shift and SLIC is almost
identical to the initial image, meaning that the algorithms
produce an extremely large number of very small regions.
Comparatively, our method produces a small number of
homogenous regions, that can be observed in the third and
fifth columns.

On the fourth row from Figure 9, we can observe (also
illustrated in the upper part of Figure 10) that, unlike sparse
ray tracing segmentation, Really Quick Shift can produce
false regions. On the fourth and fifth rows from Figure 9
and in Figure 10 we can also observe that besides over-
segmentation, the Really Quick Shift algorithm produces
regions that cover two separate objects (under-segmentation).
Our algorithm can also lead to over-segmentation in some
areas, due to light reflection or textured surfaces, as can be
observed in the lower part of Figure 10, but it separates
correctly the surfaces of different objects (it does not lead to
under-segmentation).

Sparse ray-traced segmentation is a flexible algorithm,
where the tradeoff between quality and speed is controlled
by a single sparsity parameter. It can even be used as an

enhanced pre-segmentation method, as shown in Figure 11.
The resulting pre-segmentation preserves a large part of the
local structure but still completely discovers and links the
large segments, in comparison to the state-of-the-art pre-
segmentation methods which partition such segments.

One limitation of our approach is that the flux required
as input by the presented method can be parameter heavy,
especially if a non-adaptive solution is used.

Because the algorithm sparsely explores space, it is espe-
cially prone to noise related errors, thus the flux needs
to be conservative. Another limitation is that the algo-
rithm was designed for usage in common scenarios (video
tracking, important features detection, real-time usage) and
is not the best choice for specialized segmentation cases
where quality is much more important than speed, for
example OCRs.

As previously mentioned, sparse ray-traced segmentation
is already used in practical applications in the Sound of Vision
project [34], where it segments RGBD input in real-time, with
the help of an adaptive exponential flux detector.

Because of the very small computational cost of the seg-
mentation, it can be used in a long pipeline, together with

VOLUME 7, 2019 68519

L. Petrescu et al.: GPU Sparse Ray-Traced Segmentation

FIGURE 10. Problems of really quick shift (right), that do not appear in
our segmentation (middle): Under-segmentation and false regions.

FIGURE 11. Results of running the ray-traced segmentation on a complex
image with both small and large regions.

signal filtering, normal computation, best free space analysis,
feature tracking, object labeling and sonification [35].

V. CONCLUSION
A GPU sparse segmentation was introduced in this article,
which explores the search space with ray tracing. This strat-
egy enables clustering at a high distance in feature space,

while using the small number of searching queries specific
to local cluster-size aware searches, such as those applied by
pre-segmenters.

Both quality and speed results show that the presented
method excels in real-time segmentation scenarios, and it has
also proven its value in the Sound of Vision [34] project.

The computational load of the algorithm is handled
through a ray tracing framework, which makes it easy to
be efficiently implemented on GPUs, while also benefitting
from numerous ray tracing specific optimizations. Because
of this, the presented method can sparsely segment datasets
on the GPU approximately 5× faster than the state-of-
the-art pre-segmentation methods, without even considering
the additional region merging costs incurred by the latter
methods.

The algorithm even runs in real-time on a 7-year-old
NVIDIA 460MX graphics card. Furthermore, the algorithm
is platform independent, being completely implementable in
OpenGL 4.3.

The presented algorithm can trade off quality and speed
with a single parameter, the segmentation sparsity. The algo-
rithm runs in real-time even at very low sparsity values, where
the majority of the set elements are labeled.

Optional full labeling and region merging methods are also
provided, which completely label the entire set.

ACKNOWLEDGMENT
A patent application based on this work was submit-
ted to OSIM (Romanian patent organization), registration
no. A/01176 from 29.12.2017.

REFERENCES
[1] A. Hagan and Y. Zhao, ‘‘Parallel 3D image segmentation of large data sets

on a GPU cluster,’’ in Proc. Int. Symp. Vis. Comput., 2009, pp. 960–969.
[2] Z. Li and J. Chen, ‘‘Superpixel segmentation using linear spectral clus-

tering,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 1356–1363.

[3] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, ‘‘An efficient K-means clustering algorithm: Analysis and
implementation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,
pp. 881–892, Jul. 2002.

[4] D. Arthur and S. Vassilvitskii, ‘‘K-means++: The advantages of care-
ful seeding,’’ in Proc. 18th Annu. ACM-SIAM Symp. Discrete Algo-
rithms (SODA), 2007, pp. 1027–1035.

[5] S. Schenke, B. Wünsche, and J. Denzler, ‘‘GPU-based volume segmenta-
tion, ’’ in Proc. IVCNZ, 2005, pp. 171–176.

[6] Y. Beevi and S. Natarajan, ‘‘An efficient video segmentation algorithm
with real time adaptive threshold technique,’’ Int. J. Signal Process., Image
Process. Pattern Recognit., vol. 2, no. 4, pp. 13–27, 2009.

[7] L. Li, J. Yao, J. Tu, X. Lu, K. Li, and Y. Liu, ‘‘Edge-based split-and-
merge superpixel segmentation,’’ in Proc. IEEE Int. Conf. Inf. Automat.,
Aug. 2015, pp. 970–975.

[8] P. F. Felzenszwalb and D. P. Huttenlocher, ‘‘Efficient graph-based image
segmentation,’’ Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–181, Sep. 2004.

[9] J. Shi and J. Malik, ‘‘Normalized cuts,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 22, no. 8, pp. 888–905, 2000.

[10] V. Vineet and P. J. Narayanan, ‘‘CUDA cuts: Fast graph cuts on the
GPU,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
Workshops, Jun. 2008, pp. 1–8.

[11] H. Zhu, F. Meng, J. Cai, and S. Lu, ‘‘Beyond pixels: A comprehensive sur-
vey from bottom-up to semantic image segmentation and cosegmentation,’’
J. Vis. Commun. Image Represent., vol. 34, pp. 12–27, Jan. 2016.

68520 VOLUME 7, 2019

L. Petrescu et al.: GPU Sparse Ray-Traced Segmentation

[12] D. Comaniciu and P. Meer, ‘‘Mean shift: A robust approach toward feature
space analysis,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5,
pp. 603–619, May 2002.

[13] B. Fulkerson and S. Soatto, ‘‘Really Quick shift: Image segmentation on a
GPU,’’ in Proc. 11th Eur. Conf. Trends Topics Comput. Vis. (ECCV), 2010,
pp. 350–358.

[14] S. Paris, ‘‘Edge-preserving smoothing and mean-shift segmentation of
video streams,’’ in Proc. 10th Eur. Conf. Comput. Vis. (ECCV), 2008,
pp. 460–473.

[15] P. Soille, ‘‘Constrained connectivity for hierarchical image partitioning and
simplification,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 7,
pp. 1132–1145, Jul. 2008.

[16] R. G. Cinbis, J. Verbeek, and C. Schmid, ‘‘Multi-fold mil training for
weakly supervised object localization,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2014, pp. 2409–2416.

[17] T. F. Chan and L. A. Vese, ‘‘Active contours without edges,’’ IEEE Trans.
Image Process., vol. 10, no. 2, pp. 266–277, Feb. 2001.

[18] A. Morar, F. Moldoveanu, and E. Gröller, ‘‘Image segmentation based on
active contours without edges,’’ inProc. IEEE 8th Int. Conf. Intell. Comput.
Commun. Process., Aug./Sep. 2012, pp. 213–220.

[19] A. Mustafa and A. Hilton, ‘‘Semantically coherent co-segmentation and
reconstruction of dynamic scenes,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 422–431.

[20] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 3431–3440.

[21] G. Bertasius, L. Torresani, S. X. Yu, and J. Shi, ‘‘Convolutional random
walk networks for semantic image segmentation,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 858–866.

[22] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, ‘‘Temporal con-
volutional networks for action segmentation and detection,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 156–165.

[23] A. Abramov, T. Kulvicius, F. Wörgötter, and B. Dellen, ‘‘Real-time
image segmentation on a GPU,’’ in Facing the Multicore-Challenge, 2010,
pp. 131–142.

[24] M. Roberts, J. Packer, M. C. Sousa, and J. Mitchell, ‘‘A work-efficient
GPU algorithm for level set segmentation,’’ in Proc. Conf. High Perform.
Graph., 2010, pp. 123–132.

[25] M. D. Collins, J. Xu, L. Grady, and V. Singh, ‘‘Random walks based
multi-image segmentation: Quasiconvexity results and gpu-based solu-
tions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012,
pp. 1656–1663.

[26] G. B. Vitor, A. Körbes, R. de Alencar Lotufo, and J. V. Ferreira, ‘‘Analysis
of a step-based watershed algorithm using CUDA,’’ Int. J. Natural Comput.
Res., pp. 16–28, 2010.

[27] E. Ramírez, P. Temoche, and R. Carmona, ‘‘A volume segmentation
approach based on GrabCut,’’ CLEI Electron. J., vol. 16, no. 2, pp. 1–14,
2013.

[28] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, ‘‘SLIC
superpixels,’’ School Comput. Commun. Sci., Ecole Polytech. Fédrale
Lausanne, Lausanne, Switzerland, Tech. Rep. 149300, 2010.

[29] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, ‘‘SLIC
superpixels compared to state-of-the-art superpixel methods,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, Nov. 2012.

[30] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson,
and K. Siddiqi, ‘‘TurboPixels: Fast superpixels using geometric flows,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12, pp. 2290–2297,
Dec. 2009.

[31] B. Fulkerson, A. Vedaldi, and S. Soatto, ‘‘Class segmentation and object
localization with superpixel neighborhoods,’’ in Proc. IEEE 12th Int. Conf.
Comput. Vis., Sep./Oct. 2009, pp. 670–677.

[32] S. Boulos et al., ‘‘Packet-based whitted and distribution ray tracing,’’
in Proc. Graph. Interface, 2007, pp. 177–184.

[33] M. McGuire and M. Mara, ‘‘Efficient GPU screen-space ray tracing,’’
J. Comput. Graph. Techn., vol. 3, no. 4, pp. 73–85, 2014.

[34] Sound of Vision Project. Accessed: Jul. 14, 2018. [Online]. Available:
https://soundofvision.net/

[35] S. Caraiman et al., ‘‘Computer vision for the visually impaired: The
sound of vision system,’’ in Proc. IEEE Int. Conf. Comput. Vis. Work-
shops (ICCVW), Oct. 2017, pp. 1480–1489.

[36] A. Morar, F. Moldoveanu, L. Petrescu, O. Balan, and A. Moldoveanu,
‘‘Time-consistent segmentation of indoor depth video frames,’’
in Proc. 40th Int. Conf. Telecommun. Signal Process. (TSP), Jul. 2017,
pp. 674–677.

[37] Conservative Rasterization. Accessed: Jul. 14, 2018. [Online].
Available: https://docs.nvidia.com/gameworks/content/gameworkslibrary/
graphicssamples/opengl_samples/conservativerasterizationsample.htm

[38] A. Morar, F. Moldoveanu, L. Petrescu, and A. Moldoveanu, ‘‘Real time
indoor 3D pipeline for an advanced sensory substitution device,’’ in Image
Analysis and Processing-ICIAP (Lecture Notes in Computer Science),
vol. 10485, S. Battiato, G. Gallo, R. Schettini, and F. Stanco, Eds. Cham,
Switzerland: Springer, 2017, pp. 685–695.

LUCIAN PETRESCU received the B.S. degree in
computer science, the M.S. degree in computer
graphics, virtual reality, and multimedia, and the
Ph.D. degree from the Politehnica University of
Bucharest, in 2010, 2012 and 2015, respectively.
During his Ph.D. degree, he studied the possibil-
ity of rendering massive 3D scenes in real-time.
Since 2015, he collaborated with the academia
and the industry, involved in projects related to
computer vision and computer graphics.

ANCA MORAR received the B.S. degree in com-
puter science from the Politehnica University of
Bucharest, in 2009, and the Ph.D. degree in com-
puter science, in 2012, in the field of medical
image analysis and visualization. She is currently
an Associate Professor with the Computer Science
and Engineering Department, Faculty of Auto-
matic Control and Computers, Politehnica Uni-
versity of Bucharest. Her research is focused on
computer graphics, GPGPU, computer vision, and
e-health.

FLORICA MOLDOVEANU is currently a Pro-
fessor with the Department of Computer Science
and Engineering with the Politehnica University
of Bucharest. She coordinates the master program
computer graphics, multimedia and virtual reality
at the Faculty of Automatic Control and Comput-
ers. She is also the President of the Health Level 7
Romania Association. Her research and teaching
activity is focused on computer graphics, computer
vision, software engineering, and e-health.

ALIN MOLDOVEANU is currently a Full Profes-
sor with the Computer Science and Engineering
Department, Faculty of Automatic Control and
Computers (http://acs.pub.ro), Politehnica Uni-
versity of Bucharest, where he teaches soft-
ware engineering and virtual reality. His active
research areas include virtual and augmented real-
ity (exploring and applying immersion, sensory
substitution, and distorted reality), e-Health (assis-
tive and rehabilitative solutions and prevention of

hospital acquired infections), and e-Learning (3D MMO mixed-reality cam-
puses). He is also the Director or responsible for national or European
research projects in these areas, such as Sound of Vision, TRAVEE, and
HAI-OPS.

VOLUME 7, 2019 68521

	INTRODUCTION
	RELATED WORK
	METHOD
	REGION GROWING STRATEGIES
	RAY TRACED REGION GROWING
	FLUX COMPUTATION
	SEED GENERATION
	RAY-TRACED EXPLORATION AND CONNECTION OF SIMILAR REGIONS

	COMPLETE LABELING AND REGION MERGING
	COMPLETE LABELING
	REGION MERGING

	EVALUATION AND RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	LUCIAN PETRESCU
	ANCA MORAR
	FLORICA MOLDOVEANU
	ALIN MOLDOVEANU

