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ABSTRACT Bearing faults are the most common failure modes in the rotating system. Vibration data
from the rotating system carry important information, that is, characterization and diagnosis; therefore, the
vast vibration signals collected from multiple sensors mounted in different sites are transmitted in a certain
order for online fault diagnosis. However, due to the influence of transfer paths and noises, the sensitivities
to the same fault signal of measured data streams are of significant differences, and signals containing
weak sensitivity to the fault are likely to be transmitted preferentially while neglecting transmission order.
Meanwhile, high volume vibration data greatly increase the transmission burden. These above-mentioned
reasons dramatically reduce online diagnostic efficiency. Thus, fully considering the sensitive differences to
the fault for multiple channels, how to transmit measured data streams of multiple sensors for timely online
detecting the bearing failure is still a primary challenge. In order to solve this problem, a novel online bearing
fault diagnosis method based on the multiple data streams transmission schemes (MDSTS) is proposed in
this paper. Multiple sensors are numbered consecutively, and data streams from all channels are transmitted
according to the preset order and transport protocol via a certain length at the beginning of diagnosis. Then,
a fault sensitivity assessmentmodel (FSAM) is established onmaximummean discrepancy (MMD) for trans-
mitting the most sensitive data stream by calculating the distribution discrepancies between each channel’s
data streams and the historical datasets in the frequency domain, and then, the fault diagnosis model based
on K-nearest neighbor (KNN) trained on historical datasets was used to evaluate the transmission scheme
and acquire reliable diagnostic results via predicting performances of multiple and consecutive datablocks
until all these exceed an alarm value. The extensive experiment results show that the proposed method can
timely and accurately identify the bearing faults and outperforms obviously competitive approaches.

INDEX TERMS Fault diagnosis, vibration signal, multiple data streams, transmission scheme.

I. INTRODUCTION
Rolling element bearings are among the most critical
components and easily damaged in rotating machinery,
the operation status of which is directly related to the oper-
ation of machinery or even to economical losses and human
casualties [1]–[3]. Thus, it has a very high practical value to
timely achieve accurate diagnosis and recognition of rolling
bearing fault.

Cracks or spalls on the surfaces of the roller, outer race or
inner race are commonly failure modes in bearings [4]. Bear-
ing vibration signals contain a wealth of information about
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mechanical health status, which make it possible to extract
the dominant features that characterize mechanical health
through signal processing techniques [5]. Such as discrete
cosine transform [6], wavelet transform [7] and empirical
mode decomposition [8]. Currently, many vibration-based
off-line diagnostic methods have already achieved significant
success in the field of fault diagnosis. In [9], several selected
and relevant features have been used to diagnose faults via
performing indicators ranking according to a filter evaluation.
Impulse components based on Graph Fourier Transform as
the features of vibration signals to diagnose faults of rolling
bearings [10]. Cerrada et al. [11] established a fault diag-
nosis model based on genetic algorithm and random forest.
However, for the same fault in most fault diagnosis methods,
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sensors installed in different positions will inevitably receive
different vibration signals due to the influence of transfer
paths, and the sensitivities of measuring points to fault signals
are different, which leads to larger differences of diagnostic
performances for different sensors.

More recently, some scholars have been working on the
sensitive measuring points of vibration signals, and have
made some important progress in the fault diagnosis field.
In [12], position optimization of sensors method based on
bond graph to digraph transformation for the small mod-
ulus gear life experiment of a spacecraft was proposed.
Mobed et al. [13] integrated the magnitude ratio and the fault
evolution sequences and proposed an optimization algorithm
for sensor location, type and number. The above research on
the sensitive measuring points concentrated upon the sen-
sor location optimization of the complete machine, and the
impact from sensitivities of measuring point to fault diagno-
sis still exists. Meantime, increasingly complex mechanical
structure leads to limitation of sensor installation sites in
real-world. More specifically, taking the roller bearing online
fault diagnosis problem as an example, once a local fault
occurs, measured data from the rotating system will contain
a wealth of information of the fault bearings. However, due
to the influence of transfer paths and noise, the sensitivities
to the fault signal of mass measured data from multiple
channels are of obvious differences. Transmitting different
channel’s collected data via a fixed order without considering
the differences of fault sensitivity is likely to cause that data
streams containing weak sensitivity to fault are transmitted
preferentially for online diagnosis, and high volume mea-
sured data from different channels greatly increases transmis-
sion burden, which dramatically reduce diagnostic efficiency.
Thus, fully considering the sensitive differences to the fault
for multiple channels, how to transmit collected data streams
from knownmeasuring points is the key point to timely online
detect the bearing failure and there is still plenty of room for
improvement.

In this paper, considering rapid detection, we pro-
posed a novel online multiple data streams transmission
scheme(MDSTS) for online bearing fault diagnosis. Multiple
sensors are numbered consecutively, and data streams from
all channels are transmitted according to the preset order and
Transmission Control Protocol/Internet Protocol(TCP/IP) via
a certain length at the beginning of diagnosis. Then, fault
sensitivity assessment model(FSAM) is established on max-
imum mean discrepancy(MMD) for selecting the sensitive
data stream by calculating distribution discrepancies between
each channel’s data streams and the historical datasets in
frequency domain, and data stream that is of the smallest
distribution difference will be transmitted preferentially in
the next round until transmit data reach the preset size, and
then, fault diagnosis model based on K-nearest neighbor
trained on historical data was used to evaluate transmission
scheme and acquire reliable diagnostic results via predicting
performances of multiple and consecutive datablocks until all
these exceed an alarm value.

The rest of this paper is organized as follows. Section II
sketches out previous works and preliminaries, includ-
ing maximum mean discrepancy and the K-nearest neigh-
bor (KNN) algorithm. Section III introduces online fault
diagnosis using multiple data streams transmission scheme,
including fault sensitivity assessment model and multiple
data streams transmission scheme and online diagnosis.
Section IV presents the experimental evaluations. The con-
clusion are given in Section V.

II. PREVIOUS WORKS AND PRELIMINARIES
A. MAXIMUM MEAN DISCREPANCY
Note that when the machinery faults occur, the vibration
signals of machines will be different from those of nor-
mal cases, where the changes can be easily characterized
by features of machine signals [14]. Statistically distribu-
tion differences between fault signals and normal cases are
obvious. In order to void expensive distribution calculation
caused by the parametric criteria, a nonparametric distance
metric, known as MMD, is employed for domain adapta-
tion in our work. Taking historical dataset Xhd and trans-
mitted data Xte, the MMD calculates the empirical estimate
of distances across two sets of data in the p-dimensional
embedding [15], [16]:

MMD(Xhd ,Xte) = ||
1
nhd

nhd∑
i=1

AT xi −
1
nte

nte∑
j=1

AT xj||2 (1)

where MMD(Xhd ,Xte) is the distance of distributions across
two sets of data, A is the adaptation matrix, and nhd and
nte denote number of historical instances and transmit-
ted instances, respectively. i = {1, · · · , nhd } and j =
{1, · · · , nte}.

B. K-NEAREST NEIGHBOR ALGORITHM
Instance based learning or lazy learning which trains the clas-
sifier function locally by majority vote of its neighboring data
points. KNN collects all available data points and classifies
new data points based on similarity measure [17], [18]. The
core idea of KNN algorithm is to assign new unclassified data
points to the class to which themajority of its K nearest neigh-
bors belongs. The process of KNN is outlined as follows:
(1) Given a test data stream x, and find the K nearest neigh-

bors of x among all training data from historical data.
(2) Score the category candidates based on the category of K

neighbors by calculating the similarity between the test
data stream x and each neighbor data, which is denoted
as sim(x, tri).

(3) Calculate the sum of the similarity scores which belong
to the same category, and then sort the scores of the
candidate categories in descending order. Finally, assign
the candidate category with the highest score to the test
data stream x, which is expressed as follows:

f (x,Cj) =
∑

tri∈KNN

sim(x, tri)Z (tri,Cj) (2)

VOLUME 7, 2019 66645



Z. Tong et al.: Online Bearing Fault Diagnosis Based on a Novel MDSTS

FIGURE 1. The framework of a novel multiple data streams transmission scheme for online bearing fault diagnosis.

where Z (tri,Cj) is the value of the training data tri with
respect to Cj.

KNN depends on the number of the nearest neighbor. There is
no solution to find the optimal K and its value is completely
up to user. Generally after some trials a K value is selected
based on the best result and in a general way K is set to 1 [17].
Similarity measurement is primarily concerned with distance
calculation, and most known distance measurements like
Euclidean and Manhattan distances are used. In our work,
according to experience [17], we set K = 1 and Euclidean
distance is chosen for similarity measurement.

III. ONLINE FAULT DIAGNOSIS BASED ON MULTIPLE
DATA STREAMS TRANSMISSION SCHEME
As mentioned in Section 1, due to the interference of dif-
ferent transfer paths and environmental noise, data streams
from multiple sensors will be of different sensitivities to the
same fault signal, and once data streams containing weak
sensitivity to the fault are transmitted preferentially, which
directly leads to poor performance of online bearing fault
diagnosis. In order to solve this problem, a novel data streams
transmission scheme is presented for online fault diagnosis
in this section. The framework of our method is illustrated
in Figure 1. FSAM is established on MMD for transmitting
the most sensitive data stream by calculating distribution
discrepancies between each channel’s data stream and the
historical datasets in frequency domain, and then, a fault
diagnosis model based on historical data via KNN was used
to diagnose bearing failures until multiple consecutive preset
sized datablocks are detected beyond an alarm value. Details
of each part are elaborated in the following subsections.

A. FAULT SENSITIVITY ASSESSMENT MODEL
Raw time series vibration signals are readily available and
abound in bearing information. Due to the rotating nature of
raw vibration signals from a defective bearing, the periodic
impulse would appear in obtained signals once a fault occurs,
and these fault impacts can be easily detected in frequency
domain. Thus, the fast Fourier transformation (FFT) is con-
ducted to process data streams being transmitted.

In our work, we directly online catch time domain wave-
forms from the raw time series vibration signals sampled

from multiple sensors on site. These signals are transmitted
to upper computer according to the preset order using TCP/IP
at the beginning of diagnosis, and then, the fault sensitivity
assessment model is established by using MMD based on
frequency amplitudes for avoiding interference of phase fluc-
tuation caused by sensor installation site. The main steps of
fault sensitivity assessment model are as follows:

• Step 1: Test data streams X krt collected from a kth chan-
nel are transmitted to upper computer via TCP/IP with
a certain length, and catch frequency amplitudes from
above test data streams by performing FFT:X kte = {x

k
tei ∈

Rd×1|i = 1, . . . , nte, k = 1, . . . , nch}, where nte and
nch are the number of test data streams and channels
respectively. d is the number of amplitudes in frequency
domain.

• Step 2: Randomly select nhd samples from the historical
dataset and obtain frequency amplitudes via FFT as a
training dataset Xhd = {xi ∈ Rd×1|i = 1, . . . , nhd },
where nhd is the number of training samples.

• Step 3: Calculate the distribution differences between
historical dataset and test data streams collected from
each channel in order by using MMD:

D = {Dk = ||
1
nhd

nhd∑
i=1

IT xi

−
1
nte

nte∑
j=1

IT xkj ||
2
|k = 1, . . . , nch}

= {Dk = tr(ITXkMXkTI )|k = 1, . . . , nch} (3)

It has been shown that Where I and nch represent the
identity matrix and number of channels respectively, and
tr(·) denotes the trace of a matrix. Xk = {Xhd ,X kte} ∈
Rd×(nhd+nte). M is MMD matrix and is computed as
follows [19]

M =



1
nhdnte

, xi, xj ∈ Xhd

1
nhdnte

, xi, xj ∈ X kte
−1
nhdnte

, otherwise

(4)
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FIGURE 2. Flow chart of online fault diagnosis based on multiple data streams transmission
scheme.

Finally, fault sensitivity assessment model is established
by D.

B. MULTIPLE DATA STREAMS TRANSMISSION SCHEME
AND ONLINE DIAGNOSIS
In order to timely diagnose bearing faults, signals containing
the most sensitivity to the fault from a certain channel are
transmitted preferentially based on FSAM until detect faults.
The essence of FSAM is distribution differences D between
historical dataset and test data established by using MMD.
Once a fault occurs, the healthy condition of bearings is
determinate and the data distribution is also determinate.
If the distribution differences Dk is the smallest, then the test

data distribution is the most close to historical dataset, and it
also means that the sensitivity to the fault of Dk is the most
sensitive. Thus, data streams of kth channel corresponding to
the smallest Dk will be transmitted preferentially. The details
of multiple data streams transmission scheme are as follows:

• Step 1: At the beginning of transmission, all channels
corresponding to multiple sensors are made a serial
number based on {k = 1, . . . , nch} corresponding to
associated channels, and test data streams on site are
transmitted to the upper computer in numerical order.

• Step 2: Distribution differences D are obtained based
on FSAM according to the serial number in Step 1 and
Dk ∈ D are arranged in ascending order.
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FIGURE 3. The framework of two conventional transmission schemes for online fault diagnosis.

• Step 3: Data streams of kth channel corresponding to
the smallest Dk will be transmitted preferentially until
nte test samples are transmitted next.

• Step 4: Calculate distribution differences Dk between
historical datasets Xhd and the latest data streams X kte
based on FSAM, and update Dk via the latest value, and
then, Dk ∈ D are rearranged in ascending order. Next,
go to Step 3.

Timely and accurate diagnosis is the key point for trans-
mission scheme and online diagnosis. In order to evaluate
transmission scheme and acquire reliable diagnostic results,
an evaluation criterion is embedded in online diagnosis.
A datablock Ddb = {X kte|k = 1, . . . , ndb} that is a collection
containing transmitted data streams is used to preprocess and
detect bearing faults, where nte×ndb is number of transmitted
data streams in a datablock. Considering inherent simplicity
and the robustness to noisy training data, KNN is selected
as best method for building the fault diagnosis model. Diag-
nostic results based on multiple and consecutive datablocks
all exceed an alarm value, then transmission and online diag-
nosis are completed. Whether it can detect bearing faults for
online diagnosis is defined as transmissive detection costCdc.
In addition, time cost resulting from entire process that begin-
ning at the start of transmission and ending at the completion
of transmission is defined as transmissive time cost Ctc, and
the number of datablock when transmission and diagnosis are
completed is defined as transmissive data volume cost Cdv.
The error of computational accuracy is defined as Aca, and its
format is: average ± standard deviation. Average accuracy
is the average predicted value based on all transmissive dat-
ablocks. The details of this evaluation criterion embedded in
online diagnosis are as follows:

• Step 1: Data preprocessing: Each signal sample being
transmitted is converted into its corresponding fre-
quency spectrum and FFT amplitudes are extracted as
fault features. Further, frequency spectra of each time
domain are normalized.

• Step 2: The final preprocessed training datasets Xhd
including multiple healthy conditions of bearings are
used for training fault diagnosis model by using KNN.

• Step 3: A datablock Ddb generated by multiple data
streams transmission scheme is selected to detect bear-
ing faults via the fault diagnosis model.

• Step 4: Monitor predicted values based on datablocks,
and bearing faults are detected when predicted values
of multiple and consecutive q = 5 datablocks Ddb all
exceed an alarm value Vam, and record Ctc and Cdv.

The flow chart of online fault diagnosis based on multiple
data streams transmission scheme is shown in Figure 2.

IV. EXPERIMENTAL EVALUATIONS
In order to verify the effectiveness of the proposed online fault
diagnosis method, a bearing test rig for data collection and
online diagnosis are used. The proposed method is compared
with two conventional approaches illustrated in Figure 3.

a. Sequential transmission scheme (STS): All channels
corresponding to multiple sensors are numbered and data
streams are transmitted according to numbers. In our exper-
iment, the transmitted order is index descending order of
channels. Finally predicted values from fault diagnosis model
based on KNN and datablocks are monitored.

b. Random transmission scheme (RTS): All channels cor-
responding to multiple sensors are numbered and draw a
data stream from a channel at random to transmit. In final,
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predicted values from fault diagnosis model based on KNN
and datablocks are monitored.

A. EXPERIMENTAL SETUP AND DATASET PREPARATION
The test-bed shown in Figure 4 consists of an electric motor,
a transducer, a belt, a tachometer, eight accelerometers,
an acquisition instrument and two computers. One of the
bearings without defects is located in the bearing housing
installed into the idler closer to the motor. The other bear-
ing is located in the bearing housing installed into the idler
farther to the motor, and it could be replaced by the test
bearings [16]. Subjected to wire-electrode cutting, inner-race
faults (IF), outer-race faults (OF) and ball fault (BF) are
introduced into the test bearing. The vibration signals are
sampled with the help of eight accelerometers installed as
illustrated in Figure 4.

FIGURE 4. Bearing test rig of the belt conveyor idler.

For purpose of simulating the actual application and mak-
ing the experimental results more persuasive, in our experi-
ment, raw vibration signals are collected from eight sensors
and sampled at a frequency of 20kHz on site, and transmitted
to the upper computer via TCP/IP with a certain length at
8192 data points. The type of the used bearings is 6204, and
its main parameters are presented in Table 1.

TABLE 1. Main parameters of 6204 ball bearing.

Four healthy conditions of bearings, i.e., NO(normal bear-
ings), IF, OF and BF, are considered and each fault type
of vibration data is obtained from four kinds of work-
ing conditions, i.e., L1 = 1797 rpm, L2 = 1772 rpm,
L3 = 1750 rpm and L4 = 1730 rpm. Figure 5 shows the
time waves and corresponding the spectrums of a normal
bearing and faulty bearings under the condition of L4. From
the results in Figure 5, it is clear that spectral structures are
of significant differences for different healthy conditions of
bearings. Historic datasets contain all above healthy con-
ditions of bearings and each fault includes 200 samples.

FIGURE 5. Time waves and spectrums with different healthy conditions
under the condition of L3.

Each sample contains 4096 Fourier coefficients transformed
from the raw vibration signals via FFT. During establishing
FSAM, nte is selected 5 for investigating diagnostic results.
A datablock consists of ndb = 20 test samples and it is
identified as the bearing fault when q = 5 predicted values
exceed Vam = 95% set based on a 2-sigma-limited Gaussian
distribution.

In order to demonstrate the effectiveness of MDSTS, con-
trast methods of a-b are also carried out simultaneously.
In all, 36 different tests are conducted and the description of
experimental setup in detail is shown in Table 2.

TABLE 2. Description of the experimental setup.

B. DIAGNOSIS RESULTS OF THE PROPOSED METHOD
The diagnositic results for three transmission schemes are
shown in Figure 6, Figure 7, Figure 8 and Figure 9, and the
sensitivities to faults of different channels are illustrated by
using t-SNE [20] based on frequency amplitudes in Figure 10.

Each figure is composed of nine subfigures under a certain
working condition. The left of the symbol ‘‘−’’ in every
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FIGURE 6. The results with different faults under the condition of L1.

FIGURE 7. The results with different faults under the condition of L2.

FIGURE 8. The results with different faults under the condition of L3.

subfigures represents the transmission scheme and the right
represents fault type for diagnosing. The x − axis of the
subfigure is the number of transmitted datablocks, and the

FIGURE 9. The results with different faults under the condition of L4.

FIGURE 10. Sensitivities to faults under different conditions.

y − axis is detection accuracy for a datablock. In each sub-
figure, an embedded figure refer to channel selection during
the transmission process. The x − axis of the embedded
figure represents the serial number and the y − axis is the
number of data streams.

From the performances of transmission schemes for online
bearing fault diagnosis in Figure 6, 7, 8 and 9, it is obvious
that bearing inner fault can be efficiently detected online
when the fifth datablock is transmitted for these threemethod,
and time cost of MDSTS is higher than other two compared
methods. Due to the establishment of fault sensitivity assess-
ment model, this phenomenon is reasonable theoretically.
We can obviously find that performance of STS and RTS
are all significantly unstable (marked with ∗ in Table 3)
when bearing outer fault occurs. Overall speaking, the perfor-
mances of RTS are slightly better than STS’s. For example,
in subfigures (a2) and (b2) from Figure 6, although it can be
marginally feasible for detecting outer fault, there are always
predicted values below the preset alarm value from time to
time. This situation is more serious and online diagnosis is
failure in Figure 8 when using STS and RTS. For bearing
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TABLE 3. Detailed performances of different transmission schemes for
online fault diagnosis.

TABLE 4. Computational accuracy errors of different transmission
schemes for online fault diagnosis.

ball fault, STS and RTS does not work for online diagnosis
in nearly all instance under the condition of L1, L2 and L3.
Specifically speaking, most accuracies of detection for dat-
ablocks are only about 50% when using STS in Figure 6 and
Figure 7 and a lots of predicted values stay at about 70% via
RTS under the condition of L1 and L2. These results men-
tioned above indicate that STS and RTS cannot be applied
to online high diagnostic efficiency. What is exciting that
MDSTS is evidently superior to compared method. Whatever
the conditions and fault types are, all faults can be diagnosed
effectively within 10 datablocks, and the average diagnostic
time is about 11.97s. Although a single shock appears when
transmitting 41th datablock using channel 4 in (c2) from
Figure 6, MDSTS can adjust the transmission scheme that
transmitting data streams from channel 4 to channel 3 in
time and predicted value is improved from 45% to 100%
for the next datablock. Even for bearing ball fault, MDSTS
can still be applied to online efficient diagnosis without any
fluctuations among predicted values. According to embedded
figures in (c1), (c2) and (c3) from Figure 6, 7, 8 and 9 and Fig-
ure 10, MDSTS will always transmit data streams containing
the most sensitivity to faults preferentially. More details can
be found in Table 3 below. Computational accuracy errors
of different transmission schemes for online fault diagnosis
are also shown in Table 4. Through above result analysis,
we can conclude that MDSTS is a very potential transmission
scheme for online bearing fault diagnosis compared other two
conventional transmission schemes.

FIGURE 11. The results with different faults under the condition of
L1 with noises.

FIGURE 12. The results with different faults under the condition of
L2 with noises.

C. EFFECT OF NOISES ON TRANSMISSION SCHEME FOR
ONLINE FAULT DIAGNOSIS
In real cases, owning to the existence of strong noise in local
area, vibration data sampled from the corresponding channels
are recorded consists of low SNR [21], [22], which can be
formed as follows:

SNR = 10log(σ 2
s /σ

2
n ) (5)

where σ 2
n indicates the variance of noise response and σ 2

s
represents the variance of the signal. In order to match the
reality, SNR with −30dB, −10dB and −5dB are added
randomly to three different channels. In our experiment,
SNR with −30dB, −10dB and −5dB are added respectively
in channel 6, 8 and 1. Experiment settings are the same
with ones in Table 2. The experimental results are shown
in Figure 11, 12, 13 and 14, and the sensitivities to faults of
different channels are illustrated by using t-SNE [20] based
on frequency amplitudes in Figure 15.

From the results of transmission schemes in
Figure 11, 12, 13 and 14, it is clear that data streams trans-
mitted via STS and RTS are not applied to online bearing
fault diagnosis. Due to the influence of strong noises in local
area, the vast majority of diagnostic performances are only
50% and much less than the alarm value when using STS
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FIGURE 13. The results with different faults under the condition of
L3 with noises.

FIGURE 14. The results with different faults under the condition of
L4 with noises.

FIGURE 15. Sensitivities to faults with measurement noise in local area
under different conditions.

in Figure 11, 12, 13 and 14, and similar results also are
obtained when using RTS under all conditions. Especially in
(a3) from Figure 11 and Figure 12, many data streams trans-
mitted via STS are not detected ball faults at all. These results

TABLE 5. Detailed performances of different transmission schemes for
online fault diagnosis under conditions of strong noises in local area.

TABLE 6. Computational accuracy errors of different transmission
schemes for online fault diagnosis under conditions of strong noises in
local area.

fully illustrate that data streams obtained via conventional
transmission schemes can not be applied to rapid diagnosis.
What is worth mention, all data streams achieved by using the
proposed method can be detected faults within 10 datablocks
and the detection accuracies are almost 100% under all
conditions for all fault types. Although a single shock also
appears when transmitting 41th datablock using channel 4 in
(c2) from Figure 11, MDSTS can rapidly change the channel
of stream data transmission and diagnostic performance is
raised to 100% for the next datablock. From all embedded
figures under all conditions and Figure 15,MDSTS can active
avoid channels added strong noises and select channels con-
taining the most sensitivity to the fault for transmitting data
streams. The details can be found in Table 5. Computational
accuracy errors of different transmission schemes for online
fault diagnosis are also shown in Table 6. Through above
analysis, it can be concluded that the proposed method still
can work effectively when certain noise exists in local area
and the advantages are highlighted compared two conven-
tional methods.

D. DISCUSSION
In many actual fault diagnosis and classification scenarios,
due to the influence of transfer paths and noises, the sen-
sitivities to the same fault signal of measured data streams
show significant differences. In fact, sensitivity differences
to the fault among different channels reflect the differences
among data structures, and fault diagnosis is essentially to
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find similar data structures with fault signals. Thus, transmit-
ting measured data streams that are of the most sensitivity to
the fault is the key for timely online detecting bearing faults.
MDSTS provides a novel transmission scheme for online
fault diagnosis. There are still several remarks that need to
be described.

(1) In our work, we propose a novel transmission scheme
to transmit multiple sensors data for online bearing fault
diagnosis. Diagnostic results based on data streams obtained
via conventional transmission schemes fluctuate sharply or
even these methods cannot be detected faults in Figure 6, 7,
8 and 9. To solve this problem, we present a new transmission
scheme based on FSAM established by using MMD, chan-
nel selection trick and KNN. Finally, data streams achieved
by the proposed method can be detected faults timely and
detection accuracies almost can reach 100%. Compared with
methods in subsection B from section IV, our method has
obvious advantages.

(2) The results from experiments in subsection C from
section IV indicate that MDSTS is more suitable to the sit-
uation that the presence of interference in local areas during
acquisition of signals. It is almost impossible to detect faults
timely based on data streams obtained by using STS and
RTS while our method can detect all faults timely under all
conditions by avoiding data streams with some interference
and preferentially transmitting data streams that are of the
most sensitivity to faults. Compared with STS and RTS, our
method has absolute advantages.

V. CONCLUSION
In this paper, a novel transmission scheme for online fault
diagnosis has been proposed. Data streams containing the
most sensitivity to faults are transmitted preferentially by
fault sensitivity assessment model, channel selection trick
and K-nearest neighbor. The proposed method provides a
novel perspective for rapid remote online machine condition
monitoring, and it solves diagnostic inefficient problem of
online diagnosis in the multisensor scenario. Different trans-
mission experimental tests under variable working conditions
demonstrated the effectiveness and feasibility of the proposed
method.

REFERENCES
[1] D. Wang, P. W. Tse, and K. L. Tsui, ‘‘An enhanced kurtogram method for

fault diagnosis of rolling element bearings,’’ Mech. Syst. Signal Process.,
vol. 35, nos. 1–2, pp. 176–199, Feb. 2013.

[2] Z. Wei, Y. Wang, S. He, and J. Bao, ‘‘A novel intelligent method for bear-
ing fault diagnosis based on affinity propagation clustering and adaptive
feature selection,’’ Knowl.-Based Syst., vol. 116, pp. 1–12, Jan. 2017.

[3] C. Yi, Y. Lv, M. Ge, H. Xiao, and X. Yu, ‘‘Tensor singular spectrum
decomposition algorithm based on permutation entropy for rolling bearing
fault diagnosis,’’ Entropy, vol. 19, no. 4, p. 139, 2017.

[4] B. Qiao, X. Zhang, J. Gao, and X. Chen, ‘‘Impact-force sparse reconstruc-
tion from highly incomplete and inaccurate measurements,’’ J. Sound Vib.,
vol. 376, pp. 72–94, Aug. 2016.

[5] Y. Li, M. Xu, Y.Wei, andW. Huang, ‘‘A new rolling bearing fault diagnosis
method based on multiscale permutation entropy and improved support
vector machine based binary tree,’’ Measurement, vol. 77, pp. 80–94,
Jan. 2016.

[6] Y. Yang and S. Nagarajaiah, ‘‘Output-only modal identification with lim-
ited sensors using sparse component analysis,’’ J. Sound Vib., vol. 332,
no. 19, pp. 4741–4765, Sep. 2013.

[7] W. J. Staszewski, ‘‘Wavelet based compression and feature selection for
vibration analysis,’’ J. Sound Vib., vol. 211, no. 5, pp. 735–760, Apr. 1998.

[8] J. Zheng, J. Cheng, and Y. Yang, ‘‘Generalized empirical mode decomposi-
tion and its applications to rolling element bearing fault diagnosis,’’Mech.
Syst. Signal Process., vol. 4, no. 1, pp. 136–153, Oct. 2013.

[9] I. Khelf, L. Laouar, A. M. Bouchelaghem, D. Rémond, and S. Saad,
‘‘Adaptive fault diagnosis in rotating machines using indicators selection,’’
Mech. Syst. Signal Process., vol. 40, no. 2, pp. 452–468, Nov. 2013.

[10] L. Ou, D. Yu, and H. Yang, ‘‘A new rolling bearing fault diagnosis method
based on GFT impulse component extraction,’’ Mech. Syst. Signal Pro-
cess., vol. 81, pp. 162–182, Dec. 2016.

[11] M. Cerrada, G. Zurita, D. Cabrera, R.-V. Sánchez, M. Artés, and C. Li,
‘‘Fault diagnosis in spur gears based on genetic algorithm and random
forest,’’ Mech. Syst. Signal Process., vols. 70–71, pp. 87–103, Mar. 2016.
doi: 10.1016/j.ymssp.2015.08.030.

[12] A. Saïd and B. Djamel, ‘‘Bond graph to digraph conversion: A sensor
placement optimization for fault detection and isolation by a structural
approach,’’ Sadhana-Acad. Proc. Eng. Sci., vol. 39, no. 5, pp. 1151–1164,
Oct. 2014.

[13] P.Mobed, J.Maddala, P. Pednekar, D. Bhattacharyya, and R. Rengaswamy,
‘‘Optimal sensor placement for fault diagnosis usingmagnitude ratio,’’ Ind.
Eng. Chem. Res., vol. 54, no. 38, pp. 9369–9381, Aug. 2015.

[14] Z. Zhang, W. Jiang, F. Li, M. Zhao, B. Li, and L. Zhan, ‘‘Struc-
tured latent label consistent dictionary learning for salient machine faults
representation-based robust classification,’’ IEEE Trans. Ind. Informat.,
vol. 13, no. 2, pp. 644–656, Apr. 2017.

[15] J. Tahmoresnezhad and S. Hashemi, ‘‘Visual domain adaptation via trans-
fer feature learning,’’ Knowl. Inf. Syst., vol. 50, no. 2, pp. 585–605,
Feb. 2017.

[16] Z. Tong, W. Li, B. Zhang, F. Jiang, and G. Zhou, ‘‘Bearing fault diagnosis
under variable working conditions based on domain adaptation using fea-
ture transfer learning,’’ IEEE Access, vol. 6, pp. 76187–76197, Nov. 2018.

[17] D. H. Pandya, S. H. Upadhyay, and S. P. Harsha, ‘‘Fault diagnosis
of rolling element bearing with intrinsic mode function of acoustic
emission data using APF-KNN,’’ Expert Syst. Appl., vol. 40, no. 10,
pp. 4137–4145, Aug. 2013.

[18] Y. Lei and M. J. Zuo, ‘‘Gear crack level identification based on weighted
K nearest neighbor classification algorithm,’’Mech. Syst. Signal Process.,
vol. 23, no. 5, pp. 1535–1547, 2009.

[19] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, ‘‘Transfer feature learn-
ing with joint distribution adaptation,’’ in Proc. IEEE ICCV, Dec. 2013,
pp. 2200–2207.

[20] L. Maaten and G. Hinton, ‘‘Visualizing data using t-SNE,’’ J. Mach. Learn.
Res., vol. 9, pp. 2579–2605, Nov. 2008.

[21] N. H. Chandra and A. S. Sekhar, ‘‘Fault detection in rotor bearing sys-
tems using time frequency techniques,’’ Mech. Syst. Signal Process.,
vols. 72–73, pp. 105–133, May 2016.

[22] S. Zhang, S. Lu, Q. He, and F. Konga, ‘‘Time-varying singular value
decomposition for periodic transient identification in bearing fault diag-
nosis,’’ J. Sound Vib., vol. 379, pp. 213–231, Sep. 2016.

ZHE TONG is currently pursuing the Ph.D. degree
in mechatronic engineering with the School of
Mechatronic Engineering, China University of
Mining and Technology, Xuzhou, China. His cur-
rent research interests include intelligent fault
diagnosis of rotating machinery and condition
monitoring.

VOLUME 7, 2019 66653



Z. Tong et al.: Online Bearing Fault Diagnosis Based on a Novel MDSTS

WEI LI received the Ph.D. degree from the Uni-
versity of Duisburg-Essen, Duisburg, Germany,
in 2009. He is currently a Professor of mechatronic
engineering with the School of Mechatronic Engi-
neering, China University of Mining and Technol-
ogy, Xuzhou, China. His current research interests
include fault diagnosis and remaining useful life
prediction of rotating machinery.

BO ZHANG received the Ph.D. degree from
the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China, in 2014.
He is currently a Lecturer with the School of Com-
puter Science and Technology, China University
of Mining and Technology. His research interests
include machine learning, transfer learning, and
fault diagnosis.

FAN JIANG received the Ph.D. degree from
the China University of Mining and Technology,
Xuzhou, China, in 2015. His current research inter-
ests include condition monitoring and fault diag-
nosis.

GONGBO ZHOU received the Ph.D. degree from
the China University of Mining and Technology,
Xuzhou, China, in 2010. His current research inter-
ests include wireless sensor networks, condition
monitoring, and fault diagnosis.

66654 VOLUME 7, 2019


	INTRODUCTION
	PREVIOUS WORKS AND PRELIMINARIES
	MAXIMUM MEAN DISCREPANCY
	K-NEAREST NEIGHBOR ALGORITHM

	ONLINE FAULT DIAGNOSIS BASED ON MULTIPLE DATA STREAMS TRANSMISSION SCHEME
	FAULT SENSITIVITY ASSESSMENT MODEL
	MULTIPLE DATA STREAMS TRANSMISSION SCHEME AND ONLINE DIAGNOSIS

	EXPERIMENTAL EVALUATIONS
	EXPERIMENTAL SETUP AND DATASET PREPARATION
	DIAGNOSIS RESULTS OF THE PROPOSED METHOD
	EFFECT OF NOISES ON TRANSMISSION SCHEME FOR ONLINE FAULT DIAGNOSIS
	DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	ZHE TONG
	WEI LI
	BO ZHANG
	FAN JIANG
	GONGBO ZHOU


