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ABSTRACT The wide diffusion of information in social networks can be exploited to solve searching-
for-a-target (SFT) problems including those of missing individuals. Incentive mechanisms that promote
active individual participation can be designed to favor a clear propagation direction to help efficiently
find a target. However, the existing incentive research rarely focuses on a clear propagation direction based
on a specific goal. Thus, we propose an effective contribution-driven information propagation incentive
mechanism (IPIM) that exploits ego networks to solve the SFT problem. First, we use an all-pay auction-
inspired model to determine the propagation of alters in each ego network. We then propose a novel
algorithm, the node propagation utility, based on effective contributions, to focus the propagation toward the
target rather than searching indiscriminately and inefficiently. The theoretical analyses and simulation results
indicate that IPIM guarantees the truthfulness, individual rationality, and budget feasibility. The simulations
are conducted based on real and public social datasets. The IPIM shows increased efficiencies of 951.18% of
success rate, of 215.65% in propagation hops, and of 514.41% in participation scale, comparedwith a typical
incentive mechanism. In conclusion, the IPIM shows significant value in the potential application in SFT.

INDEX TERMS Incentive mechanism, social network, information propagation, ego network.

I. INTRODUCTION
In recent years, social networks have evolved into unprece-
dented platforms of information diffusion. They characteris-
tically consist of a set of ego networks that form potential
connections between individuals. An ego network, which is
a micro-social network, consists of direct links between an
‘‘ego’’ and its ‘‘alters,’’ and the interactions among numerous
ego networks can cause wide information diffusion. This
provides a convenient approach to solving specific problems,
such as searching for missing individuals [1]. We call this
kind of problem ‘‘searching for a target’’ (SFT), characterized
by its reliance on information diffusion. The solution requires
many participants to not only propagate information, but to
also determine an appropriate propagation direction towards
the target. However, individuals in a real social network are
rational and selfish. Thus, to guarantee wide participation
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in the appropriate propagation direction, there must be an
incentive mechanism.

Social network incentive research has typically focused on
expanding the scale of participation or on improving partici-
pation in quality [2]–[4]. However, to solve the SFT problem,
two main challenges remain. The first is determining which
of several information providers can activate a candidate to
receive information and, hence, contribute effectively to the
platform in a way that avoids inefficient repetitions. The sec-
ond is choosing an appropriate forward diffusion path to
shrink the searching space and improve the efficiency of
solving the SFT problem.

We call the first challenge a problem of repeated propaga-
tion. Most studies assume that nodes propagate information
indiscriminately to all neighboring nodes. By discriminating
between nodes, however, other studies have determined the
probability that a given neighbor receives information from
a given source node [5], [6]. Nonetheless, these studies do
not consider the occurrence of propagation loops within the
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network and do not contribute efficiently to finding the target.
Repeated propagation through a given node does not change
the direction of propagation and suffered useless costs.

The second challenge is the problem of propagation direc-
tion. Current research into incentives of social networking
rarely considers determining a particular path in better accor-
dance with reality. For example, most of studies search the
whole social network to find a specific people without con-
sidering the direction of propagation. Those work can find the
target using a flooding way, but also lead to a high CPU cost.

Therefore, we propose a novel information propagation
incentive mechanism (IPIM) to solve the SFT problem. IPIM
utilizes the features of ego networks to provide participants an
exchange for some ‘‘propagation costs’’ to promote the active
and wide-ranging propagation of different participants.

We put forward an all-pay auction-inspired model to
address the repeated propagation problem. All-pay auction
gives all bidders the chance tomake a bid amount for the item,
and only the using bidder is allocated the item being auc-
tion. Based on the characteristics of ego networks, we define
‘‘common alters’’ as nodes that receive information succes-
sively from different egos. These egos can then be regarded
as bidders for the common alters. The winner of this auction,
being the only ego to the common alter, thus contributes to
the search for the target.

Regarding solving the propagation direction problem,
we offer the concept of effective contribution to consider
appropriate nodes gradually approaching the target. Con-
cretely, we introduce two indices: propagation effectiveness
and propagation contribution to evaluate the effective contri-
bution of participants. More specifically, propagation effec-
tiveness is used to predict the probability that an ego can
activate its alter. To activate an alter, it must be willing to
receive and to propagate incoming information from its ego.
The propagation contribution is used to evaluate the distance
between a node and the target. Thus, we can determine
which nodes are more likely to effectively find the target,
based on their effective contributions, further determining the
appropriate propagation path.

Based on solving the two problems, we further propose
an algorithm, the node propagation utility (NPU), for cal-
culating the propagation utility of nodes. It is the motive
power of nodes’ propagation. Moreover, the IPIM guarantees
wide and well-targeted information diffusion, which guaran-
tees truthfulness, individual rationality, and budget feasibil-
ity. In summary, the main contributions of our work are as
follows.

First, we propose an incentive mechanism, IPIM, it cap-
italize on the properties of ego networks to promote wide
diffusion of information for an efficient solution of the SFT
problem.

Second, an all-pay auction-inspired model is to address to
solve the repeat propagation problem. In detail, we model
propagation between the information receiving candidate
(i.e., alter) and its multiple information providers (i.e., egos)

as an all-pay auction. Only the winner can activate the com-
mon alter and contribute positively toward finding the target.

Third, we promote the concept of effective contribution to
solve the propagation direction problem, consisting of propa-
gation effectiveness and propagation contribution, which has
significant impact on evaluating nodes’ abilities to find the
target.We can then determine the appropriate participants and
obtain the optimal propagation path.

The remainder of the paper is structured as follows.
In Section II, discusses the related work. Section III describes
in detail the IPIM design. Section IV is the mechanism anal-
ysis. To study the performance of IPIM, we conduct com-
prehensive experiments, and discuss the results in Section V.
Finally, we give concluding remarks in Section VI.

II. RELATED WORK
Incentive mechanisms are adopted to provide incentives for
individuals to actively participate in different ways at their
own expense. This has been widely applied in computer
science and sociology, including delay-tolerant networks [7],
opportunistic networks [8], wireless-sensor networks [9],
crowd sensing [10], and social networks [11]. Most incentive
mechanisms are usually based on a game model [12], [13] or
an auction model [14], [15].

Two kinds of mechanisms address the incentive prob-
lem: ‘‘user–platform’’ and ‘‘user–user’’. In ‘‘user-platform’’
mechanisms users usually activated by platform. Most stud-
ies use the ‘‘user-platform’’ mechanism, especially in the
context of crowd sensing. For example, Zhao focused on an
online incentive mechanism and designed schemes to recruit
mobile users under budget constraints [16]. Fang designed an
incentive mechanism based on prices and subsidies in sharing
platforms to attract participants while lowering payouts [17].
In the user-platform model, participants are recruited inde-
pendently. However, in our work, information propagation
among participants is utilized to find the target, effectively
adopting the user–user model. Interaction incentive is there-
fore highly relevant to our work.

The user–user incentive study emphasizes cooperation
between users, as featured in opportunistic networks, social
networks, etc. The issue of node selfishness in opportunis-
tic networks has been studied for several years, and sev-
eral incentive schemes have been proposed to stimulate data
exchange between nodes [18]. For example, Wu proposed
a scheme named ‘‘Vbargain’’ (an incentive scheme based
on oriented pricing), aiming to stimulate mobile users and
collaboratively deliver video data [8]. However, this is dif-
ferent from social networks, which consist of a set of ego
networks and emphasize direct relationship and contacts.
In opportunistic networks, data transmissions usually occur
in a state of non-connection and movement, using a form of
storage-carrying-forwarding to deliver data. Data must also
be forwarded using node encounters to a destination, making
information propagation unstable and reducing the probabil-
ity of finding the target. Obviously, there is a fundamental
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difference in user–user incentive, as considered in oppor-
tunistic networking and in our work.

Research on incentives in social networks also focuses
on cooperation between nodes, depending on the links.
Feng et al. proposed a social tie-based incentive scheme to
deal with the selfish problem of cooperative spectrum sens-
ing in distributed cognitive radio networks [19]. Gan et al.
proposed a novel game-based incentive mechanism for multi-
resource sharing, where users were motivated to share their
idle resources in a conditional voluntarymode [20]. However,
they neglected the differentiation analysis of node ability
and relationship between nodes, and they did not choose
an appropriate propagation path. Considering this problem,
Doo and Liu proposed a probabilistic approach to study-
ing how incentives can be utilized to boost diffusion of
influence [6]. In particular, they defined an influence diffu-
sion probability for each node instead of assuming a uniform
probability prior to formulating rewards in terms of two
factors: efforts and benefit. Nevertheless, contrasting our own
work, this scheme evaluated the node reward based only on
the number of affected neighbors and how much contribution
they could make. Their work thus focuses on the number of
propagators. In contrast, we analyze the distance between the
propagation nodes and the target, providing a greater bearing
on the direction than the scale of propagation. Moreover, this
scheme does not consider repeated propagation to a given
node, which affects the contribution and propagation of the
platform. Thus, it is not suitable for solving the SFT problem.

Generally, our work is a kind of user–user incentive mode.
Differing from an opportunity networkwith storage-carrying-
forwarding, our work uses more stable social relations as
propagation media. It takes on the characteristics of social
networks, but it still differs from existing research on social
network incentives. Specifically, our proposal is solving the
SFT problem by evaluating the ability of each node to find
a target, rather than simply expanding the scale of partici-
pation. Thus, we can determine the appropriate propagation
direction.

III. MECHANISM DESIGN
Our incentive mechanism, IPIM, is designed to solve the SFT
problem, as shown in FIGURE 1. The mechanism is based on
a series of ego networks, consisting of focal nodes (i.e., egos),
nodes that are directly connected to it (alters), and the ties,
if any, between the alters. The purpose of our mechanism
is promoting active propagation at nodes that will increase
the likelihood of finding the target in the most economical
and efficient manner. Of course, each alter has its own ego
network. The active participation of an increasing number of
nodes can therefore result in wide diffusion of information
via success-ego networks, thereby enhancing the efficiency
of finding the target.

There may exist repeated propagations in any ego net-
work, reducing the efficiency of target-finding. Repeated
propagation requires that a common alter may receive the
same information many times from its egos. This does not

FIGURE 1. Incentive mechanism design.

FIGURE 2. IPIM framework.

contribute to solving the SFT problem and it also reduces the
willingness of information recipients to participate [21]. This
is a challenge for many egos, who may be the only activator
(i.e., information source) to a certain alter (i.e., information
receiver).

We focus on efficiently finding the target. Thus, where or to
whom should information be propagated to locate the target?
To answer, we should evaluate the effective contribution of
nodes to find the target. Because utility is the original motive
of individual participation, it is positively related to reward,
but only when nodes can obtain positive rewards during infor-
mation propagation. Thus, calculating node utility to max-
imize participation scale while balancing total propagation
cost is also a challenge.

Thus, there are three challenges in our work: solving the
repeated propagation problem; solving the node effective
contribution evaluation problem; and solving the node utility
problem. For these, the IPIM has three corresponding parts:
propagating the alter set; effective contributions; and propa-
gating utility. The framework of IPIM is shown in FIGURE 2.

The propagation alter set is based on the all-pay auction
model for determining the unique activator of common alters.
Egos linking to the common alters are regarded as bidders,
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bidding for the common alters. Each ego bids, and the one
making the highest effort bid wins the common alter and is
rewarded. We then determine the set of winning egos in terms
of the common alters allocated to them and their private alters
as propagation alter sets.

An effective contribution is proposed to evaluate the ability
of nodes in the propagation set to find the target. It consists of
two indicators of propagation effectiveness and propagation
contribution. The former represents the willingness of an alter
to receive information from the ego and propagate it. This
can be predicted in the current ego network by considering
historical interactive data. The latter is used to evaluate the
nodes’ propagation contribution to solving the SFT problem.
We propose a ContributionRank method for determining the
distance (i.e., the contribution to the task of finding the target)
between any propagation node and the target.

Propagation utility is based on the number of alters to
which an ego can propagate. From the entire network,
the more alters the ego propagates to, the higher the like-
lihood of finding the target. Thus, the more utility the ego
can provide. In detail, we combine the propagation contri-
bution with propagation effectiveness to yield a joint prob-
ability distribution for a Bayesian analysis. By considering
the whole network, a prior and a posterior distribution can be
obtained, corresponding respectively to the situations before
and after an ego has propagated. The differences between
these two distributions reflect the utility of the ego and deter-
mine the corresponding reward. The more alters to which
the ego propagates, the greater its utility and the greater the
reward.We describe the three parts of IPIMmore specifically,
as follows.

A. PROPAGATION ALTER SET
The propagation alter set consists of alters to which the
ego can propagate to, or activate, in its own ego network.
However, an alter may link to many egos (i.e., activators) in
multiple networks. As explained before, repeated propaga-
tion by any node does not contribute to finding the target.
Therefore, the sole activator of a certain alter is determined
competitively among the various egos sharing this alter. Only
by being the sole activator for a common alter can the ego
enlarge the set of propagation alters and be rewarded. This
concept resembles an auction, where many bidders compete
for the same reward. Propagation between egos and their
common alters can therefore be modeled as an all-pay auc-
tion. The number of bidders, unknown to the competitive
egos, is denoted as n and obeys the Poisson distribution [22].
The auction framework is described as follows.

1) Denote J∗ as a set of common alters, J ={1,2, . . .j,
. . . ,t}, linked to a set of egos I, where I ={1, 2, . . .i,
. . . ,n} and |I| defined as size of I, distributed across
multiple ego networks.

2) The strategy of an ego node, i, determines how much
effort, z ji , to make when competing for a common
alter j. The incentive, given at the end of the auction,
takes the form of a monetary prize to reward the ego

who has made the greatest effort, max i∈[1,n]z
j
i . This

value is denoted, z j1,n, following the conventional nota-
tion in order statistics.

3) The prize is adaptive according to the z j1,n =

max i∈[1,n]z ji
ego’s contribution, M (i), which is known

to all. Each ego, i, also incurs a cost for its effort,
defined as h

(
z ji
)
, where h (·) is some modulator

function.
4) Egos are risk-averse and characterized by a von

Neumann–Morgenstern (vNM) utility function,
u (·) [23]. Each ego strategically determines z ji to max-
imize its own auction utility ui,j. We define the auction
utility of an ego as follows.

Definition 1: Each ego’s auction utility for a common alter
j is defined as the difference between its prize and the cost
incurred:u

j
i =

(
M (i)− h

(
z ji
))
, if z ji = z ji,n,

u ji =
(
−h

(
z ji
))
, otherwise

(1)

The expected utility Eu
(
z ji
)
is

Eu
(
z ji
)
=

(
M (i)− h

(
z ji
))

P (win)

+

(
−h

(
z ji
))
(1− P (win)) (2)

where P (win) represents the winning probability, defined as
follows.
Lemma 1: From the full-probability formula, the proba-

bility that an ego, i, wins a common alter, j, in the all-pay
auction is

P
(
z ji
)
=

+∞∑
n=1

P
(
z ji | n

)
P (n)

= e−λ
(
e
λF
(
z ji

)
− 1

)
/F
(
z ji
)

(3)

where F
(
z ji
)
is the distribution function of z ji .

Proof: The effort cost, h
(
z ji
)
, is positively related to z ji .

The probability distribution function of, z ji is F
(
z ji
)
, and the

probability density function is f
(
z ji
)
. If there are n compet-

itive egos, the probability follows the Poisson distribution:
p (n) = λn∗e−λ/n!. Thewinning probability, P (win), is given
by the full probability formula,

P (win) =
∞∑
n=1

p
(
z ji | n

)
p (n)

=

∞∑
n=1

Fn−1
(
z ji
) λn
n!
e−λ

=

∞∑
n=1

(
F
(
z ji
)
λ
)n

n!
e−λ/F

(
z ji
)

= (
∞∑
n=0

(
F
(
z ji
)
λ
)n

n!
− 1)e−λF−1

(
z ji
)

(4)
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We can get P (win) =
(
eλF(zi)

)
e−λF−1 (zi) by using

Taylor series and obtain the optimal effort, z j
∗

i , of ego i to
its common alter, which can maximize its auction-utility.
We then have another lemma of z j

∗

i :
Lemma 2: For a given ego, the optimal effort to win the

common alter, j∗t , is z
j∗

i , with the cost defined as follows. (z ji is

lower bound of z ji )

h
(
z j
∗

i

)
=

∫ z ji

z ji

M (i)e−λF−1
(
z ji
)
F ′
(
z ji
)

×

(
λe
λF
(
z ji

)
− F−1

(
z ji
)
e
λF
(
z ji

)
+ F−1

(
z ji
))

dz ji (5)

Proof: As Eui,j =
(
M (i)− h

(
z ji
))

P (win)
(
−h

(
z ji
))

(1− P (win)), the optimal effort, z j
∗

i , of participants, is the
optimal strategy in equilibrium. It is also the solution of
max Eui,j . The envelope theorem is applied to parame-
ter z ji . When the expected r utility is maximized, then
∂Eui,j/∂z

j
i |z

j
i = z j

∗

i = 0, yielding the solution,

h
′
(
z j
∗

i

)
= M (i) e−λF−1

(
z j
∗

i

)
F
′
(
z j
∗

i

)
×

(
λe
λF
(
z j
∗

i

)
− F−1

(
z j
∗

i

)
e
λF
(
z j
∗

i

)
+ F−1

(
z j
∗

i

))
(6)

Owing to the personal minimum effort, z ji , we consider that

the current ego give up competition (i.e., h
(
z ji
)
= 0 if no

other competitions). Then,

h
′
(
z j
∗

i

)
= M (i) e−λF−1

(
z j
∗

i

)
F
′
(
z j
∗

i

)
(
λe
λF
(
z ji

)
− F−1

(
z ji
)
e
λF
(
z ji

)
+ F−1

(
z ji
))

dz ji

h
(
z ji
)
= 0

(7)

with the solutions,

h
(
z j
∗

i

)
=

∫ z ji

zi j
M (i)e−λF−1

(
z ji
)
F ′
(
z ji
)

×

(
λe
λF
(
z ji

)
− F−1

(
z ji
)
e
λF
(
z ji

)
+ F−1

(
z ji
))

dz ji

Here, the prize function, M (i), is the reward gained by
the ego if it succeeds in winning the common alter. It is
defined as

M (i) = (|KL (pi||pi+qt)|) k = (|pi log (pi/pi+qt) |) k (8)

where k is the reward for the contribution, pi and qt
are the contributions of ego i and common alter t ,
respectively. Further details on M (i) will be provided in
Subsections III.B. and III.C. Thus, the function of h

(
z j
∗

i

)

can be defined as

h
(
z j
∗

i

)
=

∫ (|pi log pi/(pi+1)|)k

0
me−λF−1 (m)F

′

(m)

×

(
λeλF(m) − F−1 (m) eλF(m) + F−1 (m)

)
dm

=

∫
|pi log pi/(pi+1)|k

0
e−λ

[
(λ−T/m) emλ/T+T/m

]
dm,

T= |n log n/ (n+1)| k, (9)

where m ∈ M (·) | {0, |pi log pi/ (pi + 1) |k}, a valuation of
bidders’ rewards for common alter. F (m) is the distribution
function of m, satisfying the uniform distribution in 0∼ T .
Here, N is the total number of participants.

We then obtain the optimal effort of each competitive ego.
According to the auction rules, only the ego having given
maximum effort wins the common alter. Thus, we can obtain
the final propagation alter set of an ego.

B. EFFECTIVE CONTRIBUTION
The key of propagation-based IPIM is selecting an appropri-
ate propagation direction to shrink the SFT searching space.
An effective contribution is proposed to evaluate the ability of
nodes in the propagation alter set to find the target. Integrating
with the ‘‘effective contribution’’, we can obtain the appropri-
ate propagation nodes and choose an optimal diffusion path
to reach the target more efficiency. ‘‘Effective contribution’’
consists of two indicators of propagation effectiveness and
propagation contribution. Specifically, propagation effective-
ness is used to predict the probability that an ego can activate
its alter. The propagation contribution is used to evaluate the
distance between a node and the target.

1) PROPAGATION EFFECTIVENESS
Our mechanism considers a graph for each ego network,
G =< I, J,R >, where I is the set of egos and J is the
set of propagation alters. R represents not only the direct
links between egos and alters, but also the edge of effective-
ness propagation between them. Propagation effectiveness is
defined as follows.
Definition 2: A soft parameter, θij ∈ [0, 1], is used to mea-

sure the propagation effectiveness between ego i and alter j.
It is defined as the probability that j receives information and
is willing to continue propagation:

Pr
(
Sij = s|θij

)
=
(
θij
)s (1− θij)1−s (10)

Each ego, i ∈ I , has a set of alters, withwhom information can
be directly exchanged. We denote the information transferred
from i to j as sij ∈ {0, 1}, which initialize with a random
value. According to Definition 2, which is a Bernoulli distri-
bution parameter, we can calculate the posterior distribution,
p
(
θij|Sij = s

)
, by Bayes’ rule:

p
(
θij|Sij = s

)
∝ Pr

(
Sij = s|θij

)
∗ p

(
θij
)

(11)

Because the Beta distribution is the conjugate prior
of the Bernoulli distribution, the posterior becomes Beta
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(ai0 + 1, bi0) if Sij = 1 or Beta (ai0, bi0 + 1) if Sij = 0. Thus,
if alter j successfully receives and propagates information, r1,
from ego node i of 1 or r0 of 0, the posterior will become

p
(
θij | si

)
= Beta

(
a0i + r

1
i , b

0
i + r

0
i

)
(12)

This yields the propagation effectiveness between the ego
and any of its associated alters in the ego network. We qualify
information propagation from node i to j as effective only
when θij reaches a certain threshold. For the winning alter, j,
we obtain θij = 1.

2) PROPAGATION CONTRIBUTION
The propagation contribution of a node can be quantified as
the distance between the target and its IPIM. It represents
the possibility of finding the target on that particular node.
In practice, the alters in the propagation alter set of an ego
contribute variably to propagation and thus bring different
rewards to the ego. To evaluate the propagation contribution
of alters, in accordance with the PeopleRank concept [24],
we use node out-degree to characterize nodes as important
when they are linked to many other nodes. Meanwhile, there
is a heightened probability of two people being acquainted if
they have one or more other acquaintances in common [25].
Similarity indicates the group of nodes depending upon
common contacts or interests that can be measured by the
ratio of common links (e.g., contact, interest, and neighbors)
between individuals [26]. The higher the similarity shared by
a node and the target, the more opportunities they have to
encounter. We therefore evaluate the node contribution in a
2-dimensional perspective, defined by the node out-degree
and similarity. These quantities constitute a 2-dimensional
coordinate space, the points in which represent the distance
from a node to the target. This method is ContributionRank,
and the contribution of a node is thus given by

CR (i)=(1−sim (i, tar))+sim (i, tar)
∑

j∈J
(CR (j)/ |J |)

(13)

where i ∈ I are the propagation nodes, J is the set of alters of i,
and sim (i, tar)∈ [0, 1], is the attribute similarity between i
and the target, which can be derived by the following inter-
section operation.

sim (i, tar) =
|att (i) ∩ att (tar)|
|att (tar)|

(14)

att (·) represents the set of node attributes, and the numer-
ator equals the number of common attributes between node i
and the target.

Based on the ContributionRank method, another param-
eter, ϑj ∈ [0, 1], is introduced to quantify the contribution
of propagation alters. We divide ϑj into 5 levels as, [0,0.2),
[0.2,0.4), [0.4-0.6), [0.6,0.8), and [0.8,1], in order of increas-
ing likelihood of an alter to achieve the target, reflecting the
likelihood of the reward that can be gained by the ego. Con-
sidering individual rationality, the propagation cost incurred
by an ego should be less than the reward. We define the alter

bringing c · k reward, correspond to level c(c = 1, 2, . . . , 5),
the propagation cost is q, as a constant. (k > q)
Similarly, the contribution, ϑj, is a multinomial distribu-

tion, drawn from a known Beta prior distribution. Assuming
θij and ϑj are independent, the prior joint distribution is the
product of two Beta distributions. Thus, for a given alter j
taken from the propagation alter set, the posterior distribution
can be calculated using Bayes’ rule:

p
(
θij, ϑj|Sij = s

)
∝ Pr

(
Sij = s | θij, ϑj

)
p
(
θij, ϑj

)
(15)

The distribution parameters, θij and ϑj, are updated by
the approximation method. With the prior distributions of
θij and ϑj being Beta(aij, bij) and Beta(cj, dj ), respectively,
the joint posterior distribution conditioned on the observed
Sij = s is approximated by the product of two independent
Beta distributions with modified parameters.

The values of aij (s), bij (s), cj (s), and dj (s) are calcu-
lated using historical interactive data, by setting the mul-
tiple moments of θij and ϑj equal in the true posterior,
p
(
θij, ϑj|Sij = s

)
, and its approximation.

Thus, for any node, we define the propagation effective-
ness and the propagation contribution as the two propagation
indices, which are both means for calculating rewards.

C. PROPAGATION UTILITY
In an ego network, the propagation utility of the ego is based
on the number of alters it can activate and how much con-
tribution they make. The alter can also be the ego in its own
ego network and activate its alters to gain the reward. The
more alters it activates, the higher utility it brings and greater
reward it gets. The node utility is defined as follows.
Definition 3: (Node Utility) The node utility is defined as

the Kullback–Leibler divergence between the initial and final
distributions of the propagation contribution in the whole
network.

u (i, r) {j} = ESij
∣∣∣KL (pr−1 (θij, ϑi) ||pr (θij, ϑj))∣∣∣ (16)

where r represents the propagation hop for the current ego,
such that r-1 is the previous hop, for which the current ego
network has not yet added. The Kullback–Leibler divergence
between two distributions, corresponding to the states before
and after the ego propagate to alters, represent the utility of
this ego to help find the target.

Suppose that, in the current ego network hop, r , the
distribution of θij and ϑj is pr

(
θij, ϑj

)
= Beta

(
aij, bij

)
∗

Beta
(
cj, dj

)
. Node j is an alter in iteration, r-1, and becomes

the ego in hop r . When the current ego, successfully propa-
gates information to its alters, the ego is included in the r-1
network. By assessing each alter in the private propagation
alter set, we obtain a new ego network, for which the dis-
tribution of contribution is influenced by the newly added
alters. Obviously, this influence is brought by the current
ego, because alters are added according to this new ego.
Thus, we use relative entropy to calculate this distribution
difference. It can be interpreted as measuring the propagation
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utility of the current ego. In Subsection III.B., we define k as
being the reward obtained for a unit contribution level. The
total reward, R (i), gained by the current ego, i, and the total
cost of platform, C (p), can therefore be calculated as

R (i) = k ∗
m∑
j=1

u (i, r) {j},

C (p) =
N∑
i=1

R (i)
(17)

where m is the size of the set of propagation alters for ego i.
N is the total number of participants in the network.

IV. MECHANISM ANALYSIS
Usually, the incentive mechanism must satisfy the following
Characteristics [27].

1. Truthfulness. Owing to selfishness, nodes strategically
determine their efforts to maximize their own util-
ity, hindering the platform from finding the target
with lower payments. To maximize utility, a node will
disclose its effort truthfully.

2. Individual Rationality. To incentivize nodes to partic-
ipate in information propagation, their costs must be
covered by the reward, satisfying individual rationality.

3. Budget Feasibility. Budget feasibility guarantees that
the mechanism can be implemented in practice while
satisfying the basic requirement.

We proved that our mechanism guarantees truthfulness,
individual rationality, and budget feasibility.

A. TRUTHFULNESS
The mechanism is truthful only if truthful node’s reward is
greater than or equal to that of the untruthful node. In our
mechanism, only if each node does its best to propagate
information to its alters will it create more utility. Moreover,
the propagation alter set of our mechanism is truthful if and
only if the winning ego allocation is monotonic, and each
winning ego is paid the threshold payment [27].
Lemma 3: If the ego, i, pays effort z ji1, making i become a

winner, i pays effort z jik
(
z jik > z ji1

)
and is still the winner.

Proof: Assume that the ego set is I ={1, 2, . . . . . .n}. The
degree of effort of the ego, i, is z ji∗ =

{
z ji1, z

j
i2, . . . ,z

j
in

}
.

Because of the allocation strategy, it always chooses the hard-
est player as the winner =z j1,n. If i is the winner, then z

j
i1> z

where z ∈
{
z jx | x = 1, 2, . . . n and x 6= i

}
; if i pays effort z jik ,

i will also be the winner, because z ji∗ > z ji1> z.
Lemma 4: Each winner pays its best effort.
Proof: Let each ego know the reward function, M (i),to

become a winner and maximize its own profit. It will pay the
best effort.

Let z jik be the best effort, z jik = arg
z jix∈Z

j
i∗

max
{
Eu
(
z ji
)}

.

Consider the following two situations.
Case 1: If ego i pays effort z j

ik ′

(
z j
ik ′
< z jik

)
according to the

allocation strategy, and z j
ik ′
< z jlk < zik , then ego l becomes

the winner and ego i loses the opportunity to become a
winner.
Case 2: If ego i pays effort z j

ik ′

(
z j
ik ′
> z jik

)
and z j

ik ′
> z,

then i will be a winner, and i is still a winner after paying
effort, z jik . According to the utility function, u ji = M (i) −

sijh
(
z ji
)
, the utility of paying z j

ik ′
and z jik are, respectively,

u j
′

i = M (i) − sijh
(
z j
ik ′

)
and ui = M (i) − sijh

(
z jik
)
.

As h
(
z ji
)
∝ z ji , and M (i) remains unchanged, then u j

′

i < u ji .
Thus, ego i will pay its best effort in the competition, and

our mechanism satisfies truthfulness.

B. INDIVIDUAL RATIONALITY
The utility of a node should be nonnegative to satisfy its
individual rationality, such that is its reward, R (i), will be
equal or greater than its propagation cost, q (i).

For a propagator, i, we can regard its utility calculated by
two parts. In the all-pay auction, it may get M (i) if it wins.
During propagation, if it propagates to its alters, it will get a
utility of L (i). In our mechanism, the sum of M (i) and L (i)
is the total utility. In an all-pay auction, there are three cases
of propagator.
Case 1: When propagator i calculates utility M (i) −

h
(
z ji
)
≤ 0 before the auction, according to the optimal effort,

propagator i quits the auction.
Case 2: If it is not the winner, it is probably caused by

weak risk aversion, the most common type in real life, not a
restrictive assumption. Thus, it accepts utility −h

(
z ji
)
when

it does not win the auction.
Case 3: If it wins the competition, the utility is M (i) −

h
(
z ji
)
> 0.

In the above three cases, individual rational is expressed in
the auction process.

Similar to propagation, for the intrinsic of propagator i,
we have defined that the lowest reward of per contribution
is k, which is higher than its propagation cost q. For a node, i,
it will obtain the utility of (k − q) ∗ 1Con, where 1Con
is its effective contribution. Thus, our mechanism expresses
individual rational.

C. BUDGET FEASIBILITY
In our mechanism, the budget of the platform can be
expressed in terms of the sum of the reward of each propaga-
tor. Because we have defined that the reward of a propagator
i as R (i) in (17), where m is the size of i’s propagation alter
set J, and

ui = |KL [pi|| (pi + qi)] | = |pi log pi/ (pi + qi)| (18)

The cost of the platform is up:

up =
n∑
i=1

|KL [pi|| (pi + qi)]|

=

n∑
i=1

|pi log pi/ (pi + qi) | (19)
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where n is the number of propagators. Thus, there is a theorem
that explains the budget feasibility of the platform.
Lemma 5: When the number of propagators reaches a

certain amount in the whole network, the increasing degree
of cost in platform will tend to be flat.
Proof: For a propagator, i, its utility is ui, which is defined

in (18), as ∂ui/∂qi > 0, and the ∂2ui/∂
2
qi < 0, the utility

of propagator i, to the platform becomes a convex function.
The consequential reward is provided by the platform and for
propagator i, if it propagates to its alter j, letting j continues
to propagate. The increasing utility of the network is 1uij,
where uij represents the total contribution after i propagates
to j. Given, if 1uij < 8, where 8 is a minimum value that
tends to 0, then the utility will no longer increase for thewhole
network. Then, node j will not participate in propagation.
Obviously, the propagation will be in a finite state over the
whole network. Thus, the platform cost will be flat.

V. SIMULATIONS
Simulations are designed to evaluate the IPIM. First, because
IPIM is mainly involved in promoting the active partici-
pation of the nodes, solving the SFT problem gets better.
We use the public datasets provided by Stanford [28] to
verify our incentive mechanism. Thus, with increased par-
ticipation, the efficiency of solving the SFT problem grows
even higher. Second, we construct an optimization objective
function that combines multiple factors (positive and nega-
tive). Thus, we obtain the optimal effectiveness threshold for
solving the SFT problem. This threshold is θij we previously
defined in Subsection III.B. to control the number of effective
propagators. It is calculated using two different public data
sets [29], [30]. Finally, on the basis of optimal threshold,
we compare our mechanism to the PSI algorithm, described
in a related work [6].

A. DATASET DESCRIPTION
To evaluate the impact of the propagation scale on solving
the SFT problem, we analyze two datasets from Facebook
and Google+, which are public social network datasets pro-
vided by Stanford [28]. The Facebook dataset consists of a
whole social graph, including 10 ego networks. In Google+,
the social graph consists of 132 ego networks. These networks
are defined by lists of edges that connect pairs of anonymous
user IDs.

We use two real and public social datasets to compare
typical incentive mechanisms different from Facebook and
Google+. They show interactive data among individuals,
which is suitable for comparison. In a ‘‘communication-1
ego network’’ [29] or Data A, we find user interaction
and evaluation information for their friends over a period
of 18 months. ‘‘Facebook-like social network’’ [30] is
Data B. Tables 1 and 2 show the properties of these datasets.

B. INFLUENCE OF PROPAGATION SCALE ON IPIM
The main purpose of IPIM is to incentivize people to propa-
gate information to solve the SFT problem better. In theory,

TABLE 1. Datasets of facebook and Google+.

TABLE 2. Datasets of two real social networks.

FIGURE 3. Influence on propagation hop with (a) Facebook and
(b) Google+.

the more people who participate, the more likely it is to
find the target. Therefore, to verify IPIM, we measure the
efficiency of solving SFT problem with a participation or
propagation scale as a parameter. Here, efficiency is embod-
ied in propagation hops and success rates. A propagation hop
indicates that the set of the propagation nodes should not only
have high effectiveness contribution, but also a reduction of
information propagation hops, thus reducing the finding time.
The minimal number of propagation hops represents high
speed and high efficiency of propagation to find the target.
Success rate shows that we can successfully find the target via
IPIM and reflect it in the form of a probability. For Facebook
and Google+, we set the percentage of alters that each ego
can propagate to as 5 %. Thus, it propagates 20 times over
the whole scale of the network. To see clearly, we show the
results by 20 % divisions in the figures.

1) INFLUENCE ON PROPAGATION HOP
Propagation hop is used to express the number of propagated
ego networks from the initial node to the target, when the
location is unknown, less hops means can find the target effi-
ciently. In each dataset, we select an initial node (i.e., original
information holder) randomly, and let it find the target. This
node propagates information to its alters. Then, the alters
propagate the information to more alters in multiple ego
networks. Thus, the information repeats propagation until
the target is found. We conduct 1,000 tests with different
propagation scales and record the average of propagation
hops as the final result.

Experimental results are shown in FIGURE 3. The average
hops appear in the range of 4-16 for Facebook and in the
range of 3-16 for Google+. Obviously, with the increasing
number of propagators at the network scale, the hops become
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smaller and trends to steady, proving that the efficiency of
SFT problem-solving gets higher.

2) INFLUENCE ON SUCCESS RATE
We count the total number of successes to find the target in
each group of experiments. For each group, we also select
the initial node randomly and begin with it to propagate to
its alters. We test 1,000 times in each group and record the
average success times as the result.

FIGURE 4. Influence on success rate with (a) Facebook and (b) Google+.

The results of the experiment are shown in FIGURE 4.
The average success rate appears in the range of 0.050–0.987
for Facebook and in the range of 0.020–0.996 for Google+.
Obviously, with the increase of the number of propaga-
tors, the success rate also increases, better solving the SFT
problem.

With the increasing propagation scale, the target can be
found faster with a higher success rate. Therefore, the design
idea of IPIM, which promotes nodes’ active participation,
is effective.

C. INFLUENCE OF EFFECTIVE THRESHOLD ON SFT
In our mechanism, we propose a concept of propagation
effectiveness and use the parameter, θij ∈ [0, 1], to measure
the propagation effectiveness between ego i and alter j. Only
when the value of θij reaches a certain threshold, θc, can we
conclude that the information propagation between node i
and j is effective. Thus, θc determines the number of alters
to which each ego can propagate. It further determines the
total number of propagators. Thus, a method is needed for
determining a suitable threshold.

To get the optimal value of θc, we construct an optimization
objective function, π (θc):

π (θc) = ∂1f1 (θc)− (1− ∂1) f2 (θc) . (20)

Here, f1 (θc) represents positive factors of π (θc). Its value
will increase with the increasing value of f1 (θc). Corre-
spondingly, f2 (θc) represents negative factors of θc.∂1 and
(1− ∂1) are their weights, respectively. If θc is the demand
of evaluating the effectiveness of solving the SFT problem,
concretely, f1 (θc) includes the factors of the number of prop-
agation hops, the number of propagators, and the success
rate. f2 (θc) can be the platform cost. Then, we analyze the
relationship between θc and these factors. We show the result
of Data B in FIGURE 5, because it covers more relationships
than Data A. Thus, the result is more universal. Certainly, the

FIGURE 5. Relationship between factors and effectiveness threshold for
Facebook-like social network.

results of Data A are consistent with data B results. We will
not give details here. All results are obtained via data-fitting.

From FIGURE 5, we can see that there is a positive corre-
lation between propagation hop and θc. Additionally, there
is a negative correlation between success rate, number of
propagators, platform cost, and θc. Here, negative correlation
means that the bigger the θc, the smaller the factor value.
Positive correlation is just the opposite. Thus, we combine
three negative factors and the only positive correlation fac-
tor in the same coordinate system. To balance the objective
function, the intersection point of the two lines corresponds
to the optimal threshold, θ∗c , which best satisfies the demand
of solving SFT.

With IPIM, the optimal threshold we obtained is 0.33.
From FIGURE 5, the factors affecting solving the SFT prob-
lem are not very sensitive to the threshold, θc, There is no
obvious change in the value of any factor in a threshold inter-
val. Factor values do not change because of small changes in
threshold. Therefore, the optimal threshold is scientific and
effective in theory.

D. COMPARISON
Lastly, we compare the PSI [6] incentive mechanism, which
de-fines an influence diffusion probability for each node
instead of uniform probability and proposes formulation
reward effects in terms of two factors: effort and benefit.
We compare the participator scale of propagation informa-
tion, where the propagation hops and the success rate are
found in three data sets. These three indicators directly affect
the efficiency of solving the SFT problem. The higher the
success rate, the greater the number of participants and the
better the efficiency. We test 1,000 groups in each data set.
In each group, we test 100 times and record the average as a
group result. To clearly show the results, we take 200 groups
as a unit and record the average value as final. Thus, each
point in the figures represents the average of the results
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FIGURE 6. Results of the success rate of IPIM and PSI in two datasets.
(a) Data A. (b) Data B.

TABLE 3. Mean and variance of success rate of IPIM and PSI in two
datasets.

FIGURE 7. Results of the propagation hop of IPIM and PSI in two
datasets. (a) Data A. (b) Data B.

TABLE 4. Mean and variance of propagation hop of IPIM and PSI in two
datasets.

of 200 groups, and the value of each group is the average
of the results of the 100 tests. Thus, the value of each point
represents the average value of the 200× 100 tests.
The results of the success rate comparison are shown

in FIGURE 6. IPIM and PSI found the target in 563 and
50 groups, respectively, in the communication-1 ego network
(Data A). In the 1,000 tests of Data B, IPIM and PSI found
the target in 446 and 46 groups, respectively. The mean and
variance of the two types of searches are listed in Table 3.

The results of propagation hops are shown in FIGURE 7.
In Data A, the average hop of IPIM was from 2 to 4, whereas
in PSI, it was from 8 to 10. In Data B, the average hop of IPIM
as from 6 to 8, whereas in PSI, it was from 8 to 11. The mean
and variance of the two types of searches are listed in Table 4.

The results of the participation scale are shown in
FIGURE 8. From Data A, the average participation scale of
the IPIM mainly appears in the range of 40-to-60, indicating
the real number of participants propagating to find the target.
Whereas, PSI mainly appears in the range of 0-to-20. The
participation scale of IPIM is larger than PSI in two datasets.
The mean and variance of the two types of searches are listed
in Table 5.

FIGURE 8. Results of the participation scale of IPIM and PSI in two
datasets. (a) Data A. (b) Data B.

TABLE 5. Mean and variance of participation scale of IPIM and PSI in two
datasets.

From the table, the success rate is 11.37 times higher in
the IPIM search, rather than PSI in data A. It is 9.65 times
higher in Data B. This result indicates that the IPIM per-
forms better than PSI in terms of success rate. Nevertheless,
IPIM frequently fails to find the target. For example, it fails
in 437 groups on Data A and in 554 groups on Data B. Two
reasons for this failure are the control of propagation effec-
tiveness and the selection of inactive nodes for propagation.
Both datasets have inactive nodes, and when information is
propagated to only these nodes in a certain hop, information
will stop diffusing. Thus, the IPIM and PSI searches all fail
under such conditions. This scenario explains the emergence
of failures in certain groups of IPIM experiments. In terms of
the mean value, the IPIM takes fewer hops to find the target
than the PSI approach, thereby reducing hops 79.73 times in
Data A and 27.46 times in Data B. Comparing experiments,
the IPIM better measures node effectiveness to propagation
and selects the most appropriate nodes, thus reducing hops.
In IPIM, hops taken are generally much smaller than in PSI,
but cases still exist where hops in IPIM are close to those in
the PSI approach. Such large differences between these cases
and the average adds to the variance of IPIM.

Statistics indicate that the participation scale is larger by
449.54% (Data A) and 579.28% (Data B) in IPIM than in PSI.
Therefore, we can conclude that IPIM is better than PSI in
terms of participation scale. Thus, IPIM has a stronger incen-
tive impact on the SFT problem than PSI. Under the same
propagation conditions, IPIM propagates to more individuals
faster, thus enhancing the efficiency of SFT problem solving.

VI. CONCLUSION
In this paper, we proposed an effective contribution-driven
IPIM, which exploits ego networks to overcome the SFT
problem. First, we used an all-pay auction to determine the
propagation alters of each ego. Based on this, we proposed a
novel algorithm, NPU, to evaluate nodal propagation rewards
according to their effective contributions. This enabled us to
provide propagation direction to the target instead of propa-
gating randomly with low efficiency. Theoretical analysis and
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simulation results indicated that the IPIM guaranteed truth-
fulness, individual rationality, and budget feasibility. Finally,
we verified the effectiveness of our mechanism using public
social network datasets. Compared with typical algorithms,
our results showed that our mechanism was more advanta-
geous in solving the SFT problem.
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