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ABSTRACT The conventional image denoising methods based on the convolutional neural network (CNN)
focus on the non-blind training, and hence many networks are required to cope with various noise levels at
the test. Although there are blind training methods that deal with multiple noise levels with a single network,
their performance gain is generally lower than the non-blind ones, especially at low noise levels. In this
paper, we propose a new denoising scheme that controls the feature maps of a single denoising network
according to the noise level at the test phase, without changing the network parameters. This is achieved by
employing a gating scheme where the feature maps of the denoising network are multiplied with appropriate
weights from a gate-weight generating network which is trained along with the denoising network. We train
the overall network on a wide range of noise level such that the proposed method can be used for both blind
and non-blind cases. The experiments show that the proposed system yields better denoising performance
than the other CNN-based methods, especially for the untrained noise levels. Finally, it is shown that the
proposed system can manage spatially variant unknown noises and real noises without changing the whole
CNN parameters.

INDEX TERMS Denoising, adaptive denoiser, flexible denoiser, convolutional neural network (CNN), noise

level estimation, gate-weight generating network.

I. INTRODUCTION
With the development of deep CNN for image classification
problems [1]-[3], there have also been many researches to
apply the CNN to the image restoration problems [4]-[12].
Especially for image denoising, there have been significant
improvements for reducing the real noises as well as the
synthetic additive white Gaussian noises [13]-[18]. However,
the conventional CNN-based methods have a drawback when
they are trained in a non-blind manner, i.e., when they are
trained for the specific noise levels because we need to pre-
pare a large number of trained models to cope with various-
level or spatially variant noises.

To alleviate the problem of non-blind methods, we may
train the network in a blind manner as in DnCNN-B [15]
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and REDNet [14], which is to train a single network with
the images from a wide-range noise level. They show com-
parable or even better performance than the specific models
in some noise range, through the training with the augmented
data from similar noise levels. However, the previous blind
denoisers have limitations that they do not work well for
the complex and low-level noisy images, and also prone to
produce blurry outputs. It is because the blind denoising is a
more complicated problem than the non-blind, and it seems
that the network learns the average noise level when the inputs
with wide-range noise level are used for the training. For a
more practical case that the noise level is spatially variant,
Zhang et al. [19] proposed a flexible network which takes
noise level maps as the input for learning various noise levels
with a single network.

In this paper, we propose a new single-model denoising
CNN that replaces multiple networks which are non-blindly
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trained for the specific noise levels. The proposed system
can be used either as a blind or non-blind denoiser, but it
is different from the respective conventional methods in sev-
eral aspects. First, unlike the traditional non-blind denoising
methods that use multiple networks, we use a single denoising
CNN which works adaptively according to the locally dif-
ferent noise level, without changing the parameters. For this,
we adopt the gate scheme where the activation of each feature
map is controlled by using gate-weights which are learned
along with the CNN parameters. Concretely, in addition to the
denoising network, we design and train a small network that
generates appropriate gate-weights for the given noise level.
Then, the denoising network is tuned to a noise level by scal-
ing the features instead of changing the parameters. Second,
unlike the conventional blind denoiser that is trained and used
without considering the noise level, we train the combination
of denoising and gate-weight generating networks with noise
information, and hence we need a noise estimator for the blind
scheme. For this, we design a simple noise estimator which
produces the (spatially variant) noise level map for the given
image. The map is fed to the gate-weight generating network
which produces appropriate weights to update feature maps
of the denoising network.

In summary, the proposed denoising system consists of a
CNN, a noise level estimator, and a gate-weight generating
network, which is trained to reduce the spatially variant noises
with unknown levels. We believe that our contributions are as
follows:

« We propose a single-model CNN denoiser that adap-
tively works for a wide range of noise level. Moreover,
it can be applied to spatially variant noises.

o The adaptation is to scale the feature maps of the CNN
for the given noise level where the scaling weights for
each noise level are also learned at the training phase.
Hence, there are no changes in the parameter values
at the test phase, whereas the conventional non-blind
methods reload all the parameters or switch to other
networks for the change of noise level.

« We also propose a noise level estimation network which
requires few parameters.

« Using the proposed noise estimation module, denoiser,
and gate-weight generating network, the proposed sys-
tem can be applied to blind spatially variant noisy
images which have a similar property with real noisy
images. Hence the proposed method also works well for
the real noisy images from cameras or old photos.

A representative example is presented in Fig. 1 which com-
pares the conventional method and our spatially adaptive
method.

Il. PROPOSED SPATIALLY ADAPTIVE

DENOISING ARCHITECTURE

A. OVERVIEW OF THE PROPOSED ARCHITECTURE

We develop a CNN-based image denoiser which reduces the
spatially variant noise adaptively, without knowing the true
noise levels. For this, we need a noise level estimator in
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(a) Noisy Image (17.84 dB) (b) FFDNet with o map (30.56 dB)

(c) Proposed with constant o (26.61 dB) (d) Proposed (32.03 dB)

FIGURE 1. A noisy image and the denoising results. (a) An image with the
spatially variant noise level. Results of (b) FFDNet using the ground truth
noise level map, (c) proposed ATDNet with the single noise level (average
of noise level over the image), and (d) proposed ATDNet which works
adaptively to spatially variant noise. We can find that the proposed
system can cope with spatially variant noises by comparing (c) and (d).
Moreover, we can see that the proposed denoiser keeps the textures by
comparing (b) and (d).

addition to the noise removing network named as adaptively
tuned denoising network (ATDNet). The overall architecture
is shown in Fig. 2, which illustrates that the noise level
estimator produces the noise standard deviation at each pixel
position, i.e., the noise level map o € RT>*W where H x W is
the image size. The noise estimator is a simple convolutional
network which is trained independently of others. The noise
level map is fed to a small network (Network G in the figure)
which generates the gate-weight to tune the feature maps of
the denoising CNN (Network F in the figure) which consists
of gate-residual blocks (Gate-ResBlock).

When training the network, several levels of spatially
invariant noises are used for simplifying the training phase,
although we are dealing with the spatially variant noise at the
test. Specifically, the noise level map at the training phase is
o x 17>V for several different o values, where 17 *W is the
H x W matrix with all the elements 1.

B. MOTIVATION OF THE PROPOSED ATDNet

Unlike the conventional methods which prepare a CNN for
each noise level (non-blind method) or which design a single
CNN of which parameters are trained using the images from
a wide range of noise level (blind method), we design a
single network that can be adapted to the noise level with-
out changing the network parameters. For achieving this,
we believe that an easy way is to scale up/down the feature
maps of the CNN because they contain enough information
for image restoration while each map may contribute differ-
ently depending on the noise levels. In other words, the CNN
feature maps can be tuned to the noise level by controlling
the contribution of each feature map. These motivations and
ideas lead us to design a gate scheme, which adds a gate to
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FIGURE 2. The proposed system consists of a noise level estimation module (Noise Level Estimation in the left side) and ATDNet which is
composed of denoising network F and gate-weight generating network G with kernel size (k) and the number of features (n). The F is
composed of a gate-residual block (Gate-ResBlock) which is the stack of two 3 x 3 convolutions and a gate process as illustrated in Fig. 3.
The number of overall Gate-ResBlocks is 32, and the number of features in each layer is 128. The F has skip connection so that the
features in the Gate-ResBlock mostly contain the noises and high-frequency components. The G is composed of four 1 x 1 convolutions
which have 64, 128, 128 and 128 channels respectively. Note that the number of output channels (128) is matched to the number of
feature maps in the Gate-ResBlock for the element-wise multiplication of the output from the G and the feature maps. The numbers of
training parameters for noise level estimation module, network G, and F are 139 K, 41 K, and 9.587 M respectively.

each residual block of the conventional CNN structure. The
role of the gate is to control each map’s magnitude at each
layer. The gate parameters (weights that are multiplied to the
features) are also trained along with the input and noise level
so that the feature maps are appropriately adjusted depending
on the noise levels.

FIGURE 3. The i-th Gate-ResBlock with kernel size (k) and the number of
features (n).

C. DENOISING NETWORK F

Inspired from the recent success of residual blocks in the
image enhancement tasks [12], [20], we compose denoising
network F with the proposed Gate-ResBlock that is illus-
trated in Fig. 3. F takes a noisy image as an input and
also takes the representations of noise level map, which are
generated from Network G, as a conditional input. Then,
F can be flexibly tuned to a wide range of noise level and
generates a denoised image by reducing noises with a single
network.
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D. GATE-WEIGHT GENERATING NETWORK G
The gate-weight generating network G takes the noise level
map (H x W matrix where each element represents stan-
dard deviation at the pixel position, scaled to [0, 1]) as the
input, and outputs H x W x 128 gate-weights that are
element-wise multiplied to the H x W x 128 feature maps
of Gate-ResBlock as the “gate process” illustrated in Fig. 3.
Precisely, the network G is composed of four 1 x 1 convo-
lution filters with 64, 128, 128 and 128 feature maps respec-
tively, so that the output size of G is H x W x 128 accordingly.
Then, the gate weights determine the amount of pixel-wise
feature map changes. Precisely, our Gate-ResBlock updates
the input features by gating them according to the noise level
with the residual connection.

Formally, the output of G is a function of noise variance
o € RY*W which is represented as G, € RH*WxI128
Meanwhile, let F(Y);; € RAXWx128 pe the outputs of the
Jj-th convolution in the i-th Gate-ResBlock as denoted
in Fig. 3. Then the operation at each Gate-ResBlock in Fig. 3
can be written as

F(Y)iour = F(Y)i0 +atanh(F(Y);2 0 5(Gy)) (1)

where s(-), o, and « are sigmoid function, element-wise prod-
uct, and the update scaling parameter (10~ 1) respectively. The
proposed Gate-ResBlock makes the Network F' to be adaptive
to the change of the noise level. In another point of view,
it acts as feature attention [21], [22] in that it recalibrates the
feature maps according to the noise level.
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FIGURE 4. Visualization of output of G. Each row represents the 1 x 128 vector G, (m, n, :) at a pixel position (m, n), for a particular o, where o ranges
from 10 to 60 with the step size 5. For example, the first row is the vector G,o(m, n, :), the second row G;5(m, n, :), and the last row Ggo(m, n, :).

TABLE 1. The proposed noise level estimation module.

Type Kernel / Stride Size Output Size
Convl, 2 3x3/1x1 Hx W x 32
Max Pool | 2x2/2x2 B 5 W x32
Conv3, 4 3x3/1x1 B x W x64
Max Pool2 2x2/2x2 B x Wox64

Convs 3x3/1x1 I W x128

Avgerage Pooll 2x2/2%2 H o W x 128

Convé Ix1/1x1 Zx%x1

Average Pool2 Global Pool 1x1x1

E. NOISE LEVEL ESTIMATION MODULE

The proposed noise level estimation module is composed of a
few convolutions as described in Table 1. It can be considered
that the last layer (Conv6) outputs the block-wise noise level,
where the block size is 8 x 8. If we wish to denoise the image
with (assumed) spatially invariant noise, then we average the
values from the output of Conv6, and the average noise level
o is fed to the network F in the form of o x 17*W  Otherwise,
if we wish to deal with the pixel-wise noise level for the more
practical case of spatially variant noise, the % X % matrix
(output of Conv6) is linearly interpolated to be the H x W
noise level map which is fed to the network F'.

F. TRAINING

We train the proposed system using the noisy patches y; and
the corresponding clean patches x;, with the noise standard
deviation o; in [10, 60] with the step size 5. The patch size
is empirically determined as 80 x 80 and the number of
batch size as 16. The overall loss function for the training is
defined as

N
1
L(©) = > I%i = F(yi, 65 ©)l3 )

i=1

N

+5 ; loi = Evi: ®l;  (3)
where E(-) and F(-) are the outputs of noise level estima-
tion module and ATDNet respectively. When the baseline
network for the single-level denoising converges within K
iterations, the proposed method usually converges within 2K .
We can say that this is another advantage of our approach
over the conventional non-blind method which needs KM
iterations when preparing the networks for M different noise
levels.
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To be precise with the training environments, we use the
ADAM optimizer and set the initial learning rate to 5 x 10~#
which decays to 10~ after 10 epochs. All the experiments
are carried out in a PC with Intel (R) Core(TM) 17-6850K
CPU 3.60GHz and the Nvidia Titan X GPU which has 12GB
memory, and the proposed network is implemented with
Tensorflow.

I1l. DISCUSSION

In this section, we discuss the effect of the proposed method
by visualizing the gate-weight values from G for several cases
and also visualizing the gating process in (1).

A. VISUALIZATION OF WEIGHTS FROM G

When there is no G in Fig. 2, or when all the output of G is
1 regardless of its input o, then the network is the same as
the conventional denoiser that uses the baseline network F.
Hence, we first show in Fig. 4 that the G outputs quite widely
varying values for different noise level. Each row in the
figure is a 1 x 128 vector extracted from G for the noise
level o, and we show 11 vectors from ¢ = 10 to 60 with
the step size 5. The sigmoid function s(-) is designed such
that an output node of G can have the values in [0, 1], which
is scaled to [0, 255] for the visualization. Note that the output
of G, i.e.,, G, is an H x W x 128 tensor, and the rows in Fig. 4
are the instances of G (m, n, :) for some pixel position (m, n)
foro =10:5:60.

From the figure, we can see that the element of G, changes
almost monotonically as o changes (the change into vertical
direction). On the other hand, the changes into the horizontal
direction (changes in output node values that are multiplied
to the feature maps) are quite large. This means that the
contribution of each feature map is quite different, while the
change of each feature’s contribution according to the o is
monotonic.

B. VISUALIZATION OF FEATURE MAP UPDATE

The residual network is to learn the difference between the
input and output, which is mostly noise in our problem.
Hence, the final Gate-ResBlock needs to produce only noise
component when successfully converged. In this subsection,
we visualize that our main process in (1) helps to reduce the
features that have image structure so that the Gate-ResBlock
gives more desirable outputs. Specifically, Fig. 5 shows the
actual feature maps in our network, and the visualization
of (1). We can see that there are some feature maps which
have strong image structures among F(Y); > (especially the
one marked with red boundary), and our scheme multiplies
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FIGURE 5. Visualization of feature maps generated from F. It shows that
s(G,) gates F(Y); ,, i.e, s(G;) scales up/down the feature maps. Red
boxes are the representative examples of feature map update.

a small weight to such features so that a noise-like image
is obtained at the output. The variances of feature maps of
F(Y)i0, F(Y)i2, and F(Y); our are 0.027, 4.678, and 0.021
respectively, which also shows that our update scheme has
the role of regularizing the feature maps.

IV. DATASETS AND EXPERIMENTS
We conduct experiments on gray and color images corrupted
by synthetic and real noises.

A. DATASETS AND DEGRADATION OF IMAGE

The datasets used for the gray AWGN evaluation are
Set12 [15], BSD68 [23], and Urban100 [24]. The first
two sets are used in many conventional works, and the
Urban100 is recently popularly used as it contains more
textured images such as the facades and ceilings of modern
buildings. We train the network with o € [10, 60], but show
the test results just on o = 15,25,30, and 50, because
the compared algorithms in [14] and [15] show the results
for these values. For the real noise experiments, we use the
RNI6 [25]. For the color AWGN evaluation, CBSD68 [23],
Kodak?24 [26], McMaster [27] and CUrban100 [24] are used
for the evaluation.

B. BASELINE AND COMPARED METHODS

We compare our methods with recent denoising networks,
and also with the baseline network (network F' without our
gate G) to show the gain of our gating scheme over the plain
use of ResBlocks. For comparing both blind and non-blind
cases, we consider three different use of baselines depending
on the use of noise information:

« Baseline-S: The network is trained to specific degrada-
tion levels.

« Baseline-B: The network is trained with the images from
all over the degradation level.

« Baseline-C: The network is trained with the images from
all over the degradation level taking the concatenated
noise level maps with images as an input, which is
employed in [6] and [19].

With these prepared networks, we conduct blind and non-
blind experiments separately. Specifically, the proposed
ATDNet is compared with BM3D [28], TNRD [29], RED-
Net [14], DnCNN-S [15], MemNet [30], UNLNet [31],
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FFDNet [19], Baseline-S and Baseline-C for non-blind test,
and the proposed ATDNet-EST is compared with DnCNN-B
and Baseline-B for the blind test. The ATDNet, Baseline-S,
Baseline-C, and Baseline-B are trained with BSD400 [32] set,
which has a similar number of images used for the training
of REDNet and DnCNN. Also, considering the capacity of
the proposed architecture, we also train our network with
more datasets (BSD400 4+ DIV2K 800 images [33]) which
amounts to the similar number of training patches as used
for the FFDNet, and this network will be called ATDNetW
(Wider range of training data).

C. EXPERIMENTS

1) EXPERIMENTS ON AWGN REMOVAL

Table 2 provides the performance of the proposed noise-level
estimation module. We can see that the proposed estimation
module accurately estimate the noise level with small error
and standard deviation. As a result, the ATDNet-EST can
have comparable performance to ATDNet although it does
not have noise level information.

TABLE 2. Mean and standard deviation of the proposed noise level
estimation module.

o Setl12 BSD68 Urban100
15 1492+0.28 14.93 +0.31 15.06 4 0.49
25 2492+0.28 25.034+0.17 25.08 +0.39
30 29924028 30.06+£0.24 30.03 £0.41
50 49.174+037 4947 +0.61 49.51 £0.61
2: * DnCNN-S zj * DnCNNW
A\ ——DnCNN-B -~ ~FFDNet
sl N Baseline-S * ATDNetw
e — Baseline-B K —— ATDNetW-EST
3 \ —— ~Baseline-C D3 . \
= ATDNet = or
% - ¢\*\ - —— ATDNetEST % j: N f\\\
; ™ - .
27 \\\\\5 27 . T~

25
o 15 20 25 30 35 40 45 50 55 60
Image Noise Level

2
0 15 20 25 30 35 40 45 50 55 60
Image Noise Level

FIGURE 6. Average PSNR obtained by conventional and the proposed
methods for some noise levels. Non-blind methods are represented with
dots or dashed lines, and blind methods are represented with solid lines.
The validation is evaluated on Urban100.

Tables 3 and 4 present the average PSNR of above-stated
methods at some noise levels. We can observe that the blind
training methods (both DnCNN-B and Baseline-B) yield
about 0.2dB lower performance than the respective specific
models at low noise levels. In contrast, ATDNet shows com-
parable performance to the Baseline-S at ¢ = 15, and
even gets better performance at other noise levels. Moreover,
the ATDNetW achieves the best performance for all datasets
and noise levels. We can also find from Fig. 6 that our
method shows almost the same results for blind and non-blind
tests. Specifically, the figure is the plot of average PSNR vs.
noise level, where we can see that proposed methods achieve
better or comparable performance than the others.
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TABLE 3. Average PSNR of the restored images, where the inputs are corrupted by AWGN with o = 15, 25, 30, and 50, for the images from Set12, BSD68,
and Urban100 datasets. The compared and proposed networks are trained with BSD400. The left part is the non-blind test, and the right is blind (red: The
best result, blue: The second best). Since the proposed noise level estimation module provides quite accurate estimates, ATDNet-EST can have same

results with ATDNet.
Set12
Sigma BM3D TNRD REDNet DnCNN-S MemNet UNLNet Baseline-S  Baseline-C ~ ATDNet \ DnCNN-B  Baseline-B ATDNet-EST
15 32.38 32.50 - 32.86 - 32.67 33.04 3291 33.03 32.68 3292 33.03
25 29.95 30.04 - 30.44 - 30.25 30.67 30.65 30.77 30.36 30.65 30.73
30 29.15 - 29.62 29.52 29.64 29.36 29.89 29.84 29.95 29.53 29.82 29.92
50 26.70 26.78 27.26 27.18 27.40 27.04 27.59 27.53 27.63 27.21 27.57 27.60
BSD68
Sigma BM3D TNRD REDNet DnCNN-S MemNet UNLNet Baseline-S Baseline-C ~ ATDNet ‘ DnCNN-B  Baseline-B ATDNet-EST
15 31.07 31.42 - 31.73 - 31.47 31.82 31.76 31.84 31.61 31.77 31.82
25 28.56 28.91 - 29.23 - 28.98 29.34 29.33 29.39 29.17 29.32 29.40
30 27.75 - 28.50 28.36 28.45 28.14 28.56 28.52 28.60 28.35 28.51 28.58
50 25.62 25.96 26.37 26.23 26.37 26.04 26.42 26.43 26.50 26.23 26.42 26.45
Urban100
Sigma BM3D TNRD REDNet DnCNN-S MemNet UNLNet Baseline-S  Baseline-C ~ ATDNet \ DnCNN-B  Baseline-B ATDNet-EST
15 32.34 31.96 - 32.67 - 32.44 33.13 32.92 33.15 32.31 3291 33.11
25 29.70 29.21 - 29.97 - 29.77 30.54 30.47 30.72 29.82 30.47 30.71
30 28.75 - 28.98 28.89 29.11 28.75 29.68 29.59 29.86 28.92 29.59 29.84
50 25.95 25.59 26.34 26.29 26.65 26.12 27.05 27.10 27.39 26.38 27.12 27.34

TABLE 4. Average PSNR of the restored images, where the inputs are
corrupted by AWGN with ¢ = 15, 25, 30, and 50, for the images from
Set12, BSD68, and Urban100 datasets. The compared and proposed

networks are trained with BSD400 and more datasets. The left part is the
non-blind test, and the right is blind (red: The best result, blue:
The second best).

Set12
Sigma  FFDNet DnCNNW-S  ATDNetW \ ATDNetW-EST
15 32.75 32.87 33.06 33.07
25 30.43 30.49 30.79 30.77
30 29.61 29.67 30.00 29.98
50 27.32 27.28 27.70 27.63
BSD68
Sigma  FFDNet DnCNNW-S  ATDNetW \ ATDNetW-EST
15 31.63 31.78 31.83 31.82
25 29.19 29.31 29.39 29.39
30 28.39 28.49 28.58 28.57
50 26.29 26.38 26.49 26.45
Urban100
Sigma  FFDNet DnCNNW-S  ATDNetW \ ATDNetW-EST
15 3243 32.81 33.36 33.33
25 29.92 30.23 30.96 30.94
30 29.03 29.27 30.10 30.09
50 26.52 26.60 27.66 27.63

We also demonstrate the robustness of our method to the
noise level estimation error in Fig. 7 which shows the per-
formance when the noise level is mismatched with the real
noise level. Precisely, the figure provides how the applied
(or trained) models such as FFDNet-S-N, Baseline-C-N,
and ATDNet-S-N (or DnCNN-S-N and Baseline-S-N) work
when the real noise level is different from the applied
(or trained) one, i.e., when o # N. As shown in the figure,
the proposed ATDNet is more robust than the others in that
a small mismatch in the noise level does not result in a
large performance degradation. We can also find that the
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% DNCNN-15
~ FFDNET-15
o Baseline-5-15
=z Baseline-C-15
n ATDNet-15
0O 20 |— — —DncNN-30
FFDNET-30 S~
Baseline-S-30 ™~
— — — Baseline-C-30
— — —ATDNet30 B35 30 28 o
P DNnCNN-50 S =
r FFDNET-50 == el
Baseline-S-50 33 \ 29.5 27.5 _”\
77777 Baseline-C-50 ==
77777 s 25 20 27
ATDNet-EST 14 15 16 29 30 31 48 49 50
10 I I I I I I I |
10 15 20 25 30 35 40 45 50

Noise Sigma

FIGURE 7. Sensitivity curves that represent how the model-N (N = 15,
30, 50) works when the noise level is different from the trained one

(or estimated one). Some parts are magnified at the bottom to show the
difference more clearly.

ATDNet-EST works robustly for the fine-scale noise levels,
i.e., for the noise level with the steps of 1 where ATDNet-EST
is trained for noise level in [10, 60] with the steps of 5. From
these quantitative results, we can conclude that the bundles
of specifically trained models can be replaced by our single
network for both non-blind and blind denoising.

A distinct difference between the blind (-B) and non-blind
methods is the blurriness of the output. Since the non-blind
model is trained only for a specific noise level, it can remove
noise while preserving the textures, whereas the blind model
learns the averaged properties so that the results are somewhat
blurry. An example is shown in Fig. 8 where the noisy input
image is from the Urban100 dataset that has many textures
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(a) (b)
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(k) )

(d (e)
6] ()
(n) (0)

FIGURE 8. The 4th image from the Urban100 dataset corrupted by AWGN with ¢ = 50, and the comparison of various methods. (a) Noisy image.
(b) BM3D/25.86 dB. (c) TNRD/24.84 dB. (d) REDNet/25.67 dB. (¢) DnCNN-5/25.67 dB. (f) DnCNN-B/25.79 dB. (g) MemNet/25.74 dB.
(h) FFDNet/25.96 dB. (i) UNLNet/25.79 dB. (j) Baseline-S/26.66 dB. (k) Baseline-B/26.66 dB. (I) Baseline-C/26.68 dB. (m) ATDNet/27.01 dB.

(n) ATDNetW/27.54 dB. (0) Ground-truth.

and edges. From the figures, we can observe that ATDNet and
ATDNetW yield clear images compared to the baselines and
conventional methods around the edges.

(@ (b)

FIGURE 9. True noise level maps and their estimations by the proposed
method. (a) Noise level maps. (b) Estimated noise level maps.

TABLE 5. Average PSNR of the restored images, where the inputs are
corrupted by spatially variant AWGN with average o = 35 for the images
from Set12, BSD68, and Urban100 datasets. The left upper part is the
non-blind test, and the lower is blind (red: The best result, blue:

The second best).

Dataset Setl12 BSD68  Urban100
FFDNet 29.08 27.88 28.43
Baseline-C 29.11 27.89 29.21
ATDNet 29.43 28.09 29.26
ATDNetW 29.46 28.08 29.52
Baseline-B 28.59 27.58 28.99
ATDNet-EST 29.28 28.01 29.11
ATDNetW-EST  29.32 28.01 29.38

2) EXPERIMENTS ON SPATIALLY VARIANT NOISE

We also apply our methods, baselines, and FFDNet to spa-
tially variant noisy images. We generate noise level maps as
in [19], which are visualized in Fig. 9(a). For these spatially
variant noises, Table 5 presents the average PSNR of FFDNet
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TABLE 6. Average PSNR of the restored color images, where the inputs
are corrupted by AWGN with o = 15, 25, 30, and 50. The Left part is the
non-blind test and right is blind (red: The best result, blue: The second
best). Since the proposed noise level estimation module provides quite
accurate estimates in this case, CATDNetW-EST can have almost the same
results with CATDNetW.

CBSD68

Sigma  CFFDNet CUNLNet CATDNetW | CDnCNN-B ~ CATDNetW-EST

15 33.88 33.87 34.08 33.89 34.08

25 31.15 31.21 31.48 31.23 31.48

30 30.21 30.31 30.60 30.32 30.60

50 27.85 27.96 28.30 27.92 28.30
Kodak24

Sigma  CFFDNet CUNLNet CATDNetW | CDnCNN-B ~ CATDNetW-EST

15 34.63 34.64 34.99 34.48 35.00

25 32.08 32.13 3258 32.03 32.58

30 31.18 31.28 31.75 31.18 31.71

50 28.86 28.98 29.49 28.84 29.49
McMaster

Sigma  CFFDNet CUNLNet CATDNetW | CDnCNN-B  CATDNetW-EST

15 34.33 34.66 35.12 33.44 35.09

25 32.02 3235 32.87 31.51 32.87

30 31.00 31.52 32.06 30.78 32.02

50 28.80 29.18 29.78 28.61 29.74
CUrban100

Sigma  CFFDNet CUNLNet CATDNetW | CDnCNN-B  CATDNetW-EST

15 33.97 33.83 34.56 32.98 34.53

25 31.50 31.40 3232 30.81 32.30

30 30.41 30.53 31.52 29.99 31.48

50 27.95 28.05 29.21 27.59 29.19

and our algorithms. We can observe that the proposed ATD-
Net and ATDNetW yield larger gain than the FFDNet and
Baseline-C. Moreover, the ATDNet-EST and ATDNetW-EST
also show comparable performance to non-blind methods
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FIGURE 10. The real noisy image ‘Building,’ and the comparison of the results by various methods with the sigma 20 (estimted in [19]) for
ATDNetW, or with the estimated spatially variant noise map for ATDNetW-EST. (a) Noisy image. (b) Noise clinic. (c) BM3D. (d) DnCNN-B. (e) FFDNet.
(f) Baseline-B. (g) ATDNetW. (h) ATDNetW-EST.

(@) (b) () (d)

(e ® (& (h)

FIGURE 11. The real noisy image ‘Vineger,” and the comparison of the results by various methods with the sigma 20 (estimted in [19]) for
ATDNetW, or with the estimated spatially variant noise map for ATDNetW-EST. (a) Noisy image. (b) Noise clinic. (c) BM3D. (d) DnCNN-B. (e) FFDNet.
(f) Baseline-B. (g) ATDNetW. (h) ATDNetW-EST.

and better performance than Baseline-B, because our noise 3) EXPERIMENTS ON REAL NOISY IMAGES
level estimation network provides quite accurate estimates as From previous experiments, we can observe that the noise
shown in Fig. 9(b). level estimator provides accurate results, and the denoiser
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FIGURE 12. The 7th image from the Kodak24 dataset corrupted by AWGN with ¢ = 50, and the comparison of the denoising results. (a) Noisy image.
(b) CDNCNN-B/ 30.11 dB. (c) CFFDNet/30.54 dB. (d) CUNLNet/30.23 dB. (e) CATDNetW/31.27 dB. (f) CATDNetW-EST/31.23 dB. (g) Ground-truth.

can cope with a wide range of spatially variant noise using
a single network. Hence, we apply the proposed scheme to
reduce the real noises which are usually spatially variant with
unknown level and unknown statistics. We present the results
of Baseline-B, ATDNetW and ATDNetW-EST with Noise
Clinic [25], BM3D [28], DnCNN-B [15], and FFDNet [19]
in Figs. 10 and 11. For the ATDNetW, we use previously esti-
mated noise level [19], and the single noise value is applied
to the whole image. For the ATDNetW-EST, we use spatially
variant noise level map estimation, and the estimated map is
applied. It can be seen that the ATDNetW removes the real
noise very well, but it also removes some textures because
it applies the single noise level to the whole image. On the
other hand, the ATDNetW-EST removes the real noise while
preserving textures.

4) EXPERIMENTS ON COLOR NOISE REMOVAL

We also validate the proposed method on noisy color images
in this subsection. The color denoiser is trained in the RGB
color space and the results are compared in Table 6, where
it can be seen that the proposed systems yield larger gains
than the others. The resulting images are presented in Fig. 12,
where we can also observe that the proposed methods suc-
cessfully reduce the noise.

V. CONCLUSION

We have proposed a new blind denoising framework that
adjusts the CNN’s feature maps for the specific noise lev-
els. Unlike the conventional methods that need to prepare
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as many sets of parameters as pre-defined noise levels,
the proposed method enables a single network to work for
various levels. The proposed scheme is to add a simple net-
work to the conventional CNN, which takes the noise level
as the input and generates scaling weights that are multiplied
to the feature maps at each layer. The additional network is
so simple that it can be implemented as a look-up table at
the test phase. Hence, the computational complexity of the
proposed scheme is almost the same as the baseline CNN.
We have tested our method and compared with the state-
of-the-art methods in image denoising with lots of valida-
tions. The results show that the proposed method achieves
comparable or better performance than the others, and the
blind scheme sometimes works even better than the non-
blind one. Our codes and more result images are available
at https://github.com/terryoo/ATDNet.
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