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ABSTRACT The convolutional and deep neural networks are prevalent machine learning algorithms for
real-world applications. As the neural network needs large computations, many artificial intelligence (AI)
chips are designed to accelerate the computation. AI chips have achieved better energy efficiency and high
computational capacity in the neural network implementation. The communication network in AI chips
influences the data transformation and hardware efficiency. The network-on-chip (NoC) is one feasible
solution to meet the data communication requirements in AI chips. This paper introduces the communication
network in AI chips and the strategy of mapping neural network to chips with the extensible hierarchical
architecture. We also conclude the opportunities for communication optimization in the design of AI chips.
In this paper, we propose our processor architecture and optimize the performance and energy of intra-
communication in chips from three aspects: data reuse, topology, and router architecture. The experimental
results show that our optimization can totally achieve 25.31× latency reduction and 79.92× energy less than
the baseline. The results show that our design can reduce the latency by 5.47× and save communication
energy by 7.5× when compared with the state-of-the-art design DaDianNao. When compared with another
design Eyeriss, our design can reduce latency by 7.57× and save communication energy by 3.03×.

INDEX TERMS AI accelerators, NoC, communication network.

I. INTRODUCTION
Deep learning algorithms such as Convolutional and Deep
Neural Networks (CNNs and DNNs) have been widely used
in real-world application domains such as autonomous driv-
ing, robotics, and intelligent security [1], [2]. To achieve
better inference accuracy, the depth of the neural network is
extremely large in general [4]. Take CNN for image recog-
nition (shown in Fig. 1) as an example, the modern deep
CNN typically consists of 5−1,000 convolution layers and
1−3 fully-connected layers. Each layer consists of neurons
(functional nodes) and the adjacent layers are connected
by synapses (weights). In the training process, to train the
synapses, the figures in the database pass through this neural
network in a sequential manner – entering from the first

The associate editor coordinating the review of this manuscript and
approving it for publication was Mingjun Dai.

FIGURE 1. The CNN for image classification [5].

convolution layer and exiting from the last fully-connected
layer.

To achieve better training performance, the database is
increasingly large. For example, the AlphaGo is trained with
a database of about 30 million moves [12]. In addition to
the database, the scale of the neural networks also increases
significantly over the past a few years. Table 1 presents the
evolution of the neural networks for image classification
applications. The classification accuracy increases over the
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TABLE 1. Summary of several popular neural networks [5].

years and it exhibits a strong correlation with the depth and
the scale of the neural network. For instance, even the smallest
neural network architecture, AlexNet, which has a top-5 accu-
racy of 80.2%, requires 61 million floating point weights
and 724 million MAC (multiply-accumulate) operations to
classify a single image of 227 × 227 × 3. The large size of
such networks poses big challenges to the underlying com-
puting devices in terms of both computational complexity and
memory requirements.

In the beginning, the neural networks are implemented
on the CPU [6]. However, given the fact that most of the
computations in deep learning algorithms are multiplications
and additions that can be processed in parallel, in recent years,
accelerators including FPGA, GPU and ASIC have been pro-
posed for neural networks to achieve better performance and
energy efficiency [8]–[10], [17]–[19]. Generally speaking,
FPGA provides the most flexible reconfigurability; GPU can
achieve high throughput at the cost of large energy consump-
tion; ASIC offers the highest computation efficiency. For
instance, in [9], it is reported that compared with a CPU
(SIMD), the GPU can achieve one to two orders of speedup;
while the fully-customized ASIC accelerator DaDiannao can
further improve the processing speed by one to two orders but
with much lower (up to two-order) energy consumption.

For the data communication within the ASIC accelerators,
both Eyeriss [18] and Thinker [10] use the bus to transmit
the weights of synapses and neuron values between buffers
and processing elements (PEs). Eyeriss uses 12 horizontal
X-buses connected to 168 PEs and one Y-bus to determine
which X-bus the data transmitted to. The bus is one feasible
method for transmissions in AI chips, but it lacks the scalabil-
ity and flexibility when the amounts of PEs increases. Tomeet
the stringent requirements on data communication among
the processing nodes in a large-scale AI chip, Network-
on-Chip (NoC) has been proposed as the communication
infrastructure in [8], [9], [17], [19]. Dadiannao [8] arranges
inter-chip communication in a regular ring pattern and the
H-tree topology for intra-chip communication in the NoC
design. However, when the scale of the neural networks
increases, the NoC-based data communication within the AI
accelerators will still become the performance bottleneck.
For instance, more than half of the runtime is spent on data
communication in DaDiannao [9] and its ratio grows up fast
as the processor scale increases. In addition to performance,
the energy consumption of the NoC in a deep learning accel-
erator is also a big concern. For example, the reported power

consumption for NoC in DaDiannao can account for about
50% of the total chip power. Therefore, it is essential to
optimize both the performance and energy efficiency of the
NoC architecture in an AI chip.

There has been very limited prior work on NoC optimiza-
tion for AI chips. Compared with Eyeriss, Eyeriss v2 [17]
proposes one hierarchical mesh NoC network for DNNs by
using routers to allocate the data transmission. The input data
and weights need to be transmitted from global buffer to
PE array with the broadcast pattern. This pattern increases
the data reuse which means the number of MACs that each
data is used for. However, the Eyeriss v2 lacks optimization
techniques for the component of the NoC network, such
as router optimization. Dadiannao [8] uses the mesh and
torus topology to replace the ring arrangement with inter-
chip communication. The data reuse and router architecture
optimization are ignored in the design of chips. Neu-NoC [19]
designs a hybrid NoC for neuromorphic acceleration systems
aiming at accelerating for Multilayer Perceptron. All the PEs
in the Neu-NoC are flat and the multi-cast is considered to
share the same path in the data transmission. The data is
reused through the ring topology and the PEs in the same ring
share the same data in the network. However, the latency and
throughput of ring topology is still a distinct disadvantage.

In recent years, the router architecture plays an important
role in the design of NoC with achieving high throughput
and low latency. In the NoC, router buffers are used to store
flits that can’t be forwarded immediately to the output which
consumes lots of dynamic and static power of the router [15].
Thus, increasing the utilization of buffers reduces the area
and power consumption. Further, one method of decreasing
the latency is to design the router architecture which also
achieving high throughput [24].

In this work, we propose the methodology to optimize
the performance and energy of the communication in NN
accelerators:
• We use a processor-chip-tile hierarchical architecture
and demonstrate the necessity of redesigning this archi-
tecture. We propose the 64-tile distribution in one chip
to improve the data reuse.

• We compare the performance and energy between differ-
ent topologies in chips based on the traffic characteristic.

• Based on the characteristic of the traffic, we redesign
the router architecture which incorporates the broadcast,
buffer reducing, and additional path in the router that
achieves better performance, higher throughput, and less
energy.

• The results show that the broadcast router can improve
the latency and energy by 8% and 9% respectively.
The tree topology can achieve 37% lower energy con-
sumption than the mesh topology. Finally, the optimized
router architecture achieves 48% latency reduction and
61% energy reduction than traditional router architec-
ture. When compared with the state-of-art AI chips,
our optimized communication network can reduce the
communication latency by 5.47× and save the energy
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by 7.5× over DaDianNao, and by 7.57× for latency and
3.03× for energy over Eyriss.

The rest of the paper is organized as follows. First,
we introduce the background of this paper in Section II.
In Section III, we describe the motivation of our work.
Then we propose our processor architecture in Section IV
and describe our optimization methods of communication
in Section V. Finally, we state our experimental results in
Section VI and we conclude in Section VII.

II. BACKGROUND
In this section, we first introduce the basic computations
of convolutional layers in CNNs. Then we briefly review
the architecture of one typical AI processor DaDianNao and
the strategy of mapping neural network to the AI processor.
Finally, we describe the communication requirements of the
communication network in AI chips.

A. THE STRUCTURE OF CNNS
A CNN uses a set of filters to extract features of the input
feature maps (ifmaps), and each convolutional layer exe-
cutes high-dimensional convolutions. As shown in Figure 2,
the blue cube represents a set of two-dimensional (2D) ifmaps
of the neural network; each of theM green cubes represents a
three-dimensional (3D) filter which is composed of weights;
the yellow cube is output feature maps (ofmaps) which con-
sist ofM yellow rectangles. Each yellow rectangle represents
one channel of ofmaps.

FIGURE 2. High dimensional convolutions in CNNs.

There are two types of data reuse in the convolution com-
putation. First, as shown in Figure 2, the process of high
dimensional convolutions is that M 3D filters are calculated
with the same ifmaps to obtain ofmaps in each convolutional
layer of the neural network. The same ifmaps are reused in the
calculation of different channels (M ) of 3D ofmaps. Second,
as shown in Figure 3, the green 3D filter is convoluted with
the data of ifmaps labeled by the red and orange cubes to
obtain the data points in the channel of ofmaps. In the process
of obtaining one channel of ofmaps, the same 3D filter per-
forms a sliding convolution calculation on the ifmaps which
means this filter is reused in these convolutions.

We use one convolutional layer in VGGNet [23] as an
example of Figure 2. There are 256 filters (M = 256) in this
layer, so the final ofmaps has 256 channels. These filters are

FIGURE 3. The computation in convolutional layers.

convoluted with the same ifmaps in the convolutional layer.
If the data of 3D ifmaps cannot be reused, to calculate the
256 ofmaps, we need to read the ifmaps from the memory for
256 times, which brings large burdens to the memory and the
communication network. Therefore, it is desired to reuse the
ifmaps data as much as possible in the computing of CNNs.

FIGURE 4. The mesh topology between chips.

FIGURE 5. The Dadiannao chip. (a) The architecture of one DaDianNao
chip [9]. (b) The tree topology in one DaDianNao chip with 16 tiles.

B. THE ARCHITECTURE OF AI CHIP
The hierarchical architecture has been applied to the archi-
tectural design of large-scale systems, such as the DaDian-
Nao supercomputer with multiple chips [9]. As an example,
Figure 4 shows one DaDianNao system of 16 chips connected
by a mesh communication network. Each chip of this system
is composed of 16 tiles, central eDRAMs, communication
network, and I/O links shown in Figure 5. These 16 tiles
are connected by five routers and links which constitute
the H-tree topology (see Figure 5(b)). Each tile consists of
the computation units (NFUs) and eDRAM banks as shown
in Figure 6. The central memory is used to store the inputs

69436 VOLUME 7, 2019



W. Gao, P. Zhou: Customized High-Performance and Energy-Efficient Communication Networks for AI Chips

FIGURE 6. The architecture of one tile in the Dadiannao chip [9].

and outputs of each layer in CNNs, and the tile memory is
used to store the weights of synapses between adjacent layers
in CNNs and the intermediate results of computation when
needed.

FIGURE 7. The architecture of computation units in the Dadiannao tile [9].

The computation process of NFUs is shown in Figure 7.
The MACs in CNNs are implemented by the multipliers and
adders in NFUs. The inputs of the multipliers include input
neurons and the weights of synapses. Then the results of
the multiplication, together with the previously calculated
partial sum, are sent to the adders for addition. Then after the
processing of transfer function, the final results are stored in
the central memory.

C. CNNS MAPPED TO THE DADIANNAO
SUPERCOMPUTER
Each layer of CNNs can be mapped to one or more chips
to complete the MAC calculation, depending on the size of
the CNN layer and the chip configuration. For instance, in an
AI chip, each tile has limited tile memory, and this puts a
constraint on the number of neurons that can be mapped to
each tile. Therefore, given the architecture of an AI chip (such
as the DaDianNao processor shown in Figure 4), we can
figure out how to map a CNN to the AI chips.

As an example, Figure 8 shows how we can map three
fully-connected layers in VGGNet [23] to the DaDian-
Nao chips. Neurons in layer 1 are mapped to eight chips
(chip0 - chip7) in the mesh topology. Meanwhile, neu-
rons in layer 2 and layer 3 are mapped to another four
chips (chip8, chip9, chip12 and chip13). The rest four chips

FIGURE 8. The neurons are mapped to different chips.

(chip10, chip11, chip14 and chip15) are used by the convolu-
tional layers in VGGNet.

According to the hierarchical architecture, the computa-
tional tasks mapped to each chip are divided and assigned
to smaller computing units in the chip. For example, one
convolutional layer in VGGNet which has 512 filters are
mapped to four chips (chip10, chip11, chip14 and chip15).
Then eight filters and one 3D ifmaps of this convolutional
layer are mapped to each tile of these chips shown in Figure 9.

FIGURE 9. The computational tasks are mapped to each tile in
DaDianNao chip.

The filters mapped to the tiles in these chips are different
but tiles in these chips share the same ifmaps during the
transmission. For these tiles, ifmaps are transmitted from
the central memory to tiles and the flows are shown in the
column process one of Table 2 based on the topology shown
in Figure 5(b). When inputs from the central memory and
weights from the tile memory are ready, these data enter
the NFUs to complete the calculation. After the calculation,
the results are transmitted from the tiles to central memory
and flows are shown in the column process two of Table 2.
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TABLE 2. The transmission flows between the central memory and tiles
in the communication network of one DaDianNao chip shown
in Figure 5(b).

Without special design, each tile needs to load ifmaps 8 times
from the central memory. This process consumes a large
amount of energy and incurs significant latency in the com-
munication network. Therefore, we should reuse the ifmaps
whenever possible in the design of the AI communication
network.

D. TRANSMISSION OF DIFFERENT DATA IN
A COMMUNICATION NETWORK
In the chip, modules can be divided into computation units
and memory units by functional classification. Before the
calculation of neurons of each layer in CNNs, the weights
of synapses and the inputs (ifmaps) of neurons need to be
transmitted from the memory to the computation tiles as
shown in Figure 10(a). After calculation, the results of the
computation (ofmaps) are transmitted to memory and stored
in the memory as shown in Figure 10(b).

FIGURE 10. Communication requirements between memory and
computation tiles.

From the aspect of data transmission in CNNs, the com-
munication requirements are that computation results of neu-
rons of layer1 and weights of synapses are transmitted to
the neurons of the next layer 2 as shown in Figure 11.
Therefore, a normal CNN has only communication require-
ments between the adjacent layers.

FIGURE 11. The communication requirements between adjacent layers.

III. MOTIVATION OF OUR WORK
The hierarchical architecture as processor-chip-tile presented
in Section II-B is an effective hardware architecture design for
neural network implementation. In this section, we study the
potential problems of this architecture and then propose some
opportunities for improvements in terms of communication
network design and optimization.

A. THE PROBLEMS OF THE ARCHITECTURE
1) INTER-CHIP COMMUNICATION
If each CNN layer is mapped to several chips, the neurons
of one layer are distributed in different chips. The communi-
cation requirements between different chips increase signif-
icantly, correspondingly, inter-chip communication becomes
a bottleneck.

FIGURE 12. The energy cost of inter-chip communication. Note that the
x-bar represents the number of chips that each CNN layer is mapped to.

The Alexnet [20] is composed of 5 convolutional layers
and 3 fully-connected layers. In our experiments, we map
each layer of Alexnet to 1, 4 or 16 chips respectively. In this
way, the CNN is mapped to a multi-chip system whose chips
are connected with a mesh topology. As shown in Figure 12,
the energy of inter-chip communication increases obviously
when we map the same CNN layer to more chips. Mean-
while, it is known that the energy consumption of inter-chip
transmission is higher than the energy of intra-chip transmis-
sions [21]. Thus, to reduce communication energy, we can
decrease the communication between chips.

2) MEMORY READ AND WRITE
According to the architecture of Dadiannao, the data needs
to be transmitted between the memory and tiles. Among the
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FIGURE 13. The amounts of data read from the memory in chips. Note
that the x-bar represents the number of chips that each layer is
mapped to.

transmission, we read the input neurons from the memory
and write the output results to the memory. When one CNN
layer is mapped to several chips, each chip has to store its
separate copy of the inputs of neurons in its memory. This is
because each neuron needs the outputs of all the neurons in
the previous CNN layer as the inputs. As shown in Figure 13,
the size of data which read from the memory varies directly
with the number of chips that each layer is mapped to. The
operations that read and write from the memory cost signif-
icant energy and latency. When the size of each tile (i.e., the
number of neurons it can hold) is fixed, the more tiles we
place in one chip, the less number of chips will be used by
one CNN layer. Thus the number of tiles in one chip has a
close correlation with the energy consumption and latency of
the communication network in an AI chip.

FIGURE 14. The NoC design and optimization of AI chips.

B. OPPORTUNITIES FOR COMMUNICATION
OPTIMIZATION
As shown in Figure 14, the weights of synapses and the inputs
to the neurons in a CNN need to be transmitted between
memory and computation tiles following the hierarchical
structure of an AI chip. This imposes the communication
requirements on the AI hardware. According to the character-
istics of transmission and the architecture, we can design the
communication infrastructure and communication paradigm
of the NoC, whose communication infrastructure includes the
topology, router and channel, and communication paradigm
includes power management, packet routing and switching
techniques.

As discussed in Section III-A, the architecture design of
an AI chip influences the energy consumption of inter-chip

communications and the burden of loading data from mem-
ory, thus the architecture design of AI accelerators is one
opportunity for optimizing the communication network.
In addition, to optimize the communication network in the
neural network, there are several methods to decrease the
latency and energy of NoC:
• Data reuse. The data read from the memory can be
reused using the broadcast technique [28]. In our work,
we design a new type of routers with the broadcast func-
tion (see Section V-A) to reuse the data transferred from
the memory to all the tiles in one chip. This method can
increase the utilization of data read from memory and
decrease the latency of the intra-chip communication
network.

• Topology. The intra-chip NoC topology can be opti-
mized to boost the performance and reduce the energy
consumption of the communication network in AI chips.
We analyze the characteristic of data transformation and
compare the performance and energy of different intra-
chip topologies in Section V-B and Section VI-A.

• Router architecture. In the NoC network, the important
components are routers. The router architecture can be
redesigned to decrease the latency and energy of NoCs
in Section V-C.

IV. OUR PROPOSED PROCESSOR ARCHITECTURE
As aforementioned, neurons of one CNN layer may be
mapped to several chips that induces more inter-chip commu-
nication and memory cost. One feasible method is to place
more tiles in one chip. In our work, we assume P tiles are
placed in one chip. Our experiments show that P = 64
can achieve a good trade-off between chip complexity and
performance, in contrast to P = 16 in DaDiannao. As we
place 64 tiles in one chip, the complexity of communication
between tiles grows rapidly compared with 16 tiles. With
the growing number of tiles, one common and efficient NoC
topology is mesh [22]. In order to decrease the dimension
of topology, 64 tiles are organized as four similar minor
topologies (MT) in one chip. In the MT, each tile equips with
a router (denoted by R), and 16 tiles represented as green
squares are arranged into a 4x4 mesh shown in Figure 15.
We use one router R0 in the center of the chip to assign the
on-chip memory resources.

In the transformation process of CNNs, the input neurons
are fetched from the central memory to each tile and the
weights of synapses are fetched from the memory of tiles.
After that, these input neurons and the weights are calculated
in each tile. Finally, the calculation results of neurons are
transmitted from tiles to the central memory.

The above process is implemented based on the topology
in Figure 15. From the network point of view, the above
transformations can be divided into two processes:
• Data-in process: The input data is transmitted from R0
to other 64 routers. As some packets including the same
data are transmitted from the same source to different
destinations, these packets are duplicated.
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FIGURE 15. The novel architecture of AI processor.

• Data-out process: The results of all output neurons are
transmitted from 64 routers to R0.

V. NOC OPTIMIZATION
In this section, we propose optimizations of the commu-
nication network from three aspects: data reuse, topology
optimization and router optimization.

A. DATA REUSE
As described in Section IV, the traffic is transmitted from
router R0 to routers R1 ∼ R16 in one MT in the data-in pro-
cess. And for routers, most packets travel from the same input
to different outputs in the data-in process. This characteristic
leads to large latency because of the long waiting time before
entering routers. In order to decrease the latency, we apply
the broadcast to the router.

1) ORIGINAL TRANSMISSION SCHEME
OF DATA-IN PROCESS
The original scheme uses the regular routers in the commu-
nication network, which results in large transmission latency
between the memory and tiles. For example, in Figure 15,
the data is first transmitted from R0 to R16. Their next step
is from the R16 to R12, R15 and the tile connected to R16.
In this process, the data are transmitted in the form of packets
as shown in Figure 16. Each packet consists of flits which
are divided into head flit, body flits, and tail flit. The head
flit contains the source and destination of the packet. The
body flits is the main carrier of data transmission. In R16,
three packets (A, B and C) which contain the same data
are transmitted from the input East to outputs (West, North
and Eject) with arriving different destinations shown

FIGURE 16. Message structure [13].

FIGURE 17. Transmission of three packets include the same data in the
regular router. (a) Regular router architecture. (b) Transmission process of
three packets in the crossbar of regular router.

in Figure 17(a). The router in Figure 17(a) is one regular
router in the mesh topology. The regular router has four
pipelines: buffer write (BW), routing logic (RL), switch
allocation (SA), crossbar switch (CS). In switch allocation,
the crossbar allocates only one input for one output at a
time. When the traffic comes from the same input to different
outputs or traffic from different inputs to the same output,
the switch allocation can only handle these traffic one by one.

When these packets (A, B and C) go through the cross-
bar, the switch allocation allocates one packet (assume the
packet A) going through the crossbar first. The packets B
and C need to wait until whole flits of packet A go through
the crossbar, then switch allocation allocates the next packet
going through crossbar, shown in Figure 17(b). If most pack-
ets go through the router from the same input to different
outputs, the latency cost in the router will be large because
of the long waiting time before transmitting the crossbar.

2) BROADCAST TRANSMISSION SCHEME
OF DATA-IN PROCESS
For one convolutional layer in CNNs, in the data-in process,
the inputs of neurons are ifmaps, which are transmitted from
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FIGURE 18. Broadcast. (a) Broadcast router architecture. (b) Transmission
process of packets in the crossbar of broadcast router. (c) Head flit of
broadcast packets.

the central memory to each tile in the chip. If the convolu-
tional layer is mapped to all the tiles in the chip, ifmaps for
these tiles are identical and can be reused in the transmission.
In the original transmission scheme, the packets from R0 to
routers R1 ∼ R16 are 16 copies of ifmaps for a convolutional
layer. For example, three packets (A, B and C) stores the same
data of ifmaps and their destinations are respectively R16, R15
and R12. If we use the broadcast technique, these duplicate
packets can be reduced to one broadcast packet (A). The
broadcast packet stores the same source and different desti-
nations in the head flit of packets as shown in Figure 18(c).
In the broadcast router shown in Figure 18(a), one packet (A)
is transmitted across the router and packet A is copied to
three packets (A1,A2 and A3) which have the same data
and different destinations. To implement the broadcast in
routers, we add the parallel transformation parts in the new
router architecture and redesign the crossbar linking method.
In the regular crossbar linking, each row line (East) only
connects one column line (West) at the same time shown
in Figure 19(a). This method guarantees orderly transmis-
sions of packets from same input to different outputs in
routers. In the broadcast router, the crossbar is redesigned to
transmit the same data to different outputs so that each row
line (East) can connect several column lines (West, North
and Eject) at the same time shown in Figure 19(b). After
buffer write and routing computation, we establish paths
between the input East and outputs (West, North and Eject)
in the crossbar. By setting the parallel paths, each flit of the
packet is transmitted three copies to different outputs. The
latency of the data transmission is decreased in the crossbar
because flits are transmitted through it in a parallel way.

FIGURE 19. The architecture of crossbar. (a) Original crossbar
architecture. (b) Optimized crossbar architecture.

As shown in Figure 18(b), after SA pipeline, the flits of packet
A are transmitted to the outputs as packets A1, A2 and A3
in parallel.

B. TOPOLOGY OPTIMIZATION
The performance and energy are two important metrics in the
design of the communication network. The topology of the
network defines the connection between routers and tiles, and
it plays an important role in the NoC network. Although the
mesh topology is used in Figure 15, more topologies, such as
torus and tree, can be chosen for specific applications. The
torus topology which adds some direct links between routers
decreases the hop-counts of two routers in the bordering
edges of the mesh topology.Meanwhile, the tree topology has
a different connection between routers to further decrease the
number of routers.

In the Section IV, the analysis of the traffic pattern shows
that most of the packets are transmitted between the central
memory and tiles while rarely transmitted between the tiles.
Thus we want to find a topology that decreases the latency
and energy between the central memory and tiles.Meanwhile,
the freedom of transmission between tiles can be sacrificed.

Three topologies can be applied in the intra-chip com-
munication network: mesh, torus and tree. After using the
broadcast routers in the communication network, the traffic
arrives at different tiles almost at the same time in the data-in
process. If the numbers of neurons mapped to different tiles
are similar, the end times of these calculationswithin different
tiles are also close to each other. Thatmeans the flows begin to
transmit at a similar time in the data-out process. The similar
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FIGURE 20. Tree topology of one chip.

start time of the traffic flows leads to the crowd in the com-
munication network. In order to achieve short latency and less
communication energy, the tree topology shown in Figure 20
is preferred over mesh or torus due to fewer used routers
and links in this topology. The detailed comparisons between
different topologies will be discussed in Section VI.

C. ROUTER OPTIMIZATION
In this section, we design one novel router architecture
according to the traffic patterns in the data-in and data-out
process. We analyze the traffic paths between routers in tree
topology and find out that many routine patterns are fixed.
Based on this observation, we redesign the router architecture
to speed up the transmission and improve the throughput of
routers.

1) DATA-IN PROCESS
Before the traffic starts, the results of the former layer is
stored in the central memory. The data is transmitted from
the central memory to tiles, and these tiles begin to calculate
the MACs of the next layer.

As shown in Figure 20, the traffic flow broadcasts from the
router R0 to the 16 tiles through the R1 ∼ R5. The traffic is
transmitted from R0 to R1, then R1 broadcasts to R2 ∼ R5.
For example, in the transformation of router R1, the traffic
is transmitted from one stationary input (Inject) to different
outputs (East, West, South and North). The buffers in regular
router architecture except the buffer of input Inject are idle in
the data-in process. Thus, we optimize the number of buffers
of routers and only use one buffer in simplified router shown
in Figure 21. We link this buffer with five inputs (East, West,
North, South and Inject). At a time, only one input enters the
traffic flow which means there is no contention in the buffer
in the data-in process.

FIGURE 21. Router architecture with simplified buffer.

FIGURE 22. Optimized router architecture in the data-in process. (a) Two
packets are transmitted through the router in the data-in process.
(b) Transmission process of two packets in the router.

Although we simplify the architecture of routers,
the throughput of routers has not increased. We add an
additional path to the router as shown in Figure 22(a). Each
output has two paths connecting to the two inputs of next
routers. For example, the inputs Inject1 and Inject2 are
connected with the two paths of the same output of the
previous router. Two packets (A, B) enter inputs Inject1 and
Inject2 separately. Both packets A and B are transmitted to
the outputs East, West, South and North. In the regular router,
the results of routing computation are stored in the look up
table (LUT). The routing request of one packet which has
known the source and destination from the routing compu-
tation is represented as ‘Yes’ in the LUT in Figure 23(a).
The LUT configures the connections of the crossbar. As we
redesign the router architecture, the LUT is transformed as
shown in Figure 23(b). The input rows are reduced to Input 1
and Input 2 as the optimized router only has two buffers.
Meanwhile, because of the broadcast, each input can connect
several outputs in the crossbar. Each row has four routing
requests in the LUT, and flits of packet A and packet B can
be transmitted in parallel. The packets A, B are transmitted
to four different destinations, and the transmission process of
these two packets in the router is shown in Figure 22(b).
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FIGURE 23. Look up table optimization. (a) The general LUT.
(b) Optimized LUT.

FIGURE 24. Router architecture in the data-out process. (a) Four packets
are transmitted through the router in the data-out process. (b) Optimized
LUT. (c) Transmission process of four packets in the router.

2) DATA-OUT PROCESS
In theData-out process, the outputs of neurons are transmitted
from tiles to the central memory. The traffic is transmitted
from 16 tiles to the router R0 as shown in Figure 20. The
traffic is transmitted from R2 ∼ R5 to R1, then R1 to R0. In the
transformation of routers, the traffic enters different inputs
and merge to the stationary output. However, these packets
that merge to the same output have the same routing request
and connections of the crossbar because of the novel router
architecture shown in Figure 24(a). For example, in router
R1, the traffic which comes from inputs East1 and South1 to
the output Eject1 has the same crossbar connections from
Input1 to Eject1. The configure in Input1 row and Eject1 col-
umn of the LUT is ‘‘Yes’’ shown in Figure 24(b). The priority

of packets entering buffer and switch allocation is first come
first serve (FCFS). In the crossbar, two paths of output Eject
can export two flits at the same time. The transmission pro-
cess in the router is shown in Figure 24(c).

VI. EXPERIMENTAL RESULTS
In this section, we first present the performance and energy
results of our methods from three aspects: broadcast, topol-
ogy and router architecture. Then we compare the perfor-
mance and energy of communication network between our
design and DaDianNao [9], Eyeriss [18]. We simulate the
design in C++ and all the experiments are conducted on
a computer with a 3.4 GHz Intel i7 processor and 32 GB
memory running Linux. The benchmarks are Alexnet [20],
VGGNet [23], Drive [1], Neuflow [26]. The parameters for
the NoCs are set as 64-bit flit and 16-flit packet.

A. THE RESULTS OF OUR OPTIMIZATION METHODS
In this section, we compare our work with a baseline design,
which uses 1) mesh topology for each MT in the chip (see
Figure 15), 2) 64 tiles for each chip, and 3) regular 4-pipeline
wormhole pipeline in each router.

1) IMPACT OF BROADCAST
In this section, we present the latency and energy compari-
son between the baseline and the broadcast router to mesh
topology. Table 3 shows that the benchmarks we have tested
between baseline and the broadcast router. The latency results
are intra-chip communication latency. Table 3 shows the
latency results of adding broadcast routers are 8% of the
baseline and the energy results of adding broadcast routers
are 9% of the baseline.

TABLE 3. Comparisons of latency and energy results of benchmarks
between baseline and broadcast router.

We use three convolutional layers in Alexnet benchmark
to explain the reasons for the improvements. The broadcast
technique is used in the data-in process while it influences
both the data-in and the data-out process. In the data-in
process, the former layers’ results are transmitted to the tiles
to complete the computation. For example, the outputs of the
1st convolutional layer which are transmitted from the central
memory to tiles are the input of the 2nd convolutional layer.
The input size is 27*27*96 and the size of 256 3D convolution
filters is 5*5*96. We map filters to 64 different tiles in one
chip and each tile has four 3D filters with the size of 5*5*96.
Also, the calculation amounts in tiles are roughly the same,
the amounts and value of the input data are the samewhich are
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TABLE 4. Comparisons of latency results between baseline and broadcast
router.

transmitted to different tiles. Then each tile has 27*27*4 size
of outputs after MACs of convolution and these output data
converges to the central memory.

With applying the broadcast, the latency of Data-in
decreases to 7% latency of the baseline in Alexnet. That is
because the broadcast router can transfer the traffic from the
same input to different outputs in parallel and the number of
packets is reduced. In the data-out process, because the traffic
arrived at different tiles at a similar time, the ending time of
computation is also similar. When the packets are transmitted
back to the central memory, the network is more crowd than
it in the baseline. The latency of the data-out process is 4.63X
larger of the baseline.

However, the amount of data of the data-in process is larger
than the data-out process in general. The broadcast tech-
nique is worth adding. After using the broadcast technique,
the number of packets can be merged into one if packets have
the same data and from the same input. Because of the shorter
latency and fewer packets, the energy of the process has been
decreased to 9% in Table 3.

TABLE 5. Comparisons of latency results of benchmarks among different
topologies.

2) TOPOLOGY COMPARISON
In this section, we present the results of three different topolo-
gies: mesh, tree, torus. Table 5 shows that the latency of tree
topologies is 7.9% reduction thanMesh and the energy is 37%
of Mesh topology. Thus we choose the tree topology as our
topology.

In general, the latency of torus has better performance than
the mesh and tree topology. However, in the result of Alexnet,
the latency of the torus is larger than tree and mesh topology.
As shown in Figure 25, we can find that the benefits of torus
topology in the data-in process are counteracted in the data-
out process. Although the torus decreases the hop-count from
the central memory to the tiles, the contention degree of traffic
in Data-out process is increased after applying the broadcast
method.

Also, in the torus and mesh topology, the amounts of
routers are 3X of the routers in torus topology. In torus

FIGURE 25. Latency of different topology in Alexnet.

topology, the routers in the edge have one or two more inputs
and outputs than routers in the mesh. The static power of the
input buffers in the torus topology costs significant energy
of NoC.

TABLE 6. Comparisons of latency and energy results of benchmarks
between TB and OTB.

3) ROUTER ARCHITECTURE OPTIMIZATION
In this section, we present the results of the architecture opti-
mization of the broadcast router. Table 6 shows the latency
and energy results comparison of TB (broadcast router in tree
topology) and OTB (the optimized broadcast router in tree
topology). The results show that OTB is 52% of TB and the
energy results of OTB are 39% of TB.

Intuitively speaking, adding one path in routers should
decrease 50% latency than before. For example, in the data-
in process, the input of R2 all comes from R1 and the packets
transformation is shown in Figure 22(a). When the packets
come, two different packets A and B come to enter the input
from Inject1 and Inject2, then the two packets go through
the routing computation and switch allocation. Thus each
packet needs these additional cycles to allocate the paths in
routing. The improvements in OTB’s latency is slightly less
than 50% of TB. The optimized router architecture of OTB
has less buffer, the static and dynamic power of the router are
decreased. Thus, the energy of OTB decreases more than 50%
of TB.

B. COMPARISONS BETWEEN DADIANNAO,
EYERISS AND OUR DESIGN
In this section, we present the comparison results among
DaDianNao [9], Eyeriss [18] and our design on five bench-
marks, in terms of the latency and energy consumption of the
communication network.
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TABLE 7. Comparisons of latency and energy results of five benchmarks between DaDianNao and our method.

1) COMPARISONS BETWEEN DADIANNAO
AND OUR DESIGN
For a fair comparison, we use mesh topology for inter-chip
communication and assign the same amount of computation
tasks to each computation units in both DaDianNao and
our design. The routers in the mesh topology are regular
4-pipelined routers. As shown in Figure 26, the left is a multi-
chip system composed of 16 DaDianNao chips which are
connected with mesh, and the right is a multi-chip system
formed with our design chips with mesh topology. We place
64 tiles in one chip (P = 64) in our design chip, while each
DaDianNao chip has 16 tiles.

FIGURE 26. The comparison of DaDianNao and our design system.

Table 7 shows that the latency of DaDianNao is 5.47× of
our design, and the energy is 7.5× of our design communi-
cation network. In the DaDianNao system (left in Figure 26),
each convolutional layer is mapped to four Dadiannao chips.
In our design system (right in Figure 26), each convolutional
layer is mapped to one chip correspondingly. In the Dadi-
annao system, as calculations of one convolutional layer are
completed, the results from each chip need to be transmitted
to the other three chips for the next layer calculations, so each
layer needs to spend some inter-chip transmission time to
transfer the results to the next layer. However, in our design,
the calculation results of each convolutional layer only need
to be transmitted from the central memory to each computa-
tion unit in one chip to complete the data transmission, thus
our design saves a large amount of inter-chip transmission
time. Meanwhile, the DaDianNao system uses more routers
because of larger mesh topology for inter-chip communica-
tion shown in Figure 26. The inter-chip communication of
DaDianNao consumes more energy because of more routers
in the communication network.

The intra-chip communication network of DaDianNao
chip and our design chip are tree topology shown in

Figure 5(b) and Figure 20. Our design uses 21 routers in
one chip while DaDinaoNao system uses 20 routers in four
chips. However, the optimization of router architecture in
our design reduces the transmission time inside the chip and
decrease the energy of routers in the chip. So our design
reduces the latency and energy of both inter-chip and intra-
chip transmission compared to DaDianNao.

2) COMPARISONS BETWEEN EYERISS AND OUR DESIGN
As shown in Figure 27, Eyeriss [18] uses 12 horizontal
X-buses connected to 168 processing elements (PEs) and
one Y-bus to determine which X-bus the data transmitted to.
Eyeriss has two largememory blocks. One is the global buffer
and another one is the off-chip memory. The data in Eyeriss is
transmitted from off-chip DRAM to PEswith traveling across
the global buffer.

FIGURE 27. The architecture of Eyeriss [18].

Table 7 shows that the latency of Eyeriss is 7.57× of our
design, and the energy is 3.03× of our design communication
network. From the aspect of transmission distance, the data
in Eyeriss need to be transmitted from off-chip DRAM to
PEs with travel across global buffer, while the data is trans-
mitted from the central memory to PEs in our design. Also,
the size of the global buffer is not large enough to store inputs
and weights of layers in CNNs, most data is stored in off-
chip memory. The bandwidth of data transmission is limited
(64 bits/cycle) from off-chip memory to the global buffer in
Eyeriss. In contrast, our design broadcasts the data from the
memory to all the tiles in one chip through optimized routers
simultaneously. Thus the latency of Eyeriss is much higher
than our design.

The energy of bus in Eyeriss is calculated based on param-
eters from [27]. The Eyeriss uses more control units of com-
munication than our design, but the power of bus control
units in Eyeriss is approximate 33% of the power of control
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units (routers) in our design. Thus the energy of Eyeriss is
only 3.03× of our design.

VII. CONCLUSION
In this work, we propose our processor architecture based
on the hierarchical architecture. We also optimize the topol-
ogy and router architecture to improve the performance
and energy of intra-communication network in chips. In the
results, we totally achieve better latency and energy results
than the baseline and other architecture design.
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