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ABSTRACT Intent inference has attracted considerable interest for achieving situation awareness in the
high-level information fusion community. Different from traditional tracking-then-inference methods for
intent inference, a novel scheme for joint target tracking, classification, and intent inference (JTCI) is
developed based on the Bayesian framework. The proposed JTCI scheme exploits the dependence of
target state on target class and intent by defining intent and class dependent dynamic model sets. Then,
the joint target state, intent, and class density are obtained recursively under the assumption, and the
kinematic and attribute measurement processes are conditional independent. Finally, simulations about
tracking in the air surveillance system are utilized to demonstrate the superiority of the proposed JTCI to the
state-of-the-art JTC.

INDEX TERMS Intent inference, situation awareness, joint target tracking, classification and intent
inference, Bayesian framework.

I. INTRODUCTION
Information fusion refers to the process of data gathered
from multiple sources to build a comprehensive view of the
environment. As information fusion is ultimately performed
for human needs, the commonly used Joint Director of Labo-
ratories (JDL)model has been extended from low-level fusion
process (e.g. target detection, tracking and classification) to
high-level fusion process (e.g. situation awareness, impact
assessment and process refinement) [1]–[7]. Recent years,
in order to reduce tracking uncertainty there has been great
interest in a joint tracking framework, which resolved differ-
ent levels of fusion process, such as detection, classification
and sensor management while tracking. Track before detect
has been proposed for joint detection and tracking (JDT)
of dim targets, where a number of consecutive scans are
jointly processed without thresholding, and then the esti-
mated target track is returned simultaneously as detection
is declared [8]–[10]. Another JDT processing algorithm has
been proposed for a multiple radar system, where the idea
of feeding the information from the tracker to the detector
is explored. The tracker can guide the detectors of mul-
tiple radars where to look for a target [11]. A joint data

The associate editor coordinating the review of this manuscript and
approving it for publication was Mithun Mukherjee.

association and state estimation scheme has been developed
based on the expectation-maximization framework, which is
desirable to deal with the coupling issue of identification
risk and estimation errors in over-the-horizon radar tracking
system [12]. Joint target tracking and classification (JTC) is
a popular framework for treating target tracking and classi-
fication problems jointly, which constructs the link between
target state and class by incorporating class-dependent kine-
matic models [13]–[15]. Lately, several JTC based methods
have been proposed to deal with the feasible implementation,
computational efficiency, clutter environment, extended tar-
get and etc. In essence, classification is a decision problem.
A joint decision and estimation framework has been pro-
posed for solving the JTC problem based on a general-
ized Bayes risk considering both decision and estimation
performance [16]–[18]. Furthermore, the problem of JTC
within a sensor network has been studied in [19], where an
optimal sensor selection scheme based on the maximization
of the expected mutual information is integrated within the
JTC framework. All the methods above indicate that a joint
consideration of tracking and other levels of fusion process is
more promising than a separate consideration.

In practice, a surveillance system concerns three questions:
where and what the underlying target is, and what is it doing.
The former two are related to tracking and classification,
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FIGURE 1. The JTCI illustration.

respectively, and the latter one corresponds to target intent
inference. Intent inference is to interpret the motivations
behind the actions that have just occurred. Moreover, target
intent is an intersection of different levels of fusion process
in the JDL fusion model [20], which plays an important role
for integration of low and high levels of fusion. Conventional
tracking systems solved intent inference in the tracking-then-
inference style [6], [21]–[26]. It estimates the target tracks
first and an inference is made based on this estimation. In fact,
target tracking, classification and intent inference are three
deeply coupled problems in a surveillance system as shown
in Fig. 1. For example, class and intent determine the motion
models which are essential for accurate tracking. At the same
time, the target dynamics convey class and intent information.
However, all the methods mentioned above deal with tracking
and intent inference separately. Another types of methods,
deep-learning based methods, use hierarchical abstract layers
of latent variables to perform object recognition and classifi-
cation. However, such methods lack theoretical foundations
and do not capture model uncertainty. In comparison, proba-
bilistic graphical models are more powerful and flexible with
their Bayesian nature, which offer amathematically grounded
framework to make high-level inference and reason about
model uncertainty. In addition, deep learning based methods
often require a huge volume of labeled data and engineering
experiences in neural network design, which cannot always
be satisfied in practice. Therefore, it is highly demanded
to develop the joint target tracking, classification and intent
inference (JTCI) based on the Bayesian framework. Although
the widely adopted JDL model defines a data process flow
from low to high levels of fusion, no implemented framework
is specified for JTCI.

In this paper, a novel scheme for JTCI based on the
Bayesian framework is developed, considering the inter-
dependence between tracking, classification and intent infer-
ence. By defining class and intent dependent motion models,
an optimal Bayesian filter, named JTCI filter, is constructed to
recursively propagate the joint state-intent-class probability
density under the assumption that the kinematic and attribute
measurement processes are conditional independent. At last,

the proposed JTCI is applied to solve a tracking problem in
the air surveillance system.

The rest of the paper is organized as follows. In Section II,
the investigated problem is formulated. The JTCI scheme
is developed in Section III, and then the performance of
the JTCI is compared with the JTC in Section IV. Finally,
conclusions are drawn in Section V.

II. PROBLEM FORMULATION
Consider the discrete-time dynamic system,

xk = f (xk−1,mk )+ wk−1, (1)

zxk = h(xk )+ vk , (2)

where xk and zxk represent the state vector and the kinematic
measurement vector at time k , respectively, f is the state
function, h is the kinematic sensor (e.g. radar) function.
wk and vk are the uncorrelated zero-mean Gaussian white
process andmeasurement noises with covariance matricesQk
and Rk , respectively. The motion model mk follows a finite-
state, first-order Markov chain and takes values from a finite
set M = {m1, . . .mN } [27].
The measurement process of an attribute sensor, e.g. elec-

tronic support measure (ESM), is obtained from the confusion
and the emitter usage transition matrices. For more details,
see [13]. Here, it is concisely represented by

p(zck |c) = pc(zck − c), (3)

where c ∈ {1, 2, . . . ,C} represents the target class, zck is
the class measurement, and pc is the target class probability
determined from the class measurement.

In addition, it is assumed that zck is only statistically depen-
dent of target class c and zxk is only statistically dependent of
target state xk [13] [28].
As shown in Fig. 2, the existing JTC framework [13] has

been presented for the case that mk is only class-dependent.
Here, the model transition probability at time k is defined as

pi|jk = Pr(mk = mi|mk−1 = mj, c), i, j = 1, . . . ,N , (4)

In practice, targets in the scene do not move randomly [29].
Instead, they usually follow specific motion patterns not only
according to their classes (e.g. airliner, bomber and fighter)
but also their intents (e.g. cruise, attack and escape). For
example, a cruising airliner may imply constant velocity
motion model, while an attacking fighter may imply strong
maneuver. Therefore, incorporating intent into dynamic mod-
eling would be more promising in reducing the tracking
uncertainty. However, learning and inferring intent is a non-
trivial job:
• The stationarity assumption of target class has been
favored for its simplicity in most applications of JTC
so far. However, this assumption is not always valid for
intent inference. For example, a pilot will change his
intent according to different combat situations.

• Attribute sensors, such as ESM, can identify the likely
source emitters carried on board to assist classification,
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FIGURE 2. Diagram of the existing JTC framework.

FIGURE 3. Graphical representation of the variable interdependencies
over time.

while there is noway to observe the intent directly. Intent
is hidden in nature and can only be inferred via other
observable variables.

Considering the fact that the motion model transition of a
certain kind of target is to perform some intent, we present
the class and intent dependent dynamic models as depicted
in Fig. 3, where each circle represents a node, the latent nodes
are shown in dashed circles, and the black edges express
probabilistic dependency among nodes. The model transition
probability matrix is defined by

π
ij
k = Pr(mk = mi|mk−1=mj, ak , c), i, j=1, . . . , Nac,

(5)

where ak ∈ {1, 2, ..,A} is the target intent at time k .

We assume that the intent is evolving according to a first-
order Markov chain with a known transition probability
Pr(ak |ak−1). It is noted that the number of models Nac may
be different for each pair of class and intent.

The objective of this paper is to recursively calculate the
posterior joint state-intent-class density p(xk , ak , c|zk ) for the
system in (1)–(3), where zk = {z1, .., zk} is the set of mea-
surements up to time k and zk = {zxk , z

c
k} represents the set of

kinematic and class measurements at time k.

III. JOINT TARGET TRACKING, CLASSIFICATION AND
INTENT INFERENCE
The uncertainty about the state, class and intent of a target
is jointly described by the posterior joint state-intent-class
density,

p(xk , ak , c|zk ), c∈{1, 2, . . . ,C}, ak ∈{1, 2, . . . ,A}, (6)

which satisfies∑
ak

∑
c

∫
p (xk , ak , c|zk ) dxk = 1. (7)

The following theorems provide the recursions for the joint
density, named the JTCI filter.
Theorem 1 (Joint Density Prediction): Given the poste-

rior joint state-intent-class density p(xk−1, ak−1, c|zk−1) at
time k − 1, the predicted joint density at time k is given by

p(xk , ak , c|zk−1)

=

∑
ak−1

∫
p(xk |xk−1, ak , c, zk−1)

×Pr(ak |ak−1)p(xk−1, ak−1, c|zk−1)dxk−1, (8)

66150 VOLUME 7, 2019



W. Zhang et al.: Bayesian Framework for JTTCI

with

p(xk |xk−1, ak , c, zk−1)

=

∑
mk

p(xk |xk−1,mk ) Pr(mk |ak , c, zk−1), (9)

Pr(mk |ak , c, zk−1)

=

∑
mk−1

Pr(mk |mk−1, ak , c)

×

∑
ak−1

Pr(mk−1|ak−1, c, zk−1) Pr(ak−1|ak , zk−1), (10)

Pr(ak−1|ak , zk−1)

=
Pr(ak |ak−1) Pr(ak−1|zk−1)

Pr(ak |zk−1)
, (11)

Pr(ak |zk−1)

=

∑
ak−1

Pr(ak |ak−1) Pr(ak−1|zk−1), (12)

where p(xk |xk−1, ak , c, zk−1) is the intent and class condi-
tioned state transition density, p(xk |xk−1,mk ) is the model-
conditioned state transition density, Pr(mk |ak , c, zk−1) is
the model prediction probability, and Pr(ak |zk−1) is the
intent prediction probability. Pr(mk−1|ak−1, c, zk−1) and
Pr(ak−1|zk−1) are the model and intent posterior probabilities
at time k − 1, respectively.

Proof: See Appendix A.
Theorem 2 (Joint Density Update): Given the predicted

joint density as shown in (8), then the joint posterior density
is given by

p(xk , ak , c|zk ) =
1
δk
p (zk |xk , ak , c)p(xk , ak , c|zk−1), (13)

with

p(zk |xk , ak , c) = p(zxk |xk )p(z
c
k |c), (14)

p(zxk |xk ) = pw(zxk − h(xk )), (15)

where δk =
∑
c

∑
ak

∫
p(zk |xk , ak , c)p(xk , ak , c|zk−1)dxk is a

normalization factor, pw is the density of the measurement
noise in (2), and p(zck |c) is given in (3).

Proof: See Appendix B.
Theorem 3 (Model Probability Update): The class and

intent dependent model probability is evaluated as

Pr(mk |ak , c, zk ) =
1
σk
p(zk |mk , ak , c, zk−1)

×Pr(mk |ak , c, zk−1), (16)

with

p(zk |mk , ak , c, zk−1) =
∫
p(zek |c)p(z

r
k |xk )

×p(xk |mk , ak , c, zk−1)dxk , (17)

p(xk |mk , ak , c, zk−1) =
∫
p(xk |xk−1,mk )

×

∑
ak−1

p(xk−1|ak−1, c, zk−1)

×Pr(ak−1|ak , zk−1)dxk−1, (18)

where σk =
∑
mk
p(zk |mk , ak , c, zk−1) Pr(mk |ak , c, zk−1) is

the normalizing constant, p(zk |mk , ak , c, zk−1) is the model
likelihood, and p(xk |mk , ak , c, zk−1) is the model conditioned
state prediction density.

Proof: See Appendix B.
Output: Substitute (14) and (8) into (13), we can compute

the intent posterior probability by integrating the joint density
over the state and class,

Pr(ak |zk ) =
∑
c

∫
p(xk , ak , c|zk )dxk

=
1
δk

∑
c

∫
p(zrk |xk )p(z

e
k |c)p(xk |ak , c, z

k−1)

×p(c|zk−1)dxk Pr(ak |zk−1). (19)

Similarly, the class posterior probability is evaluated as

Pr(c|zk ) =
∑
ak

∫
p(xk , ak , c|zk )dxk

=
1
δk

∑
ak

∫
p(zrk |xk )p(z

e
k |c)p(xk |ak , c, z

k−1)

×p(ak |zk−1)dxk Pr(c|zk−1), (20)

where the intent and class conditioned state density on the
right hand side of (19) and (20) can be reexpressed as

p(xk |ak , c, zk−1) =
p(xk , ak , c|zk−1)∫
p(xk , ak , c|zk−1)dxk

. (21)

Finally, we can compute the state estimate with respect to
the commonly used minimum mean square error criterion.
The state estimate for each class c = i and intent ak = j
is

x̂ ijk|k =
∫
xkp(xk , ak = j, c = i|zk )dxk ,

i ∈ {1, 2, . . . ,C}, j ∈ {1, 2, . . . ,A}, (22)

which takes part in the combined state estimate

x̂k|k =
∑
i

∑
j

x̂ ijk|k Pr(ak = j|zk ) Pr(c = i|zk ). (23)

According to Theorems 1-3, the proposed JTCI with class
and intent dependent dynamic model is shown in Fig. 4.
Remark 1: As seen from Figs. 2 and 4, the differences

between the proposed JTCI and the existing JTC are: (1) the
JTCI adds the intent transition in the prediction step while
the existing JTC does not need to do this, and (2) the JTCI
considers the effect of target intent on model transition, while
the model transition in JTC is only class-dependent, and
(3) the JTC does not provide information on target intent
while the JTCI can output the intent probability, which will
assist the commander to take timely actions against potential
threats.

If the state function f in (1) and measurement function h
in (2) are all linear, then the integrals in Theorems 1-3 can
be accurately evaluated by linear transformation. As for the
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FIGURE 4. Diagram of the proposed JTCI.

nonlinear f and h, the analytical solution will not be avail-
able in general. Therefore, it is necessary to resort to some
numerically approximate methods, such as the lineariza-
tion [30], unscented transformation [31] and sampling based
methods [32].

IV. SIMULATION
In this section, we will demonstrate the effectiveness of
the proposed JTCI, and compare its performance with the
JTC [13]. Two tracking scenarios are considered as shown
in Figs. 5 and 6, including a weak-maneuvering aircraft
(class 1), such as a military cargo aircraft and a high-
maneuvering aircraft (class 2), such as a fighter. The target is
assumed to behave different intents including cruise (intent 1)
and attack (intent 2) during the flight. The maneuver is mod-
eled as acceleration changes in the kinematic model. Here,
suppose that the target state vector xk = [ξk , ξ̇k , ηk , η̇k ]T is
comprised of position (ξk , ηk ) and velocity (ξ̇k , η̇k ), the state
transition function in (1) is given by xk+1 = Fkxk+Gmk+vk
with

Fk = I2 ⊗
[
1 T
0 1

]
, G = I2 ⊗

 T 2

2
T

 ,
where T = 1s is the sampling interval and 90 steps are run
in the simulation. The maneuver input mk = [ax,k , ay,k ]T

includes accelerations along x and y coordinates.
Radar and ESM are located at the origin of the Cartesian

coordinate system. We assume that radar measurements are
synchronized and have been associated with the ESM mea-
surements. The radar function in (2) is h(xk ) = [ξk , ηk ]T

with R = diag(σ 2
x , σ

2
y ), where σx = σx = 100 m.

FIGURE 5. The true trajectory in Scenario 1.

The ESM declaration sequence in (3) is based on the same
emitter usageMarkov chains, detection probabilities and con-
fusion matrix as in [13].
Scenario 1: Consider a cruising military cargo as shown

in Fig. 5. It flies at a constant velocity (CV) of [15,−300] m/s
from [300,30840] km between 0 s and 30 s. Then, it performs
a course change with a 5 g maneuver between 30 s and 60 s.
Next it continues at CV motion for the completion of the
trajectory.
Scenario 2: This scenario is a high maneuvering fighter

with time-varying intent, see Fig. 6. Consider a fighter cruises
at a CV of [−8.3,−399.9] m/s from [41689,40840] km
between 0 s and 15 s. Suddenly, it spots threats and performs

66152 VOLUME 7, 2019



W. Zhang et al.: Bayesian Framework for JTTCI

FIGURE 6. The true trajectory in scenario 2.

an attack with a -5 g maneuver between 15 s and 35 s. After
cruising between 35 s and 55 s, the fighter discovers threats
again and performs an attack with a 5 g maneuver between
55 s and 75 s. With the disappearance of threat, it resumes
cruising at CV motion for the completion of the trajectory.

For the JTCI, the initial class and intent probabilities
are Pr(c = i|z0) = 0.5,Pr(a0 = j|z0) = 0.5(i, j =
1, 2). The intent transition probability is given by Ta =
[0.95 0.05; 0.05 0.95] . The acceleration process mk for class
c and intent ak is assumed to be belong to model setM cak , c ∈
{1, 2}, ak ∈ {1, 2} and

M11
1 = [0, 0]T , M11

2 = [−0.5g, 0]T , M11
3 = [0.5g, 0]T ,

M12
1 = [0, 0]T , M12

2 = [−1g, 0]T , M12
3 = [1g, 0]T ,

M21
1 = [0, 0]T , M21

2 = [−1g, 0]T , M21
3 = [1g, 0]T ,

M22
1 = [0, 0]T , M22

2 = [−5g, 0]T , M22
3 = [5g, 0]T .

The initial class and intent conditioned model probabilities
are Pr(m0|c = i, a0 = j, z0) = 1/3 (i, j = 1, 2). The model
transition matrix is set according to the intent and class:

π11
=

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

, π12
=

 0.8 0.1 0.1
0.2 0.8 0
0.2 0 0.8

,
π21
=

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

, π22
=

 0.4 0.3 0.3
0.5 0.5 0
0.5 0 0.5

 .
For the JTC, the acceleration input for class c is assumed

to be belong to model set M c, c ∈ {1, 2} and

M1
1 = [0, 0]T , M1

2 = [−0.5g, 0]T , M1
3 = [0.5g, 0]T ,

M1
4 = [−1g, 0]T , M1

5 = [1g, 0]T ,

M2
1 = [0, 0]T , M2

2 = [−1g, 0]T , M2
3 = [1g, 0]T ,

M2
4 = [−5g, 0]T , M2

5 = [5g, 0]T .

The initial class conditioned model probabilities are
Pr(m0|c = i, z0) = 1/5 (i = 1, 2). The model transition

FIGURE 7. Performance comparison in scenario 1.

FIGURE 8. Performance comparison in scenario 2.

matrix is given by

π i =


0.8 0.05 0.05 0.05 0.05
0.05 0.8 0 0.05 0
0.05 0 0.8 0 0.05
0.05 0.05 0 0.8 0
0.05 0 0.05 0 0.8


for both classes.

The root mean-squared errors (RMSEs) on position and
speed, average probabilities of class and intent are chosen as
metrics to evaluate the performance.

Figs. 7–8 show the comparison results over 100 Monte
Carlo runs for the two scenarios. Table 1 lists the estimation
accuracy in terms of RMSEs for position and velocity of
JTCI and JTC after being implemented for 10 s (to reduce
the effects of initialization). It can be seen that the JTCI out-
performs the JTC in terms of position and velocity accuracy
and the JTCI provides lower peak errors than the JTC in the
two scenarios. This is because that the proposed JTCI can
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TABLE 1. Estimation accuracy of JTC and JTCI.

FIGURE 9. Class probabilities in scenario 1.

FIGURE 10. Class probabilities in scenario 2.

accommodate more realistic situations in which a class of
targets with different intents may have different kinematic
model sets, while the JTC does not consider this information

FIGURE 11. Intent probabilities for JTCI in scenario 1.

FIGURE 12. Intent probabilities for JTCI in scenario 2.

and assumes that a class of targets have the same kinematic
model set.

Figs. 9-10 show the class probabilities for the two sce-
narios. Both the JTCI and JTC output correct classifica-
tions with radar and ESM measurements. Besides, the intent
probabilities estimated by the proposed JTCI are presented
in Figs. 11-12. It is observed that intents with larger estimated
probabilities at different time steps are closely consistent with
the ground truth as shown at the bottom of Figs. 11-12.

In addition, the calculation time for each recursion of the
JTCI and JTC are 0.0017 s and 0.0015 s, respectively. As a
result, the JTCI is superior to the JTC, but has a slightly higher
computational cost than the JTC.

V. CONCLUSIONS
By the fact that the motion model is not only determined
by target class, but also target intent, a JTCI is proposed
in this paper. It is obtained via recursively propagating the
joint density of state, class and intent based on the Bayesian
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framework. The simulation indicates that the proposed
method outperforms the existing JTC by its superior estima-
tion accuracy, correct target classification and intent infer-
ence.

APPENDIX A
Joint density prediction:

p(xk , ak , c|zk−1)

=

∑
ak−1

∫
p(xk , ak , c, xk−1, ak−1, zk−1)dxk−1

=

∑
ak−1

∫
p(xk |ak , c, xk−1, ak−1, zk−1)

×p(ak |c, xk−1, ak−1, zk−1)p(xk−1, ak−1, c|zk−1)dxk−1

=

∑
ak−1

∫
p(xk |xk−1, ak , c, zk−1)p(ak |ak−1)

×p(xk−1, ak−1, c|zk−1)dxk−1 (24)

Class and intent conditioned state transition density:

p(xk |xk−1, ak , c, zk−1)
=

∑
mk

p(xk |xk−1,mk , ak , c, zk−1) Pr(mk |xk−1, ak , c, zk−1)

=

∑
mk

p(xk |xk−1,mk ) Pr(mk |ak , c, zk−1) (25)

Model probability prediction:

Pr(mk |ak , c, zk−1)
=

∑
mk−1

Pr(mk |mk−1, ak , c, zk−1) Pr(mk−1|ak , c, zk−1)

=

∑
mk−1

Pr(mk |mk−1, ak , c)
∑
ak−1

Pr(mk−1|ak−1, c, zk−1)

×Pr(ak−1|ak , zk−1) (26)

APPENDIX B
Intent probability update:

Pr(ak |zk ) =
∑
c

∫
p(xk , ak , c|zk )dxk

=
1
δk

∑
c

∫
p(zrk |xk )p(z

e
k |c)p(xk , ak , c|z

k−1)dxk

=
1
δk

∑
c

∫
p(zrk |xk )p(z

e
k |c)p(xk |ak , c, z

k−1)

×p(c|zk−1)dxkp(ak |zk−1) (27)

Class probability update:

Pr(c|zk ) =
∑
ak

∫
p(xk , ak , c|zk )dxk

=
1
δk

∑
ak

∫
p(zrk |xk )p(z

e
k |c)p(xk , ak , c|z

k−1)dxk

=
1
δk

∑
ak

∫
p(zrk |xk )p(z

e
k |c)p(xk |ak , c, z

k−1)

×p(ak |zk−1)dxkp(c|zk−1) (28)

Model probability update:

p(zk |mk , ak , c, zk−1)

=

∫
p(zk , xk |mk , ak , c, zk−1)dxk

=

∫
p(zek |c)p(z

r
k |xk )

×p(xk |mk , ak , c, zk−1)dxk (29)

p(xk |mk , ak , c, zk−1)

=

∫
p(xk |xk−1,mk , ak , c, zk−1)

×p(xk−1|mk , ak , c, zk−1)dxk−1

=

∫
p(xk |xk−1,mk )p(xk−1|ak , c, zk−1)dxk−1

=

∫
p(xk |xk−1,mk )

∑
ak−1

p(xk−1|ak−1, ak , c, zk−1)

×Pr(ak−1|ak , c, zk−1)dxk−1

=

∫
p(xk |xk−1,mk )

∑
ak−1

p(xk−1|ak−1, c, zk−1)

×Pr(ak−1|ak , zk−1)dxk−1

=

∫
p(xk |xk−1,mk )

∑
ak−1

p(xk−1|ak−1, c, zk−1)

×Pr(ak−1|ak , zk−1)dxk−1, (30)

where the intent and class conditioned prior state density on
the right hand side above can be reexpressed as

p(xk−1|ak−1, c, zk−1) =
p(xk−1, ak−1, c|zk−1)∫

p(xk−1, ak−1, c|zk−1)dxk−1
.

(31)
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