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ABSTRACT In the wireless Internet of Things (IoT) networks with resource-constrained devices, fog
computing has been introduced to deal with the computation-intensive applications at the edges of the
networks. While fog computing decreases the computation delay and fronthaul traffic data, it also brings the
severe challenge on complex resource allocation of the available computation and communication resources
under the stringent quality of service (QoS) requirements. In this paper, we investigate the problem of tasks
scheduling and heterogeneous resource allocation for multiple devices in the wireless IoT networks. The IoT
devices that collect a massive amount of data need to make proper offloading decision to transfer the data to
the fog computing nodes (FNs). Moreover, to support a massive number of device connections and transfer
a huge amount of data with low latency and limited resource, we consider the deployment of non-orthogonal
multiple access (NOMA) in IoT networks, which enables multiple IoT devices to simultaneously transmit
data to the same FN at the same time, frequency, and code domain. We jointly optimize the allocation of
resource blocks and transmit power of multiple IoT devices, subject to the respective QoS requirements.
Furthermore, the optimization problem is formulated as a mixed-integer nonlinear programming problem
to minimize the system energy consumption. Since it is an NP-hard problem, we introduce an improved
genetic algorithm (IGA) to solve it. The simulation results show that the proposed scheme achieves good
performance in throughput, delay, outage probability, and energy consumption.

INDEX TERMS Fog computing, Internet of things, non-orthogonal multiple access, resource allocation,
energy consumption.

I. INTRODUCTION
Encouraged by the fast development of the fifth generation
(5G) and beyond mobile communication systems, Internet of
Things (IoT) [1] networks have been researched to enable
future smart systems such as smart grids, smart homes and
smart cities with ubiquitously connected devices. As reported
by Cisco, it is expected that more than 50 Billion devices
will be connected to the Internet by 2020 [2]. In order to
support the popular computation-intensive applications, such
as image/video processing, virtual reality, inter-active games,
etc. Reference [3], [4], the IoT networks need to collect and
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process with lots of data in the limited time. On one hand,
many of the IoT devices have severe constraints in battery
life, processing ability and storage resources, so that they
could not complete these computation tasks by themselves.
On the other hand, the amount of data generated by various
sensors and mobile devices is rapidly increasing and becom-
ing huge, and there are great pressure on communication and
computation in the network under different quality of service
(QoS) requirements. Then, fog computing is proposed as an
attractive solution to extend the cloud computing paradigm
to the local networks [5]. By taking full advantage of the
available resources in the edge nodes, the combination of fog
computing and IoT networks has attracted extensive attention
in both academia and industry.
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In the fog computing, various edge nodes can cooperate
to share computing, caching and communication resources
so as to complete some computation tasks locally without
interacting with the cloud computing center via the fronthaul
links. These fog nodes (FNs) include but are not limited to
the base stations (BSs), Wi-Fi access points (APs), relays
and routers. The computation tasks proposed in the user
terminals can be offloaded to the FNs when necessary. In this
paper, we investigate the optimal heterogenous resource
allocation problem in fog computing-based IoT networks
to fulfill the computation and latency requirements of the
IoT applications, with the target to reduce energy con-
sumption of the local computation in the battery-powered
IoT devices. While fog computing addresses the computa-
tion problem for the IoT devices, the huge amount of data
offloaded from multiple IoT devices to FNs require substan-
tial communication resources to satisfy both the bandwidth
and latency requirements. Then, both computation and com-
munication resources need to be jointly scheduled to improve
the system performance.

In the IoT networks, it is common that there are multiple
IoT devices requiring to access to the same FN. In this paper,
non-orthogonal multiple access (NOMA), which is consid-
ered as the key technique in 5G, is adopted to support low-
latency offloading, and improve the spectrum energy (SE)
and energy efficiency (EE) at the same time [6].The key
idea of NOMA is to exploit the power domain for multiple
access, i.e., multiple transmissions at different power levels
could simultaneously share the same channel in the same
time, frequency and/or code domains [7]. Then, successive
interference cancellation (SIC) is applied at the receiver to
separate and decode the superimposed signals [8]. Therefore,
there are different requirements and processing procedures
for the transmitter and the receiver. In this paper, we consider
the offloading problem from the massive IoT devices to the
FNs over the uplink in the typical IoT networks. In this
case, multiple IoT devices transmit data using different power
levels on the same spectrum resource to the FN via the
collocated BS. Although some neighbor IoT devices may
experience similar fading channel conditions, their transmit
power levels may be controlled by the FN to enable differen-
tiation of these signals in the power domain at the receiver
as required by the NOMA technique [9]. In this manner,
the receiver can apply SIC successfully and decode these
superimposed signals. Therefore, by exploiting the channel
gain differences or allocating different transmit power levels
to enable multiple access in the power domain from multiple
IoT devices, IoT networks employing NOMA on the uplink
could substantially increase their capacities by offloading
data to FNs.

While the introduction of fog computing and NOMA into
wireless IoT networks has the potential to bring substantial
benefits, the performance and optimization of such networks
have not been widely studied, and there are still many open
issues that need to be addressed [10]. Consider multiple
IoT devices to offload computation tasks to the same FN with

different service/application- dependent QoS requirements.
How to properly assign the partitioned tasks from a set of
IoT devices to the given FN, and then allocate the required
computation and communication resources, are important
and challenging problems. Furthermore, with increasing con-
cern of sustainability leading to significant research activities
on green communications and networking, minimizing the
energy consumption of IoT networks with a massive num-
ber of connected devices and supporting diverse applica-
tions is another important research problem. In this context,
the interference levels among the IoT devices sharing the
same NOMA uplink need to be properly controlled to maxi-
mize EE while satisfying QoS requirements. Therefore, it is
important to address the complex and challenging problem
of joint allocation of heterogenous resources, considering
several constraints and many impacting factors, as discussed
above.

In this paper, we tackle the problem of optimization for
heterogenous resources with multiple IoT devices offloading
in fog computing-based IoT networks, with the goal of mini-
mizing the system energy consumption. Various computation
and communication resources are considered jointly within
both FNs and IoT devices under NOMA uplinks. Comparing
within existing research work, this problem still needs further
investigation.

A. RELATED WORKS
Recently, IoTs have gained wide popularity in many domains
such as smart home, health monitoring, environmental and
agricultural applications [11]–[13]. For processing a huge
amount of data generated by IoT devices, various ideas have
been proposed to address many problems about fog comput-
ing in wireless IoT networks. In [14], it proposed a service
placement policy in IoT networks based on graph partitions to
increase the service availability and QoS satisfaction. In [15],
the authors discussed the application partitioning rationale of
wearable devices inmobile cloud and fog computing for com-
putation offloading. In order to solve the user association and
resource allocation problem for broadband IoT applications
in fog computing, a two-side matching game was formulated
based on the determination of QoS requirements priorities
in [16]. Fan and Ansari [17] introduced drone base stations
to mitigate the heavy traffic loads of macro base stations and
designed algorithms for optimal drone placement and user
association in fog IoT networks. The fair offloading among
several FNs was investigated in [18] with consideration on
energy consumption. The authors proposed an algorithm
about power control and virtual machines rental costs in the
fog-aided IoT networks in [19]. While the scenarios with
multiple fog nodes have attracted wide attention, another
typical scenario with only one FN and several IoT devices
also has many interesting problem under investigation.
Liang et al. [20] proposed a joint resource allocation and
coordinated computation offloading algorithm for the fog
radio access network where one fog node is deployed for
serving multiple users. Joilo and Dn [21] developed a game
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theoretical model and proposed a decentralized algorithm
for allocating the computational tasks among several local
devices and one edge cloud. In [22], Du et al. investigated
the computation offloading problem in a mixed fog and cloud
computing system, which is composed of a small-cell based
fog node, a powerful cloud center, and a group of users. How-
ever, these works adopt orthogonal multiple access technique
which may suffer severe spectrum competition and result in
heavier interference and longer delay.

On the other hand, there are increasing research activities
focused on NOMA to improve the radio resource utiliza-
tion in wireless IoT networks. System-level and link-level
simulations in [23] indicated obvious benefits of NOMA
over orthogonal multiple access (OMA) in terms of SE
as well as EE. In [24], an energy-efficient transmission
method has been proposed for NOMA systems. In [9],
Shirvanimoghaddam et al. proposed a random NOMA
strategy for massive IoT, where multiple devices were
allowed to transmit over the same sub-band. In [25],
Shirvanimoghaddam et al. adopted NOMA to support the
communications of massive IoT devices and analyzed the
practical challenges as well as future research directions.
Tran et al. [26] and Vien et al. [27] analyzed the EE of
downlink NOMA for practical heterogeneous cloud radio
access networks and illustrated that the power available in
the cloud, the propagation environment and cell types could
have significant impacts on the EE performance. Considering
NOMA and edge computing jointly, Kiani and Ansari [10]
proposed an edge computing-aware NOMA framework to
reduce users’ uplink energy consumption. However, they
only focused on the optimization of transmission energy
consumption, but neglected the energy consumption of task
execution. Moreover, although they investigated the prob-
lem in multi-user single-cell scenario, they only consid-
ered the single task model for each user offloading to the
eNB equipped with a cloudlet, which is not applicable for
IoT networks.

Although several recent research works have been car-
ried out on fog computing and NOMA, respectively, there
still needs further study that jointly considering fog com-
puting and NOMA for heterogenous resources allocation
in wireless IoT networks. Shao et al. [28] discussed the
IoT device clustering and energy management problem in
NOMA system. They focused on the effective clustering
method based on wireless channel condition of the NOMA
links. As to the resource allocation, only transmit power
was considered for spectrum efficiency and fairness. In [29],
another condition that a IoT device offloads its computa-
tion tasks to multiple FNs by NOMA downlink was inves-
tigated, and the corresponding problem was formulated
under delay and energy constraints. However, as to the
heterogeneous resources allocation in fog computing-based
IoT networks with NOMA to minimizing system energy
consumption, the existing work has not tackled this problem
with thorough consideration. That is the motivation of this
paper.

B. MAIN CONTRIBUTIONS
In this paper, we investigate the heterogenous resources
allocation problem to minimize the system energy con-
sumption in the fog computing-based wireless IoT networks
with NOMA. The major contributions of this paper are sum-
marized as follows.
• We consider a general scenario of fog computing-
based wireless IoT networks with NOMA, which sup-
ports multiple IoT devices to offload computation tasks
simultaneously to the same FN. Heterogenous resources
of computation and communication in various devices
and the FN are jointly considered under respective
QoS requirements. The offloading decision aswell as the
allocation of resource blocks (RBs) and transmit power
are optimized as a complex problem to minimize system
energy consumption.

• The formulated problem is a mixed integer nonlinear
programming (MINLP) problem. In order to achieve
a good balance between performance and complexity,
we introduce an improved genetic algorithm (IGA) to
solve this problem and obtain the suboptimal solution.

• Simulation results are presented to evaluate the perfor-
mance of the proposed scheme. It is shown that com-
pared with existing algorithms, the proposed scheme has
better performance in throughput, delay, outage proba-
bility and energy consumption.

The remainder of our work is organized as follows.
Section II presents the network model, communication model
and computation model. Then we formulate the optimization
problem and provide detailed explanations in Section III,
and solve this MINLP problem by IGA. Simulation results
are presented in Section IV with the discussion about these
results. Finally, in Section V we conclude the work of this
paper and give the future research directions.

II. SYSTEM MODEL
In this section, we introduce the network model of the con-
sidered scenario, as well as the communication model and
computation model for the fog computing-based wireless
IoT networks with NOMA.

A. NETWORK MODEL
We consider a general systemmodel for fog computing-based
wireless IoT networks as shown in Fig. 1. Dedicated FNs are
deployed to provide offloading services for M IoT devices.
In practice, these FNs are usually played by the network edge
nodes such as routers, switches, access points, or BSs. There
are a massive number of devices in IoT networks, includ-
ing wearable devices, smart phones, cameras, sensors, etc.
They may generate a huge amount of data and support many
computation-based applications with respective deployment
constraints. Ma et al. [30] discussed the analysis methods
of huge amount of data for intelligent energy networks and
provided a comprehensive and solid reference in the data pro-
cessing methods. Considering the limited battery life, com-
puting and storage capabilities of these devices, the generated
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FIGURE 1. System model of fog computing-based wireless IoT networks.

data might be processed locally or by FNs. Here we assume
that each FN has its own authority areas. They would manage
the computation offloading of the IoT devices in the area
according to the respective QoS requirements. In this paper,
we consider that there are two computation modes, i.e., to
compute locally in the IoT device, or to offload computation
tasks to an FN. Either modes would be chosen to finish the
task.

It is assumed that the total frequency band is divided
into K RBs, and multiple IoT devices can occupy the same
spectrum resource to transfer data to the same FN by NOMA.
In this paper, we assume that the fading channel follows a
Rayleigh distribution with mean one, which implies that the
channel gain is exponentially distributed with mean one [31].
As pointed in [32], we assume µ captures the effects of path
loss and fading and model µ as zero-mean, independent,
circularly symmetric complex Gaussian random variables
with variance one, so that µ is Rayleigh distributed and
µ2 is exponentially distributed with parameter one. In addi-
tion, we assume that perfect channel state information (CSI)
is available, enabling the receiver to perform the interference
cancellation perfectly. Therefore, SIC could be applied suc-
cessfully and multiple signals could be decoded and received
as expected.

Note that in practice, interference cancellation may not
be realized perfectly as it is impacted by channel estimation
errors. This may result in incorrect user ordering for decod-
ing, which in turn affects the SIC decoding accuracy. Then the
average data rate of NOMA system degrades due to the fact
that imperfect CSI introduces not only extra interference on
the desired signal but also an incorrect decoding order [33].
To deal with this problem caused by imperfect CSI,
Gao et al. [34] investigate the dynamic-ordered decoding
scheme with SIC for uplink NOMA system to improve the

performance. Moreover, channel estimation techniques have
been well researched for many years. Some effective designs
have been proposed for striking a good tradeoff between
complexity and performance. From [35], [36], interference
cancellation can perform well with the instantaneous CSI
and different channel gains between the transmitters and
receivers. In this paper, we focus on the joint optimization
of computation and communication resources, and assume
perfect interference cancellation in the receiver. The condi-
tion with imperfect interference cancellation would be inves-
tigated in our future work.

The complexity of SIC at the receiver is directly propor-
tional to the number of accessing devices. Therefore, most
existing research consider two devices as example. How-
ever, there are also some researchers discussing the decoding
issues of SIC in multi-user NOMA systems [9], [36], and
then pointed out the feasibility of adopting NOMA in IoT
networks with massive devices. We assume that there are
up to L IoT devices (L < M ) on the same RB for tasks
offloading. We also consider that the wireless channel does
not vary during the transmission of a packet and perfect
instantaneous CSI is available.

We denote m as the index for the m-th IoT device where
m ∈ {1, 2, · · · ,M}, n as the index for the n-th task
where n ∈ {1, 2, · · · ,N } and k as the index for the k-th RB
where k ∈ {1, 2, · · · ,K }.

B. COMMUNICATION MODEL
In this subsection, we present the communication model in
the wireless IoT networks with NOMA. In an uplink NOMA
system, a set of IoT devices would send their data to the FN
on the same RB at the same time by different power levels.
Suppose that the m-th IoT device offloads computation tasks
to the FN for processing by transmitting the signal xkm with
transmission power pkm on the k-th RB to the FN. The received
signals ykm from the m-th IoT device on the k-th RB can be
written as

ykm =
√
pkmh

k
mx

k
m +

∑
i 6=m,i∈M

√
pki h

k
i x

k
i + z

k
m, (1)

where the first term is the desired signal, in which hkm rep-
resents the channel gain for the m-th IoT device connecting
to the FN on the k-th RB; the second term represents the
interference from other IoT devices on the same RB; the last
term zkm is additive white gaussian noise (AWGN) with zero
mean and variance δ2.

In the fog computing-based IoT networks with NOMA,
multiple IoT devices transmit their offloading data to the
same FN on the same RB. These signals may cause interfer-
ence to each other, which could be resolved by performing
SIC in the receiver for separating and decoding the super-
imposed signals. This requires the receiver to control the
transmit power of these IoT devices to enable differentiation
of these signals in the power domain. Therefore, although
some neighbor IoT devices may experience similar channel
fading, their received signals could also be distinguished by
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the receiver successfully [9], [37]. In order to efficiently apply
SIC at the FN, we introduce a specific power constraint in the
following problem formulation.

By applying SIC technique, the receiver would first decode
the strongest received signal by treating others as interfer-
ence, and then remove it before decoding the second strongest
signal. Consequently, the IoT device whose signal strength
is the highest experiences interference from all the other
IoT devices sharing the same uplink. Then the similar proce-
dure is followed by the second strongest signal, which has in
fact become the strongest signal in the second stage.When all
but one of the signals is detected, the weakest signal from the
IoT device is decodedwithout suffering from any interference
anymore. All the IoT devices connected to the same FB on the
k-th RB are sorted into a descending order according to the
channel gains, and can be expressed as

|hk1|
2
≥ |hk2|

2
≥ . . . ≥ |hkM |

2
∀k ∈ K . (2)

According to these orders of RBs, the FN can success-
fully decode the superposed signals. Therefore, in the FN,
the received signal-to-interference-plus-noise ratio (SINR) of
the m-th IoT device on the k-th RB is given by

SINRkm(p) =
pkm|h

k
m|

2

δ2 +
M∑

i=m+1
pki |h

k
i |
2

. (3)

The corresponding data rate of the m-th IoT device that
transmits to the FN on the k-th RB can be denoted as

Rkm(p) = log2(1+ SINRkm). (4)

As a result, the achievable data rate of the m-th IoT device
is

Rm =
∑
k∈K

bkmRk
m, (5)

where bkm denotes the result of RBs allocation for IoT devices,
with bkm = 1 indicating the k-th RB is allocated to the m-th
IoT device for offloading; otherwise, bkm = 0.

C. COMPUTATION MODEL
We consider that them-th IoT device has a computation work-
load that is partitioned into a series of tasks. These tasks could
be completed either locally on the device or remotely on the
FN by offloading via wireless links. In general, the computing
resource of the FN can be modeled as a multi-dimensional
vector, representing the capabilities of the central processing
units (CPUs), memory and network interfaces. For the ease of
analysis, we only consider scalar computing capability in this
paper. Then, we denote Cm as the total computing capability
in terms of the number of CPU cycles per second of the m-th
IoT device, and denote Ce as the total computing capability
of the FN.

The computation workload needs to be partitioned into a
sequence of tasks for scheduling. These tasks are denoted
as Fmn = (Amn,Dmn),m ∈ {1, 2, . . .M}, n ∈ {1, 2, . . .N },

in which Amn presents the size of computation input data
and Dmn presents the total number of CPU cycles required
to accomplish the n-th task of the m-th device. We assume
that the IoT devices have two choices to perform computation
tasks, namely local computing and the FN offloaded com-
puting. For a given partitioned task Fmn, amn represents that
the FN chooses the m-th IoT device to provide the offloading
service. Note that the computational tasks offloaded by differ-
ent devices are dynamic since each device randomly sends its
data through the selected RB. Then the number of coded sym-
bols that need to be transmitted over each RB is random cor-
respondingly. To deal with this issue, Raptor codes [38], [39],
which generates as many coded symbols as required by
the FN, could be used in NOMA-based IoT networks [9].
Moreover, the FNs are deployed practically in a certain
region, where includes massive sensors or other devices. Usu-
ally, these sensors and devices are the same or similar types
with close distance, so the amount and types of collected
data for computing offloading in the same period do not
vary too much. It is convenient to design the transmission
of NOMA technique with fog computing in IoT networks.
Next, we evaluate the computation cost in terms of both
energy consumption and processing time for both local and
FN computing modes.

1) LOCAL COMPUTING
For the local computing approach, the IoT devices pro-
cess their computation tasks locally by individual computing
resources. The computation execution time of the n-th task
of the m-th IoT device by local computing can be defined as
the ratio of the total required number of CPU cycles to the
assigned local computing resources, which is given by

T lmn =
Dmn
Cmn

, ∀m ∈ M , n ∈ N . (6)

Then, according to the measurements of energy consump-
tion [40], the energy for processing task n of the m-th device
locally can be given by

P l
mn = ξDmnC

2
mn, ∀m ∈ M , n ∈ N , (7)

where ξ is the coefficient presenting the consumed energy per
CPU cycle. It depends on the average switched capacitance
and the average activity factor [40].

2) FN COMPUTING
For the FN computing approach, the IoT device offloads
its tasks to the authorized FN through wireless links. Then,
the FN with sufficient computation and storage capabilities
would process these tasks for the IoT devices, and send the
computing results as required. During the procedure, it would
incur an extra overhead in terms of time and energy for
transmitting the relative data between the IoT devices and the
FN through wireless links. Note that the amount of data in
uplink transmissions from IoT devices to the FNs is usually
very huge, and in this paper we focus on the uplink offload-
ing communications here. According to the communication
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model, we can compute the transmission time and energy
consumption of IoT devices for sending the computation
input data, respectively. The computation capability for exe-
cuting task n in terms of the number of CPU cycles per second
of the FN is denoted as C0n. Suppose that them-th IoT device
offloads its computation task Fmn to the FN, the transmission
time of offloading the n-th task of the m-th IoT device is
defined as the ratio of the sizes of the offloaded tasks to the
transmission data rate, which is denoted by

T cmn,t =
Amn
Rm

, ∀m ∈ M , n ∈ N . (8)

Similarly, the computation execution time of the n-th task
of the m-th IoT device in the FN is given by

T cmn,e =
Dmn
C0n

, ∀m ∈ M , n ∈ N . (9)

On the other hand, the energy consumption for offloading
task n of IoT device m is given by

Pc
mn =

K∑
k=1

Tmn,tpkm + ηDmnC
2
0n, ∀m ∈ M , n ∈ N , (10)

where η is the coefficient for the consumed energy per CPU
cycle of the FN. It depends on the average switched capaci-
tance and the average activity factor. The first term represents
the transmission energy consumption and the second term
represents the computing energy consumption of the FN.

III. OPTIMIZING HETEROGENEOUS RESOURCE
ALLOCATION PROBLEM
Based on the above system models, we investigate the prob-
lem of optimization of computation and communication
resources. System energy consumption is adopted as the opti-
mization goal, and the QoS requirements of the IoT devices
are also considered in the constraints. Since the proposed
problem is an MINLP problem, IGA algorithm is introduced
to solve it with low complexity.

A. PROBLEM FORMULATION
From the above analysis, we could see that to support
computation-intensive applications in wireless IoT networks,
we need to consider several problems and constraints.

1) WHERE TO PROCESS THE COMPUTATION TASK
Here we give two methods as local computing and
FN computing. The first one is based on the local resources
of the IoT devices and has no transmission delay or extra
costs. However, due to the limited capabilities of the devices,
this method might put a heavy burden on a device, which
might even be unable to finish the task. The latter one could
utilize the available computing and storage capabilities of
the FN, but with extra costs on communication resources
to transmit offloading data. Also, when there are massive
devices, the FNs have to control the access and manage the
available resources.

2) HOW TO GET THE COMPUTATION RESULT EFFICIENTLY
For every computing task, it should be finished before the
time deadline. In some conditions, the computation result
needs to be returned to the IoT devices, such as inter-active
games in smart phones. In other conditions, the computation
result would be sent forward to the dedicated servers for
further processing, such as environment sensing for weather
forecast. Here we focus on the offloading problem, and it is
obvious that our work could be applied to the both conditions
aforementioned without loss of generality. For the offloading
cases, it requires that firstly, the device could access to the
FN by available wireless links for offloading; secondly, the
FN has sufficient computation capability at present to process
the tasks in time.

3) THE NECESSARY RESOURCES DURING THE PROCEDURE
It is obvious that both computation resources in the
IoT devices and the FN, and communication resources of
uplink should be considered. The limited wireless transmis-
sion resource could support a larger number of devices simul-
taneously by adopting NOMA. Note that because the FN
usually has a maximum access users limit, there is still an
accessing problem for the networks.

4) THE ENERGY CONSUMPTION OF THE SYSTEM
The computation procedure and wireless offloading trans-
mission would require sufficient power to support. Since the
computation energy consumption has direct relation with the
task itself, we pay more attention on the wireless offload-
ing. As discussed before, the uplink NOMA-based access
may improve the system energy efficiency. The transmission
power allocation is very important for the entire network
energy consumption.

To enable efficient tasks offloading in fog computing-
based wireless IoT networks with NOMA, we formulate the
optimization problem as a joint computation and communica-
tion resources allocation problem to reduce the system energy
consumption under the QoS requirements of the IoT devices.
The computation resources are distributed among the FN
and multiple IoT devices, which have respective computa-
tion capabilities. The communication resources include avail-
able RBs and transmit power for the multiple IoT devices.
Therefore, it is a complicated problem about heterogeneous
resources allocation.

min
amn,bkm,pkm

M∑
m=1

N∑
n=1

{(1− amn)P l
mn +

K∑
k=1

amnbkmPc
mn},

s.t. C1 : amn ∈ {0, 1}, bkm ∈ {0, 1} ∀m, n, k

C2 :
M∑
m=0

amn = 1 ∀n

C3 :
M∑
m=0

bkm ≤ L ∀k
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C4 : pkm −
M∑

i=m+1

pki > pthr ∀m, k

C5 :
M∑
m=1

pm ≤ Pmax

C6 : amn(T cmn,t + T
c
mn,e) ≤ Tmn,req ∀m, n

C7 : (1− amn)T lmn ≤ Tmn,req ∀m, n. (11)

Hence, based on the discussion above, we have the problem
formulated as follows in (11). Here constraint C1 includes
two Boolean variables. amn indicates the result of joint com-
puting offloading decision and task assignments and bkm indi-
cates the result of RBs allocation for IoT devices.We consider
each device has a set of independent tasks, which denoted as
n ∈ 1, · · · ,N . The tasks of different users are independent
and processed individually. For an arbitrary device m, it has
a set of tasks N and each of them n ∈ 1, · · · ,N is processed
by two ways, i.e., local computing at its device m or edge
computing at the FN. Then, we derive the constraint C2 that
means that each task in the system can be either assigned to
the FN for offloading or executed on IoT device locally. Note
that each device can execute more than one tasks. Constraint
C3 indicates each RB in the system can be assigned up to L
IoT devices. Furthermore, in order to support different IoT
devices transmission in the same RBs by NOMA, there is
additional restriction. Different from the OMA techniques,
in the discussed NOMA-based system, the fog node applies
SIC technique to decode and subtract useful signals. SIC is
achieved in the receiver by decoding the strongest signal first,
subtracting it from the combined signal, and then decoding
the second strongest signal and repeating the procedure until
all the signals successfully decoded. Thus, it is very important
to guarantee those received signals have different strength
for successfully decoding by proper transmit power control.
This is reflected in Constraint C4. pthr is the minimum power
difference required to distinguish between the signal to be
decoded and the remaining non-decoded message signals.
Constraint C5 requires that the overall power consumption
should be less than the maximum of available power Pmax .
Constraints C6 and C7 limit the maximum of the tolerated
delay Tmn,req for offloading the tasks and executing locally,
respectively.

B. LOW-COMPLEXITY SUB-OPTIMAL SOLUTION
The problem (11) is an MINLP problem, for which it is
extremely difficult to obtain a globally optimal solution with
low complexity. For ease of practical implementation, we pro-
pose a close-to-optimal solution method with lower complex-
ity by leveraging IGA.

Genetic algorithms (GAs) are heuristic algorithms
that inspired by the natural selection and evolutionary
genetics [41]. With a good balance between the complexity
and the effectiveness, GAs provide close-to-optimal solution
to NP-hard problem. The chromosome (also known as the
individual) represents a possible solution of the objective

FIGURE 2. The structure of the chromosome.

formula (11), and it can be designed with binary, real or inte-
ger representation. Specifically, in order to meet several con-
straints in formula (11), we introduce the penalty function and
update the process of IGA, such as crossover and mutation.
Although we cannot get the optimal solution, we still achieve
the sub-optimal solution which is very close to the optimal
one with the limited iteration, as shown in simulation results
of Fig. 6.

In this paper, we adopt the real representation of the chro-
mosomes to reduce the complexity of encoding and decoding
chromosomes. The length of the chromosome is related to the
number of tasks, IoT devices and RBs asM×N+M×K . The
structure of the chromosome includes two parts: offloading
decision and resource allocation, as shown in Fig. 2. For
the first part, each gene of the chromosome represents the
decision of the IoT devices for accessing to the FN and
offloading task, which is denoted as OASm(n). When the FN
chooses the m-th IoT device for processing the n-th task,
OASm(n) = 1; otherwise, OASm(n) = 0. For the second
part, each gene of the chromosome represents the resource
allocation results, including the RBs assignment and power
allocation, which are denoted as RAm(k). To deal with the
combinatorial constraint of resource allocation, we relax bkm
to be real-valued variables. Then we introduce a variable
ckm = bkm × pkm to interpret the RBs assignment and power
allocation. Obviously, the IoT device will not allocate any
power over an RB if the RB is not occupied by the IoT device.
Then, pkm =

ckm
bkm
, except for bkm = 0.

In general, IGA has four operations as selection, crossover,
mutation and fitness evaluation, as shown in Fig. 3. Next,
we give the process of solving the proposed problem by
using IGA.

1) INITIALIZATION
A union of chromosomes is called a population, and the
initial population should provide possible solutions that are
diverse enough to enable the optimal solution to be found
eventually. Here, we choose chromosomes randomly as the
first generation.

The initial population size is S. And each chromosome
contains two parts: OAS part, and RA part. Each of them
is comprised of M ∗ N genes sequence and M ∗ K genes
sequence, respectively.

2) EVALUATION
After initializations, the fitness values are derived for
each chromosome of the current population based on the
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FIGURE 3. Flow diagram of IGA.

formula (11). Its purpose is to select better chromosomes to
reproduce the next generation as parents. Judging whether
a chromosome is fine or not is based on its own fitness.
The lower the fitness value is, the better the chromosome is.
However, in our case, not all the possible chromosomes are
feasible solutions, due to the requirements of the constraints
of formula (11). To satisfy these constraints, we adopt the
idea of penalty function solving constrained optimization
problem from [42]. Then a penalty function penalty(m, g)
is introduced to measure the constraints violation and refer
to inequality constraints (the equality constraints are trans-
formed into inequality constraints). The basic idea is that
the feasible solutions have superiority over unfeasible ones,
and the infeasible solutions are penalized to provide a search
direction towards the feasible region. For example, to fulfill
constraint C4, penalty(m, g) should include the item {pkm −
M∑

i=m+1
pki − pthr }. The fitness function of chromosome g fol-

lows the rules defined in [43] and is shown as

Fit(g) =


Etot g is feasible

Etot + λ
M∑
m=1

penalty(m, g) g is not feasible

(12)

where Etot =
M∑
m=1

N∑
n=1
{(1− amn)P l

mn +
K∑
k=1

amnbkmPc
mn} is the

objective function in problem (11), λ is the penalty factor
representing the degree of penalty.

By making individuals with better fitness reproduce off-
springs, GA could search in both feasible and infeasible
regions, and then obtain global sub-optimal solution more
easily.

In order to preserve good chromosomes to yield better off-
springs, we employ the roulette wheel method which selects
two individuals from the survival chromosomes to produce

FIGURE 4. The process of crossover operation.

two new offsprings. The selection probability ps is defined as

ps = Fs

/
S∑
s=1

Fs , (13)

where Fs denotes the fitness value of the s-th population.

3) CROSSOVER
To ensure the IGA process to converge more efficiently,
we adopt the gene sequence level crossover method, which
means the smallest unit of crossover in each step is a gene
sequence like OASm or RAm [44]. That is to say, all of
the genes that belong to a certain gene sequence, like all
the OASm(n), n ∈ {1, . . . ,N } that belong to OASm and
all the RAm(k), k ∈ {1, . . . ,K } that belong to RAm, will
crossover with the other gene sequence as a whole package,
respectively. Here, we use a sequence αm,m ∈ {1, . . . ,M}
which follows Bernoulli distribution to determinewhether the
crossover happens on OASm and RAm. And this process can
be expressed as

OASg+1a = (1− αm) ∗ OASga + αm ∗ OAS
g
b

RAg+1a = αm ∗ RAga + (1− αm) ∗ RA
g
b. (14)

For example, when α2 = 1, the crossover of parents would
happen to OAS2 and RA2. All the OAS2(n), n ∈ {1, . . . ,N }
and RA2(k), k ∈ {1, . . . ,K } would exchange between
parent A and parent B, as shown in Fig. 4. While if α2 = 0,
the crossover of parents will not happen. Please note that all
the OASm and RAn are exchanged according to formula (14)
in the crossover stage.

4) MUTATION
As each chromosome contains two parts as OASm and RAm,
the mutation is divided into two parts: the integer mutation
for the offloading decision and the uniform mutation for
the resource allocation. We randomly generate a 2-element
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FIGURE 5. The process of mutation.

mutation mask sequence βm,m ∈ {1, . . . ,M} comprising
of 1 and 0. If the element of the mutation mask is 1, then the
gene will have mutation. While if the element of the mutation
mask is 0, the gene will not have mutation.

For the OAS part, if the mutation happens, the gene will be
exchanged by the opposed elements.

For the RA part, if the mutation happens, the gene will be
replaced in the offspring and can be expressed as:

RAg+1(m, k)=RAga(m, k)+β(m)∗(pmax(m)−ptot (m)), (15)

where pmax(m),ptot (m) are the maximum power of the
m-th IoT device and the total transmit power of the m-th
IoT device, respectively.

For example, if β2 = 1, the mutation of parents would
happen to OAS2 and RA2. All the OAS2(j) are exchanged by
the opposed elements and RA2(j) is exchanged based on (15),
as shown in Fig. 5. Please note that all theOASm and RAn will
exchange according to formula (15) in the mutation stage.

5) ITERATION
If the fitness values from (11) of all chromosomes are smaller
than the maximum one in the previous iteration, then we will
replace the chromosomewith the smallest fitness value by the
best one in the previous iteration. The goal of this step is to
ensure that the fitness values form a non-decreasing sequence
as required for convergence of IGA. The iteration is repeated
until the maximum number of generation is reached. And the
chromosome with the maximum fitness value is then chosen
as our solution.

IGA repeats the aforementioned steps 1 to 5 until the num-
ber of the generation exceeds the limitation, to get the desired
solution. The detailed steps are enumerated in Algorithm 1.

C. ALGORITHM COMPLEXITY
Here we analyze the complexity of the proposed scheme.
The complexity of IGA is mainly decided by its encoding,
selection, fitness calculation, crossover and mutation oper-
ations with IGA’s generation number and population size.
In the proposed scheme, the computation complexity is linear
to the number of generation, population, tasks, IoT devices
and RBs and is denoted as O(GSM (N + K )). The FN is
responsible for the user scheduling and resource allocation.

Algorithm 1 Solving the Proposed Optimization
Problem Based on IGA
1: Initialization:

a) The FN collects channel state information and the task
requirements of all the IoT devices in its authority;
b) Initialize the maximum number of iterations 0max and
set iteration number τ = 0;
c) Initialize the chromosomes[1:N + K] by selecting
random variableN+K RA solutions and the fitness value
bF = 0;
d) Initialize the crossover probability pc and the mutate
probability pm.

2: while τ ≤ 0max do
3: τ = τ + 1;
4: fitness← calculate fitness values of each chromosome

in chromosomes;
5: selectionP ← calculate the selection probability of

each chromosome according to fitness;
6: (child1, child2) ← randomly choose two chromo-

somes according to selectionP;
7: if rand() < pc then
8: (s0Child1, s0Child2) ← the index of all the s0 in

child1 and child2
9: (newChild1, newChild2) ← remove all the s0 in

child1 and child2;
10: (child1, child2) ← insert the s0 into child1 and

child2 according to (s0Child1, s0Child2);
11: end if
12: if rand() < pm then
13: if rand() < 0.5 then
14: (child1, child2) ← randomly insert a s0 into

child1 and child2;
15: else
16: (child1, child2)← randomly remove a s0 inside

child1 and child2;
17: end if
18: end if
19: fitness← calculate fitness values of each chromosome

in chromosomes;
20: chromosomes ← replace two chromosomes with the

smallest fitness values by child1 and child2;
21: if max(fitness) ≥ bF then
22: RA ← the chromosome with the maximum fitness

value;
23: end if
24: end while
25: Output the resource allocation results RA.

For a given FN, the number of served IoT devices is limited
with consideration on the complexity of SIC process. Then,
for a limited number of served IoT devices, the FN can
implement the proposedmethod efficiently to control the user
accessing and resource allocation. Reference [45] points out
that a good convergence performance could be achieved by
setting proper parameters. Finally, we set a proper population
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TABLE 1. The simulation parameters.

size in the initialization, which affects the convergence speed:
the greater population size is, the faster population converges.

For comparison, we analyze the complexity of the opti-
mal exhaustive search algorithm. Its complexity could be
considered from two parts, i.e., the task scheduling and the
resource allocation. For the task scheduling part, there areM
IoT devices and each of them has N tasks to process, then
the FN searches all tasks of candidate IoT devices. Since the
number of offloaded tasks sets is 2N − 1 and there are M
IoT devices, the complexity can be expressed by O(N · 2M ).
For the resource allocation part, the optimal scheme searches
all required IoT devices over each RB, the complexity can
be expressed by O(KM ). 3 = bPmax

$
c is the quantity of the

scale of transmission power after discretization, and the value
of 3 is related to the discretization interval $ . ϒ = b 1

σ
c

is the quantity of the scale of time slot after discretization,
and the value of 3 is related to the discretization interval
σ . Then the complexity can be expressed by O(K (M+3+ϒ)).
Thus, the total complexity is O(N · 2M + K (M+3+ϒ)). From
the discussion we could see that the proposed IGA-based
algorithm has much lower complexity and is better suited to
solving the formulated problem in practical deployments.

IV. SIMULATION RESULTS AND DISCUSSIONS
In this section, we evaluate the performance of the proposed
optimization scheme of heterogeneous resource allocation in
fog computing-based wireless IoT networks with NOMA via
Monte Carlo simulations. There is a FN with covered radius
of 100 meters. Multiple IoT devices are deployed randomly
in this area. The important simulations parameters are shown
in Table 1.

We choose three computation schemes for comparisons:
the local computation scheme that all the tasks are processed
locally at the IoT device, labeled as ‘‘all at the local’’; the
fully computation offloading scheme that all the tasks are
offloaded to the FN in wireless IoT networks, labeled as ‘‘all
offloading’’. Then, to evaluate the performance of NOMA,
the traditional OMA scheme is considered as the baseline
where the multiple IoT devices cannot transmit signals to
the same FN on the same RB, labeled as ‘‘OMA scheme’’.

FIGURE 6. Energy consumption versus the iterations.

For fairness in the comparisons, every scheme has the similar
system configurations as Table 1.

A. CONVERGENCE PERFORMANCE
In this subsection, we firstly investigate the convergence
of the proposed IGA solution. Fig. 6 illustrates the energy
consumption of the proposed IGA versus the iterations for
different populations. For formula (11) which is a NP-hard
problem, the exhaustive search (ES) algorithm could get
the optimal solution but with high complexity. Meanwhile,
the proposed IGA-based solution has sub-optimal solution
with low complexity. Therefore, we select ES scheme as
a benchmark for comparison. It can be seen that the pro-
posed algorithm converges fast. With the increasing num-
ber of iterations, the proposed algorithm approaches the
ES scheme quickly. The gap between the proposed algorithm
and ES scheme gets more narrow. In addition, the result
shows that the larger the population is, the fewer iterations
are needed to converge. And we can find that when the
population is larger than 100, only 40 iterations are required.
Therefore, in the rest of the simulations, we set the generation
as 40 and the population as 100 to ensure the convergence
of the proposed scheme. On the other hand, we discuss the
impact of number of devices, that of tasks and that of RBs
on the convergence performance in Fig.7. The population is
set to 100. We could see from the curves that, when RBs
and tasks are the same, more devices indicates higher energy
consumption for the convergence. Similarly, when devices
and RBs are the same, the necessary energy for convergence
is increased along with the increasing of the tasks. While
the devices and tasks are the same, more RBs means more
transmission resources for offloading, which results in better
convergence performance.

B. THE PERFORMANCE OF NOMA
In this subsection, we evaluate the effectiveness of the pro-
posed scheme with NOMA. For comparison, we consider a
typical OMA scheme as the benchmark. Figs. 8 and 9 com-
pare the system throughput with different number of RBs and
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FIGURE 7. Convergence performance with devices/tasks/RBs.

FIGURE 8. System rate versus the number of RBs.

different maximum transmit power, respectively. In Fig. 8,
it shows that in all the cases the system rate increases with the
number of RBs. The proposed scheme has a higher through-
put than the OMA scheme, and this superiority is more obvi-
ous when the number of RBs is further increased. In general,
the increasing trends are due to the multi-connectivity gain,
and the proposed scheme provides more significant diversity
gain by supporting multiple IoT devices on the same RB.
With the increase of maximum transmit power, the system
throughput increases as well, as shown in Fig. 9. The system
rate in all the cases increases slower when the transmit power
is getting higher because of the increased interference among
multiple IoT devices.

Figs. 10 and 11 compare the outage probability with dif-
ferent SNR and numbers of RBs, respectively. Outage prob-
ability is an important metric to characterize the systems.
We consider the outage probability in uplink systems based
on the sum rate [46]. In Fig. 10, it could be observed that
the outage probability of all the cases decreases significantly
with the increment of SNR. With the increasing number
of RBs, it is obvious that the outage probability for all the
schemes decrease gradually in Fig. 11. Increasing the number

FIGURE 9. System rate versus the maximum of transmit power.

FIGURE 10. Outage probability versus SNR.

of RBs can increase the received data rate through scheduling
the devices and allocating resources properly. Furthermore,
NOMA scheme exploits the channel resources more effi-
ciently than OMA, and hence is more beneficial at higher
data rate. In addition, the outage probability based on the
sum rate for uplink NOMA scheme has a higher diversity
gain compared with OMA scheme. Then, for the outage
probability based on the sum rate, NOMA can achieve better
outage performance than OMA.

C. ENERGY CONSUMPTION PERFORMANCE
In this subsection, we focus on the energy consumption per-
formance of the proposed scheme. Figs. 12, 13 and 14 com-
pare the energy consumption with different number of tasks,
different computation capacity of the FN, and different num-
ber of RBs, respectively. These figures demonstrate that the
proposed scheme in fog computing-based wireless IoT net-
works with NOMA outperforms other compared schemes.

Fig. 12 illustrates the energy consumption versus the total
number of tasks.We can observe that the energy consumption
increases with the increment of tasks. The energy consump-
tion of the scheme that executes all the tasks locally is the
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FIGURE 11. Outage probability versus the number of RBs.

FIGURE 12. Energy consumption versus the number of tasks.

highest compared with the other schemes. The reason is that
the FN has a much higher computation energy efficiency
than that of the IoT devices. In addition, when the radio
resources are sufficient for offloading, the energy consump-
tion for transmission can be reduced greatly. Thus, other
three compared schemes, such as all offloading, the proposed
scheme and the similar schemewith OMA, can reduce energy
consumption by utilizing the powerful computation and stor-
age resource of the FN. Furthermore, compared with OMA
scheme, the proposed scheme with NOMA achieves better
performance. That is because the transmission data rate with
NOMA ismuch higher than the data rate of the OMA scheme.
Then, the transmission energy cost is reduced considerably.

Fig. 13 illustrates the energy consumption versus the com-
putation capacity of the FN. With the increasing computation
capacity of the FN, the energy consumptions of offloading
schemes are decreased greatly. The local computation scheme
keeps a constant value since the IoT devices process all the
computation tasks locally. When the computation capacity of
the FN is limited, the energy consumption of the all offloading
computation scheme is higher. That is because the lower com-
putation capacity results in more serious contention and more
waiting time for processing. Then, the energy consumption is

FIGURE 13. Energy consumption versus the computation capacity of
the FN.

FIGURE 14. Energy consumption versus the number of RBs.

much higher than other schemes. Furthermore, considering
the computation on the IoT devices and on the FN jointly,
the proposed scheme has the lowest energy consumption by
assigning the tasks to the IoT devices and the FN dynamically
according to the available resources.

Fig. 14 shows the energy consumption versus the total
number of RBs. Except for the local computation scheme,
the energy consumption is gradually decreased with the
increased number of RBs. When the number of RBs is small,
the proposed scheme with NOMA and the offloading with
OMA scheme prefer to compute the tasks on the IoT devices
rather than offload to the FN, and then process the tasks under
lower energy cost. Furthermore, as the number of RBs is
increased gradually, the proposed scheme assigns the tasks to
the FN by applying NOMA and achieves the lowest energy
consumption.

D. AVERAGE DELAY PERFORMANCE
In this subsection, we focus on the average delay of the

proposed scheme. The average delay for the computation
tasks plays an important role in meeting the requirement of
IoT applications as well as improving resource utilization.
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FIGURE 15. Average delay versus the number of tasks.

FIGURE 16. Average delay versus the computation capacity of the FN.

Fig. 15, 16 and 17 compare the average delay performance
with the different number of tasks, the different computation
capacity of the FN and the different number of RBs, respec-
tively. These figures demonstrate that the proposed scheme
has better performance than the compared schemes.

Fig. 15 illustrates the average delay versus the total number
of tasks. It can be observed that the average delay increases
along with the number of tasks. It is noted that the scheme
that executes all the tasks locally has the longest average
delay. The reason is that the computation capability of the IoT
devices is often almost one order of magnitude smaller than
that of the FN. When a large number of tasks are involved,
the IoT devices are not able to process these tasks in a short
time. It results in serious delay and a poor performance.
Furthermore, by utilizing the NOMA technique, the proposed
scheme achieves a lower delay compared with that of the
OMA scheme. The NOMA technique enables multiple IoT
devices to transmit the data to the same FN on the same RB,
therefore, it can obtain significant capacity gains of the access
links compared with OMA. Thus, the proposed scheme has
the lowest average delay.

Fig. 16 shows the average delay versus the computation
capacity of the FN. Since all the tasks are computed at the

FIGURE 17. Average delay versus the number of RBs.

IoT devices locally, the average delay of the local compu-
tation scheme is not affected by the computation capacity
of the FN. It is noted that with the increasing computation
capacity of the FN, the average delay of the OMA scheme
is first decreased and then becomes almost constant. Since
in the OMA scheme each RB can be used by only one IoT
device, not all the IoT devices could access to the FN for
offloading due to the limited spectrum resources. Obviously,
the average delay of the fully offloading scheme is higher
when the computation capacity of the FN is limited. The
reason is that the transmission delay for offloading takes
much longer without sufficient radio resources.

Fig. 17 illustrates the total average delay versus the total
number of RBs. All the curves of the offloading schemes
that include the proposed scheme, the offloading with OMA
scheme and the fully offloading scheme, are decreasing sig-
nificantly along with the increasing number of RBs. That
is because the transmission time for offloading is reduced
greatly when the available spectrum resources are increased.
Furthermore, considering the tasks scheduling jointly at the
IoT devices and the FN, the proposed scheme prefers to com-
pute the tasks locally when the available spectrum resource is
inadequate. Then, the proposed scheme has a lower average
delay compared to the fully offloading scheme. Finally, com-
pared with OMA scheme, the proposed scheme could achieve
better capacity gain by transmitting data to the FN for the
multiple IoT devices and reducing the transmission time.

V. CONCLUSION AND FUTURE WORK
In this paper, we have focused on the optimization of
computation and communication resource allocation in
fog computing-based wireless IoT networks with NOMA.
We have considered a general scenario with massive IoT
devices, and modeled the cost and energy consumption for
both local computing and offloading computing tasks to FN.
We have found that the system energy consumption and the
average delay could be impacted by the different computing
modes, and the proposed scheme that could make an opti-
mal decision for choosing the proper computing mode could
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achieve a good performance. Moreover, in order to support
multiple IoT devices in the uplink for offloading, we have
analyzed the accessing and resource allocation problem in
wireless IoT networks with NOMA uplinks. Constraints for
interference, delay and other practical deployments have been
discussed and applied. The formulated optimization prob-
lem is an MINLP problem, and then IGA is introduced to
solve it with low-complexity. We have also observed from
the simulation results that under similar offloading strategy,
NOMA technique could bring better performance than OMA
technique in system throughput and outage probability. The
work in this paper is the first to give a joint modeling and
optimization of fog computing-based wireless IoT networks
with NOMA, and leads the way for further developments in
the area. For future work, we will consider the efficient com-
putation offloading strategy with cooperation among mul-
tiple FNs. Moreover, we will investigate the computation
offloading problemwithNOMAunder imperfect interference
cancellation, which is important for the implementation in
the practical condition. The multiple optimization objects is
another important issue for improving the overall network
performance, which is also considered as another research
direction of the future work.
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