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ABSTRACT How to reduce the content placement cost of cloud content delivery networks (CCDNss) is a hot
topic in recent years. Traditional content placement methods mainly reduce the cost of content placement
by constructing delivery trees, but they cannot adapt to the dynamic deployment of cloud proxy servers in
the CCDNE . In addition, the traditional content placement method only provides delivery paths according to
local decision-making without considering global dynamics of the congestion in the CCDNs, which is also
one of the main factors causing high cost of content placement. To solve these problems, we propose a content
placement model based on Q-learning for the dynamic CCDNs, called Q-content placement model (Q-CPM).
This Q-learning approach can lead to better routing decisions due to up-to-date and more reliable congestion
values. Then, based on the Q-CPM model, an algorithm is proposed to construct the Q-adaptive delivery
tree (Q-ADT). In this algorithm, local and nonlocal congestion information is propagated over network
learning packets. Through this algorithm, the paths with low congestion cost will be selected and can adapt
to the dynamic cloud delivery environment. The experimental results show that the method can adapt to
the dynamic changes of the CCDNss flexibly and reduce the overall congestion cost of content placement

effectively.

INDEX TERMS Content placement, dynamic CCDNSs, congestion information, Q-learning.

I. INTRODUCTION
By deploying a large number of data centers and edge servers,

the traditional content delivery networks (CDNs) release
the replicas to the “edge” of the network where users can
obtain the content as close as possible and avoid the con-
gestion of the central server [1], [2]. However, the tradi-
tional CDN systems are difficult to expand since it has high
deployment cost. With the development of cloud computing,
resource leasing (such as storage and bandwidth) is allowed
to build CDNs in the cloud, called cloud content delivery
networks (CCDNs) [3]. Content providers (CPs) can rent
cloud resources or leverage the services provided by public
CCDN infrastructure providers (e.g., Amazon CloudFront
and Google Cloud CDN) to build their own CCDN. CCDNs
leverage the flexibility of the cloud to distribute content on
the Internet quickly and easily. Amazon provides Cloud-
Front [4] as a content distribution service, and CloudFont
also provides a pay-as-you-go model where customers can
register their own servers to build their own CDN. MediaWise
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Cloud [5] provides a new cloud coordination framework that
any user can become a CDN provider and offer a pay-as-you-
go model. Unlike Amazon CloudFront’s use of its own cloud
services, MediaWise Cloud leverages several public cloud
providers to deliver services. The CCDNs is able to enhance
the scalability, the flexibility and the elasticity while lowering
the cost of content storage and delivery [6].

Content placement is one of the key technologies in
CCDNs. To save the cost of content placement, the CPs
usually reduce the number of replicas by building the mul-
ticast delivery trees [7]. However, most delivery tree building
methods aims at static networks and cannot adapt to the
dynamic characteristics of frequent changes of cloud proxy
server in CCDNs. In addition, network congestion is also one
of the main factors that cause the high cost of traditional
content placement methods of CCDNs. Traditional content
placement method only provides delivery paths according to
local decision-making without considering the global dynam-
ics of the congestion in the CCDNs. Therefore, in view of
these dynamic features of CCDNSs, how to reduce the cost of
content placement is still a challenging problem.
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FIGURE 1. Reinforcement learning framework.

The reinforcement learning method is a solution to the
global optimization by learning its own experience. The rein-
forcement learning task includes two main subjects, Agent
and Environment, where Agent is the learner and also the
decision maker. The learner achieves his goal by interact-
ing with the environment. The interaction process is shown
in Figure 1. From the figure, it can be seen that this is a
serialization process. At time ¢, the learner sends out action
a; based on the current state s;, the environment responds,
and generates new states 5,41 and corresponding returns ;4 1,
where states s and returns r appear in pairs. Reinforced
learning methods can acquire knowledge in the environment
of action evaluation, and constantly improving the action
plan to adapt to the environment while facing the dynamic
selections [8]. Q-learning is a typical method in reinforce-
ment learning which has been widely used [9]. Based on
Q-learning, the Q-routing algorithm [10] is proposed for
packet routing of the dynamic network. Compared with tra-
ditional routing methods, this method can balance the load
of dynamic networks better and provide a more reasonable
solution for content delivery.

In this paper, a content placement model based on
Q-learning for dynamic CCDN:ss, called Q-content placement
model (Q-CPM), is proposed. Based on the Q-CPM, an
algorithm is proposed to construct the Q-adaptive delivery
tree (Q-ADT). In this algorithm, the local and nonlocal con-
gestion information can be derived by the learning packets.
The local congestion information indicates the time taken for
the packet to be transmitted from a cloud proxy server to its
neighbor. The nonlocal congestion information gives a global
view of the congestion conditions from the current cloud
proxy server to the terminating proxy server. Each cloud
proxy server stores the information at Q-table and makes the
update using learning packets. Therefore, the algorithm can
adapt to the dynamically changing network and select a path
with low congestion cost to deliver data.

The remainder of the paper is organized as follows.
We review related studies in Section II. In Section III,
we introduce the Q-CPM model which is a novel content
placement model for the dynamic CCDNs. Furthermore,
we present an algorithm to construct Q-ADT which is a
kind of adaptive delivery tree in Section IV. Then, we show
the simulation results in Section V to evaluate our proposed
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algorithms. Finally, we give concluding remarks as well as
future directions in Section VI.

Il. RELATED WORK

Information delivery is a critical research topic in the future
network [11], [12]. As one of the most important technology
of information delivery, content placement has been widely
studied by many researchers. Kangasharju et al. [13] formu-
lated the content placement as a combinatorial optimization
problem and provided an optimal replica placement solution.
Jia et al. [14] proposed two heuristic algorithms to solve
the replica placement problem by constructing the deriva-
tion tree. Wendell ef al. [15] proposed a distributed server
selection mechanism that can effectively balance the load
between edge servers. Aram et al. [16] studied the problem
of optimal replica server deployment and content placement
in the urban content delivery network and proposed an opti-
mization design to minimize the cost of server deployment.
Xu et al. [17] proposed a joint optimization method to reduce
the request load of content distribution network. However,
the above methods need to deploy a large number of edge
servers with high cost.

As cloud computing develops, CPs are able to build their
own CCDN by leasing cloud resources. Recently, exten-
sive research efforts related to CCDNs have focused on
content placement optimization. Haghighi et al. [18] and
Zeng et al. [19] proposed a QoS based greedy heuristic
algorithm to optimize the placement of replicas in CCDNs.
Broberg and Tari [20] proposed a low-cost delivery mecha-
nism by placing content in different cloud storage networks
and then redirecting requests of users to the corresponding
replicas. Hu ez al. [21] formulated the content placement as an
optimization problem to reduce the overall flow and the delay.
To reduce the cost of content placement in CCDNs, many
scholars have done a lot of research. Salahuddin et al. [22]
and Lin ez al. [23] designed and implemented a cloud storage-
based content delivery framework to assist with replica place-
ment to achieve optimal content delivery on the cloud under
diverse needs, effectively reducing the content placement
cost. Lu et al. [24] proposed a session-based cloud video
delivery network framework for the dynamic characteristics
of mobile users in cloud video delivery networks which effec-
tively reduced the cost and improved the performance of the
algorithm. Documents [25] and [26] propose efficient cache
placement strategy in wireless content delivery networks.
Zheng and Zheng [27] propose an improved heuristic genetic
algorithm for static content delivery in cloud storage and
obtain optimal content delivery program. However, all these
methods have low scalability since they are introduced with-
out considering the changes of users’ demands sufficiently.

To solve this problem, most CPs use a multicast tree struc-
ture to enhance the scalability while reducing the network
overhead in the content delivery processes. Pierre et al. [7]
proposed a tree building algorithm and designed a content
replacement strategy based on the hot part of the replica.
This method has good scalability, but it does not consider the
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influence of network congestion. Gong et al. [28] proposed
a multicast tree building method based on the Steiner tree in
order to achieve lower cost and lower power consumption.
Aibin et al. [29] focus on a problem related to joint optimiza-
tion of unicast, anycast, and multicast traffic. They proposed
several heuristic algorithms and the results show that the mul-
ticasting provides the best performance in content delivery
than unicasting and anycasting. Due to the inherent uncer-
tainty in network links, Fu ef al. [30] model the network as an
uncertain graph, determines the link between the source desti-
nation nodes, and reduces the content delivery path detection
cost as a whole. Nowadays, CPs can lease cloud resources to
dynamically establish cloud based content delivery networks.
However, traditional content delivery methods are mostly
directed to static networks with unchanged network status and
cannot be directly applied to the dynamic CCDNSs.

Reinforcement learning method can adapt to dynamic net-
work  scenarios. For example, Narayanan and
Jagannathan [31] proposed an optimal adaptive scheduling
method based on hybrid Q-learning for large-scale uncertain
interconnected systems. Alsheikh er al. [32] mapped the
stochastic networks into the Markov decision process (MDP)
models and proposed various reinforcement learning meth-
ods to solve them. In order to reduce the traffic load in
future cellular networks and achieve better caching efficiency,
Gu et al. [33] propose a distributed cache replacement strat-
egy based on Q-learning. Psounis et al. [34] formulated the
problem of obtaining an optimal replacement algorithm with
respect to hit rate as a Markov decision process, and obtained
an online replacement algorithm that is optimal condition-
ing on the state of the Markov process. However, few of
existing work investigates the content placement optimization
using the reinforcement learning method in dynamic CCDNS.
Because of the dynamic characteristics of cloud proxy server
in CCDNs and the dynamic changes of network congestion,
the network connection is uncertain, and we cannot know the
real situation of network connection. By applying Q-learning
method to CCDNSs, learning knowledge can be acquired
through trial and error learning, and the next routing decision
can be determined based on the information previously learnt.
So it can adapt to the changing environment.

In this paper, a novel content placement model based on
Q-learning is proposed for dynamic CCDNSs. This model
uses the Q-learning approach in order to make better routing
decisions since it can derive the up-to-date information of
network topology and congestion. Furthermore, we present
an adaptive delivery tree construction algorithm based on
the proposed content placement model. The algorithm prop-
agated local and nonlocal congestion information over the
network learning packets. Through this algorithm, a path with
low congestion cost is selected and can adapt to the dynamic
cloud delivery environment.

IIl. CONTENT PLACEMENT MODEL FOR DYNAMIC CCDNs
Traditional CCDNs network architecture consists of user,
source server and cloud proxy server. As shown in Figure 2,
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TABLE 1. Notations used in this paper.

Notation | Descriptions
S the state space
A the action set
A, the set of all optional actions in state s
R :S§xA | the reward function
0, (k.d) the esti.mat.ed congestion cost from node i
i to termination node d through node &
f the best congestion cost estimation
N() the neighbor of node i
; the queuing time of the request packet in the
d queue of node i
s the time taken for the packet to be
transmitted between two nodes
V4 the discount factor
T a certain time interval
dis the ’ digtance from the sender to the
destination node
o the source server node
D; the destination node j
g ( D ) the node sequence from node D; to its
’ terminating node

the source server sends a copy of the data to the cloud proxy
server. When the user accesses the data content, the cloud
proxy server near the user preferentially provides the data
content to the user.

In this part, we analyze the dynamic characteristics for
content placement of CCDNs and introduce our proposed
content placement model. First of all, we define a list of
notations that will be used throughout the paper, as shown
in Table 1.

A. DYNAMIC CHARACTERISTICS OF CCDNs

First, we take the multicast delivery tree as an example to look
into how the content placement methods work. In CCDNS,
we classify the cloud servers into three types, including the
source servers, the destination cloud proxy servers and the
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FIGURE 3. Traditional delivery tree structure.

intermediate cloud proxy servers. Initially, the source servers
store the original data and place the content to the destination
cloud proxy servers. At the same time, the intermediate cloud
proxy servers can participate as relay servers in the process of
content placement, but the intermediate cloud proxy servers
do not store content. For convenience, we consider only one
source server and call the source server as the source node.
Similarly, we call all cloud proxy servers as nodes and the
intermediate cloud proxy servers as relay nodes. As shown
in Figure 3, a delivery tree originated from the source node is
built based on a static topology. When the network scenario
remains unchanged, the scheduled tree can achieve an effec-
tive delivery with low cost. However, the network scene is
dynamic in CCDNs.

The dynamic characteristics of CCDNs can be summarized
as follows.

o Dynamics of the topology: CPs can lease cloud proxy
servers when needed and terminate leasing when not
needed. Thus, the allocation and de-allocation of the
cloud proxy servers make the topology of CCDNs
change dynamically.

o Dynamics of the network congestion: In CCDNs,
the network congestion changes with the number of
packets processed by the cloud proxy servers. It is diffi-
cult to obtain the global information of congestion for
the traditional content placement methods. They can
only provide the relatively fixed delivery paths based on
local decision-making.

Unfortunately, distributing data along the scheduled deliv-
ery tree will result in a higher congestion cost since it cannot
adapt to the dynamics of the topology and congestion in
CCDNs well. Thus, the content placement algorithm that
comprehensively consider these dynamic factors should be
tailored for CCDNs.

To this end, a novel content placement model based on
Q-learning (Q-CPM) is proposed. Our Q-CPM uses an
adaptive delivery tree structure which adjusts the strat-
egy constantly according to the dynamic network situation.
Figure 4 shows the structure of the adaptive delivery tree.
The black circle in the figure represents the source node. The
rectangle represents the destination node and the small circle
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represents the other nodes in the network. The virtual circle
indicates the node which has been removed or has a high
congestion. The delivery tree connected by the dotted line is
a potential solution, that is, the path may be selected if these
nodes exist or remain low congestion. Our adaptive delivery
tree structure can adjust the path (e.g. the delivery tree is
formed by the solid lines) according to the existence of the
node and the congestion status of the node, thus maintaining
a low congestion cost.

B. Q-LEARNING BASED CONTENT PLACEMENT MODEL

In this part, we propose a Q-learning based content placement
model, called Q-CPM. First, we define a CCDN as a directed
graph G = (V, E), where Vis the vertex set which represents
the nodes in the network, and E is the edge set which rep-
resents all possible links in the network. Next, the relevant
terminologies are given as follows.

Definition 1 (State Space): The state space can be
denoted by S where a state s € S is transferred to
the next state s' by taking an action a. The state of
satisfying the termination condition is called a termina-
tion state. In our problem, each step of the decision-
making process requires the current node to select the
next neighbor node to send the data. So, the current node
(e.g. v € V) can be looked as the current state (e.g. s = v)
and the next node (e.g.v' € V) as the next state (e.g. s’ =
V). Specially, the state arriving at the termination node (in
Definition 2) is the termination state.

The way we construct the distribution tree is that each
destination node requests to establish a connection with other
destination nodes, and finds the destination node whose dis-
tance is closer to the source node than itself. If there is no
such destination node, it will directly establish a connection
with the source node. When all destination nodes establish
a connection, it will construct a distribution tree. We define
the node that satisfies the connection condition with the
destination node as the termination node (in Definition 2).

Definition 2 (Termination Nodes): If the node is the source
node or other destination node that has obtained a copy of the
data and is closer to the source node than the sender, we refer
to this node as the terminating node of the sender.
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Definition 3 (Action Set): In Q-learning algorithm,
the action set is the set of all actions that the current state
reaches the next state. In our problem, the path selection from
the current node to the next node is the action selection. All
optional paths of the node constitute the action set A. And
we have A = UsesAs = E where Ag represents the set of all
optional edges in state s.

Definition 4 (Rewards): In Q-learning, R : S x A is used
to represent the reward function. If (s, a) is transferred to
the next state s', then the reward function can be written as
r (s'ls, a). In our problem, if the current node j reaches the
next node i through path selection, the reward function of the
process is represented by r (j, i).

Based on Q-learning, we learn the state of the network by
Q value and then use the Q value to make routing decisions.
Each node j in the network represents its own view of the
network state through its Q-table. The action at node j is to
find the neighbor node with the lowest expected congestion
cost to deliver the data packet, so that the congestion cost of
the request to its terminating node is the lowest. In order to
ensure that each step of the path selection process has con-
gestion awareness, we define the congestion cost estimation
as follows.

Definition 5 (Congestion Cost Estimation): We denote
Qi (k, d) as the congestion cost estimation of node i trans-
mitting the request packet to the terminating node d passing
through node k. When the request packet is sent from node j
to node i, node i sends its best congestion cost estimation f for
the terminating node d back to node j in the form of learning
packets. Therefore, the best congestion cost estimation can be
defined as

f = mingeni)Qi (k, d), (D

where N (i) represents the neighbor of node i.

Definition 6 (Reward Function): For the reward function r,
we consider the network congestion situation by introducing
the queuing time of packets. Then, the reward from state to
state can be written as

r(,i=956+t, 2)

where ¢; denotes the queuing time of the request packet in the
queue of node i and § denotes the time taken for the packet to
be transmitted from node j to node i.

Definition 7 (Q Value Updating): The Q value is updated
by the following formula

Qi (i, ey = Qj s ) gpg + v (F +7 G, D) — Qj (i, d) 1)
3)

where y [35] is the discount factor.

IV. ADAPTIVE DELIVERY TREE (Q-ADT) BUILDING
ALGORITHM BASED ON Q-CPM

Based on the Q-CPM mentioned above, we design an adap-
tive delivery tree building algorithm (Q-ADT) for CCDNs.
First, we define a Q-table and introduce two kinds of data
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TABLE 2. Q-Table.

Current Node D;
Next Path Q value Termination
Node Node
1 (D1 35 S
2 ( Dl 2) 4.7 S
D, (D,, D) 25 D,
3 (D, 3) 52 S

packets for Q-ADT. Next, a Q-learning based adaptive rout-
ing algorithm is used to select a path from each destina-
tion node to its termination node. Then, the corresponding
Q-value in Q-table is updated by the Q-value updating
algorithm according to the feedback learning packets. Finally,
the path from the termination node to the destination node
is found by reverse routing information and the Q-ADT is
constructed.

A. Q-TABLE AND PACKETS IN CCDNs
In our Q-learning based algorithm, we use a table to store the
Q value, called Q-table. We set up a Q-Table for each node in
CCDNs. As shown in Table 2, each node’s Q-Table consists
of four fields: Next Node, Path, Q value, and Termination
Node. The Next Node field corresponds to the next state
space of Q-learning. The Path corresponds to the action space,
representing the path from the current node to the next hop.
The Q value represents the expected congestion cost from
the node to the destination node through the next hop. The
Termination Node corresponding to the node that arrives
at the termination state and the current node represents the
current state.

There are two kinds of packets in the network, request
packets and learning packets. The request packet format is:

< sender location, node sequence, next hop >

The sender location is the geographic location of the
sender. The node sequence is the sequence of nodes through
which the request packet passes, and the next hop field is the
next hop node selected by the current node according to the
Q-table. The learning packet format is:

< sender location, respondent location, path delay,

future delay, termination node flag >

where sender location indicates the location of the sender.
respondent location is the location of the node that sends the
learning packet. path delay is the delay from the last hop to
the current node, it’s equivalent to the § mentioned above.
future delay represents the estimated value of future conges-
tion cost from the current node to the destination node, it’s
equivalent to the f mentioned above. termination node flag
indicates whether the current node is the termination node.
If it is, set the value to 1, otherwise to 0.
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Algorithm 1 Q-Learning Based Adaptive Routing

Algorithm 2 Q-Value Update

For the node i that received the request packet
termination node flag < 0
Add itself to the node sequence
path delay < Delay sent from last hop to node i
IF node i is the source node
termination node flag < 1
Send a learning packet to the last hop
Else IF node i is the destination node
SenderSourceDist < distance from sender
to source node
NodeSourceDist <—distance from node
i to source node
IF NodeSourceDist <
&& Existing data
termination node flag < 1
Send a learning packet to the last hop
Else
future delay<« min Q;(k,d)
keN(i)

SenderSourceDist

Send a learning packet to the last hop
Continue to send request packets to next hop k
Else
future delay<« min Q; (k,d)
keN (i)

Send a learning packet to the last hop
Continue to send request packets to next hop k

B. Q-ADT BUILDING ALGORITHM

During the building of Q-ADT, each destination node is used
as a sender to send the request packet. So, a path connecting it
to the terminating node can be derived. When all destination
nodes find paths to connect themselves to their termination
nodes, an adaptive delivery tree is constructed and the con-
nections among the source node and all the destination nodes
can be achieved.

We divide the building process of Q-ADT into three
phases. The first phase is responsible for path selection.
In this phase, each destination node is used as a sender
and the neighbor node with the smallest Q value is selected
to send the request packet. As shown in Algorithm 1,
when a node receives a request packet, it adds itself to the
sequence of nodes and calculates the delay & sent from the
last hop to the local node. Then, it determines whether it
is the terminating node of the destination node. If so, set
the termination node flag to 1 and send the learning packet
to the last hop according to the node sequence. If not,
calculate the future delay according to Equation (1), and send
the learning packet to the last hop. Then, we keep looking
for the next hop according to the Q-table. The operations are
repeated until it reaches the terminating node. In Algorithm 1,
“Existing data” means the node has obtained a copy of the
data.

The second phase is responsible for the learning phase.
As shown in Algorithm 2, node j sends the request packet
to the downstream node i firstly. If the node j receives
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Node j sends a request packet to its downstream node i
IF the learning packet from node i is received within time
interval T
8 < path delay
f < future delay
t; <Wait time in the packet queue of node i
IF termination node flag
r(, i) =r(,i) —1/dis*
Update Q;(i, d) according to Equation (3)
Else
r@G,i)=56+t
Update Q;(i, d) according to Equation (3)
Else
r(j, i) < r(j, D)+c
Update Q;(i, d) according to Equation (3)
k = argminy Qj(k, d)
Resend the request message to the downstream node k

the learning packet sent by i in a certain time interval T,
it judges whether i is the terminating node according to the
termination node flag. If so, we change the reward function
to r (j,i) = r (j, i) — 1/dis*(dis indicates the distance from
the sender to the terminating node. —1/dis* ensures that the
smaller the distance, the smaller the return value, and the
easier it is to select the path to that terminating node the next
time. It can also ensure that the sender eventually finds a
terminal node closest to itself). Then, the Q value is updated
according to Equation (3). If it is not a terminating node,
the queuing waiting time of the request packet in node i is cal-
culated. The reward function is calculated by the path delay
and future delay feedback from the learning packet according
to Equation (2).

If the node j does not receive the learning packet sent by
the node i in the time interval T, the node i is considered
to be absent and the node j changes the reward function to
r (j, i) = r (j, i) +c(c is a large constant, so that we can get
a large value of the reward function, make the corresponding
Q value larger, and avoid congestion caused by sending data
to the node next time). Then, the Q value is changed according
to the Equation (3) and the downstream node k is reselected
to send the request packet according to the Q-Table.

For the calculation of the reward function, we can further
explain in Figure 5, the reward function calculation can be
divided into three situations:

1) AsshowninFigure 5, if the node & receives the learning
packet sent by source node O in a certain time interval
T and O is the terminating node of sender Dj;, then k
calculates the reward function according to r (j, i) =
r(, i) — 1/dis>.

2) If the node k receives the learning packet sent by node
i and i is not the terminating node of sender D;, then
k calculates the reward function according to r (j,i) =
S+t
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FIGURE 5. Example diagram of the Q-ADT build process.

3) If the node k does not receive the learning packet sent
by the node i in the time interval 7', then k calculates
the reward function according to r (j, i) = r (j, i) +c.

The third phase focus on the delivery tree construction.
If the destination node finds a path to its terminating node, its
terminating node sends data to the destination node through a
reverse route according to the node sequence. Finally, when
all destination nodes find paths to the termination node, a
Q-ADT is constructed.

Figure 5 is a sketch of the Q-ADT building process, where
O represents the source server node and Dy, D, ..., D; rep-
resents the destination node in the network. The circle repre-
sents the relay nodes in the network. rp represents the request
packet, Ip represents the learning packet, and the red solid line
represents the selected adaptive path. In the algorithm of this
paper, each destination node sends a packet to request a path
to the termination node.

The routing process is explained in detail by taking
Figure 5 as an example:

1) The node D; is used as the sender to select the neigh-
bor node i with the smallest Q value according to the
Q-table to send the request packet.

2) After receiving the request packet, the neighbor node
i sends the learning packet to Dj, including its best
estimate f to the terminating node d and the delay §
from the D; to the node i.

3) After receiving the learning packet sent by the neigh-
bor node i, D; calculates its congestion cost func-
tion according to Equation (2), and updates the
corresponding congestion cost estimate of the node i
in the Q-Table according to Equation (3).

4) The neighbor node i selects the next hop node accord-
ing to the Q-table, and continues to send the request
packet to the next hop node until reaching the termi-
nating node.

When all the destination nodes find a path to their termi-
nating node through the congestion-aware process, a Q-ADT
is constructed.
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V. EXPERIMENTAL ANALYSIS

We tested the performance of the experiment in different
network topologies. We select 5 destination nodes each time,
set the parameters y to 0.9. The time interval T is set to
the maximum time for feedback learning packets when the
network load is heavy, and this paper is set to 0.01s. The ¢
is set to a larger constant, and in this paper 10 is selected as
the c value. Here we set a reasonable value according to the
actual situation. We define the total congestion costs for data
delivery as follows:

Cost = Z Z r (Dj. i), 4)

DjeD ieq(Dj)

where ¢ (Dj) is the node sequence from node D; to its termi-
nating node.

Formally, given a network G = (V, E), the weight of
each edges, and a set of terminals D C V, the Steiner tree
problem is to find a tree in G that spans D with the minimum
total weight. This problem has been proven to be NP-hard.
For the Steiner tree problem, the best one can hope for is an
approximation algorithm with a small but constant approxi-
mation guarantee. Many people model delivery tree optimiza-
tion problems as Steiner tree problems. The Toward Source
Tree (TST) [28] is a Steiner tree approximation algorithm to
generate approximate Steiner Trees. Therefore, we compare
the proposed algorithm with TST. Simulation results show
that Q-ADT can effectively reduce the congestion cost of
data delivery, and can better adapt to different network load
conditions compared with TST.

A. CONGESTION COST ANALYSIS
This paper tests our algorithm using the communication net-
work topology used by Boyan and Littman [36], including an
irregular 6 x 6 network and a 116 node LATA communication
network. Communication network is an abstract represen-
tation of real life system, such as Internet or transmission
network. It consists of a set of isomorphic nodes and links
between them. Figure 6 (a) is a schematic diagram of an
irregular 6 x 6 network topology. The network consists of two
well-connected parts and a bridge link between the two parts.
The bridge link in the middle is prone to network congestion.
Figure 6 (b) is a schematic diagram of a 116 node LATA
communication network topology. Compared with the 6 x 6
network, the LATA communication network has an irregular
network connection and the network is more complicated.
Figure 7 (a) is a comparison of the total congestion cost of
Q-ADT and TST in an irregular 6 x 6 network. The load in
this paper corresponds to the parameter value of the Poisson
arrival process for the average number of injected packets per
time unit. As can be seen, in Figure 7(a), the total congestion
cost of TST is smaller than that of Q-ADT although the
difference between them is not significant. As the network
load increases, the congestion cost of TST increases signifi-
cantly, much higher than Q-ADT, while the Q-ADT can also
achieve lower congestion costs under high load conditions.
In addition to the irregular 6 x 6 network, we also take a

VOLUME 7, 2019



Y. Liu et al.: Q-Learning Based Content Placement Method for Dynamic CCDNs

IEEE Access

® @ L L @ 9
® *—o *— ®
L L 4 L 4 L 4 L 9
*—eo—o *—o—0
*—o—9 *—o—@
*—eeo—o *—eo—o

()

1.0

0.8

0.6 4

0.4 1

0.2+

0.0+

(b)

FIGURE 6. Two network topologies. (a) Irregular 6 x 6 network topology.
(b) LATA communication network topology.

test in the 116-node LATA communication network. As can
be seen in Figure 7(b), the Q-ADT still has a low conges-
tion cost. It can be seen that Q-ADT can effectively reduce
the congestion cost of the network with different network
topologies.

B. EXPERIMENTAL PERFORMANCE ANALYSIS WITH
DIFFERNET LOAD

As shown in Figure 8 and Figure 9, we compare the variation
of the congestion cost over time between Q-ADT and TST
under the LATA network topology. We conduct experiments
under high and low loads. Low load means fewer data packets
are injected per unit time and network congestion is small.
High load means more data packets are injected per unit
time and network node congestion is serious. From Figure
8, we can see that the congestion cost of Q-ADT converges
to a certain value with low load when the time reaches 2000.
However, the congestion cost of TST remains low. As shown
in Figure 9, in the case of high load, the congestion cost
of Q-ADT gradually converges to a smaller value as the
load increases, while the congestion value of TST is always
in a higher level. Therefore, TST cannot reduce network
congestion globally when the load is high, and Q-ADT can
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FIGURE 7. Congestion cost comparison. (a) Comparison of congestion
cost for irregular 6 x 6 network. (b) Comparison of congestion cost for
LATA communication network.

obtain lower congestion cost in the long run regardless of the
load.

Figures 8 and 9 have peak patterns, this is because at
the initial stage of the algorithm, the Q-table has not been
updated, so the resulting congestion cost is not optimal before
the Q-table is updated to the optimal state, and peaks may
occur, as time increases, congestion costs gradually reach a
steady state. Q-learning needs a learning phase as a kind of
learning based algorithm. In this phase, the algorithm does
not return any optimal result as already proven in theory.
It reaches the steady state after such a learning phase, caus-
ing the optimal result. In Figures 8 and 9, we can see the
characteristic.

C. TREE LENGTH ANALYSIS

Steiner Tree Problem is to find a tree with the minimum total
weight. For the Steiner tree problem, the best one can hope
for is an approximation algorithm with a small but constant
approximation guarantee. Figure 10 shows the comparison
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between the tree length of the Q-ADT and TST as the load
increases. It can be seen from the graph that the length of
Q-ADT is basically the same as TST when the load is low.
With the load increasing, the length of Q-ADT increases,
indicating that the Q-ADT adjusts the path to accommo-
date increasing network congestion. Although the Q-ADT
constructed by this paper is not as good as TST, it is very
similar, indicating that the method can minimize the cost of
congestion for content delivery along the delivery tree.

D. DISCOUNT FACTOR SELECTION

As shown in Figure 11, the congestion cost changes when
the discount factor increases from 0.1 to 0.9. As can be
seen from the figure, the congestion cost decreases with the
increase of discount factor. When the discount factor is 0.9,
the cost is the lowest. And the values in the experiment
are based on actual conditions. Figure 12 shows the change
of congestion cost over time when the discount factors are
0.5 and 0.9 respectively. It is shown that when the discount
factor is taken as 0.5, the congestion cost does not change
after the time reaches 6000. When the discount factor is set
0.9, the congestion cost will not change after the time reaches
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3000. It can be seen that taking the appropriate discount factor
can effectively reduce the convergence time of the algorithm.

VI. CONCLUSION
In order to reduce the cost of content placement in cloud con-
tent delivery network and adapt to the dynamic characteristics
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of CCDNs, we propose a content placement model based
on Q-learning in this paper. This model uses the Q-learning
approach which can lead to better routing decisions due to up-
to-date and more reliable congestion values. So it can adapt
to the dynamic characteristics of the CCDNs. Furthermore,
we present an adaptive delivery tree construction algorithm to
select the optimal paths with the lowest cost. The simulation
results show that our method can adapt to the change of
network and save congestion cost greatly. In future, we will
further study the optimization of network performance jointly
considering the consumption of energy and bandwidth.

REFERENCES

(1]

[2]

[3]
[4]

[51
[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 3, pp. 52-66,
Jul. 2015.

D. Lu, X. Huang, G. Zhang, X. Zheng, and H. Liu, “Trusted device-
to-device based heterogeneous cellular networks: A new framework for
connectivity optimization,” IEEE Trans. Veh. Technol., vol. 67, no. 11,
pp. 11219-11233, Nov. 2018.

F. Chen, K. Guoy, J. Liny, and T. La Porta, “Intra-cloud lightning: Building
CDNes in the cloud,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 433—441.
M. Wang, P. P. Jayaraman, and R. Ranjan, “An overview of cloud based
content delivery networks: Research dimensions and state-of-the-art,”
Transactions on Large-Scale Data- and Knowledge-Centered Systems
(Lecture Notes in Computer Science). Berlin, Germany: Springer, 2016,
pp. 131-158.

R. Ranjan, K. Mitra, and D. Georgakopoulos, “MediaWise cloud content
orchestrator,” J. Internet Services Appl., vol. 4, no. 2, pp. 1-14, 2013.

M. A. Salahuddin, J. Sahoo, R. Glitho, H. Elbiaze, and W. Ajib, “A survey
on content placement algorithms for cloud-based content delivery net-
works,” IEEE Access, vol. 6, pp. 91-114, Feb. 2018.

B. Pierre, B. A. Walid, and G. Eric, “Cache location in tree networks:
Preliminary results,” in Proc. Int. Conf. Netw. Optim. New York, NY, USA:
Springer-Verlag, 2011, pp. 517-522.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, ‘“Bench-
marking deep reinforcement learning for continuous control,” in Proc. Int.
Conf. Mach. Learn., 2016, pp. 1329-1338.

J. Yan, H. He, X. Zhong, and Y. Tang, “Q-learning-based vulnerability
analysis of smart grid against sequential topology attacks,” IEEE Trans.
Inf. Forensics Security, vol. 12, no. 1, pp. 200-210, Jan. 2017.

Y. Shilova, M. Kavalerov, and 1. Bezukladnikov, “Full echo Q-routing
with adaptive learning rates: A reinforcement learning approach to network
routing,” in Proc. IEEE NW Russia Young Res. Elect. Electron. Eng. Conf.,
Feb. 2016, pp. 341-344.

G. Zhang, D. Lu, and H. Liu, “Strategies to utilize the positive emotional
contagion optimally in crowd evacuation,” IEEE Trans. Affective Comput.,
to be published. doi: 10.1109/TAFFC.2018.2836462.

D. Lu, X. Huang, W. Zhang, and J. Fan, “Interference-aware spectrum han-
dover for cognitive radio networks,” Wireless Commun. Mobile Comput.,
vol. 14, no. 11, pp. 1099-1112, 2014.

J. Kangasharju, J. Roberts, and K. W. Ross, “Object replication strate-
gies in content distribution networks,” Comput. Commun., vol. 25, no. 4,
pp. 376-383, Mar. 2002.

X. Jia, D. Li, H. Du, and J. Cao, ““On optimal replication of data object at
hierarchical and transparent Web proxies,” IEEE Trans. Parallel Distrib.
Syst., vol. 16, no. 8, pp. 673-685, Aug. 2005.

P. Wendell et al., “Donar: Decentralized server selection for cloud
services,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 4,
pp. 231-242,2011.

O. V. Aram, S. Yousefi, and M. Solimanpur, ““Joint server selection and
replica placement in urban content delivery networks,” Int. J. Oper. Res.,
vol. 25, no. 3, pp. 288-306, 2016.

K. Xu, X.Li, S. K. Bose, and G. Shen, “Joint replica server placement, con-
tent caching, and request load assignment in content delivery networks,”
IEEE Access, vol. 6, pp. 17968-17981, Mar. 2018.

A. A. Haghighi, S. S. Heydari, and S. Shahbazpanahi, “Dynamic QoS-
aware resource assignment in cloud-based content-delivery networks,”
IEEE Access, vol. 6, pp. 2298-2309, Dec. 2018.

VOLUME 7, 2019

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

L. Zeng, S. Xu, Y. Wang, K. B. Kent, D. Bremner, and C. Xu, “Toward
cost-effective replica placements in cloud storage systems with QoS-
awareness,” Softw., Pract. Exper., vol. 47, no. 6, pp. 813-829, 2017.

J. Broberg, R. Buyya, and Z. Tari, “MetaCDN: Harnessing ‘storage clouds’
for high performance content delivery,” J. Netw. Comput. Appl., vol. 32,
no. 5, pp. 1012-1022, 2009.

H. Hu et al., “Community based effective social video contents placement
in cloud centric CDN network,” in Proc. IEEE Int. Conf. Multimedia Expo,
Jul. 2014, pp. 1-6.

M. A. Salahuddin, H. Elbiaze, W. Ajib, and R. Glitho, ‘““Social network
analysis inspired content placement with QoS in cloud based content
delivery networks,” in Proc. IEEE Global Commun. Conf., Dec. 2015,
pp. 1-6.

C.-F. Lin, M.-C. Leu, C.-W. Chang, S.-M. Yuan, “The study and methods
for cloud based CDN,” in Proc. Int. Conf. Cyber-Enabled Distrib. Comput.
Knowl. Discovery, Oct. 2011, pp. 469—475.

D. Lu, B. Hu, X. Zheng, H. Liu, and G. Zhang, ““Session-based cloud video
delivery networks in mobile Internet,” J. Internet Technol., vol. 18, no. 7,
pp. 1561-1571, 2017.

J. Sung, M. Kim, K. Lim, and J.-K. K. Rhee, “Efficient cache placement
strategy in two-tier wireless content delivery network,” IEEE Trans. Mul-
timedia, vol. 18, no. 6, pp. 1163-1174, Jun. 2016.

J. Sung, K. Kim, J. Kim, and J.-K. K. Rhee, “Efficient content replace-
ment in wireless content delivery network with cooperative caching,” in
Proc. 15th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2016,
pp. 547-552.

Z.Zheng and Z. Zheng, ‘“Towards an improved heuristic genetic algorithm
for static content delivery in cloud storage,” Comput. Elect. Eng., vol. 69,
pp. 422-434, Jul. 2018.

H. Gong, L. Fu, X. Fu, L. Zhao, K. Wang, and X. Wang, ‘“Distributed
multicast tree construction in wireless sensor networks,” IEEE Trans. Inf.
Theory, vol. 63, no. 1, pp. 280-296, Jan. 2017.

M. Aibin, R. Goscieri, and K. Walkowiak, “Multicasting versus anycast-
ing: How to efficiently deliver content in elastic optical networks,” in Proc.
Int. Conf. Transparent Opt. Netw., Jul. 2016, pp. 1-4.

X. Fu, Z. Xu, Q. Peng, L. Fu, and X. Wang, “Complexity vs. optimality:
Unraveling source-destination connection in uncertain graphs,” in Proc.
IEEE INFOCOM, May 2017, pp. 1-9.

V. Narayanan and S. Jagannathan, “Distributed adaptive optimal regulation
of uncertain large-scale interconnected systems using hybrid Q-learning
approach,” IET Control Theory Appl., vol. 10, no. 12, pp. 1448-1457,
2016.

M. Abu Alsheikh, D. T. Hoang, D. Niyato, H.-P. Tan, and S. Lin,
“Markov decision processes with applications in wireless sensor net-
works: A survey,” IEEE Commun. Surveys Tuts., vol. 17, no. 3,
pp- 1239-1267, 3rd Quart., 2015.

J. Gu, W. Wang, A. Huang, H. Shan, and Z. Zhang, “Distributed cache
replacement for caching-enable base stations in cellular networks,” in
Proc. IEEE Int. Conf. Commun., Jun. 2014, pp. 2648-2653.

K. Psounis, A. Zhu, B. Prabhakar, and R. Motwani, ‘“Modeling correlations
in Web traces and implications for designing replacement policies,” Int. J.
Comput. Telecommun. Netw., vol. 45, no. 4, pp. 379-398, 2004.

F. Farahnakian, M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and J. Plosila,
“Q-learning based congestion-aware routing algorithm for on-chip net-
work,” in Proc. IEEE 2nd Int. Conf. Netw. Embedded Syst. Enterprise
Appl., Dec. 2011, pp. 1-8.

J. A. Boyan and M. L. Littman, ‘““‘Packet routing in dynamically changing
networks: A reinforcement learning approach,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 1994, pp. 671-678.

YUJIE LIU is currently pursuing the M.S.
degree with the School of Information Sci-
ence and Engineering, Shandong Normal
University, Jinan, China. Her research interests
include content delivery networks and cloud com-
puting.

66393


http://dx.doi.org/10.1109/TAFFC.2018.2836462

IEEE Access

Y. Liu et al.: Q-Learning Based Content Placement Method for Dynamic CCDNs

66394

DIANJIE LU received the Ph.D. degree in com-
puter science from the Institute of Comput-
ing Technology, Chinese Academy of Science,
Beijing, China, in 2012. He is currently an
Associate Professor with the School of Informa-
tion Science and Engineering, Shandong Normal
University, Jinan, China. His research interests
include cognitive wireless networks, heteroge-
neous cellular networks, and cloud computing.

GUHNUAN ZHANG received the Ph.D. degree
in computer science from the Institute of
Computing Technology, Chinese Academy of
Science, Beijing, China, in 2011. She is currently
an Associate Professor with the School of Informa-
tion Science and Engineering, Shandong Normal
University, Jinan, China. Her research interests
include distributed computing and computational
intelligence.

JIE TIAN received the Ph.D. degree in communi-
cation and information systems from the School of
Information Science and Engineering, Shandong
University, China, in 2016. She is currently a Lec-
turer with the School of Information Science and
Engineering, Shandong Normal University, Jinan,
China. Her research interests include cross-layer
design of wireless communication networks, radio
resource management in heterogeneous networks,
and signal processing for communications.

WEIZHI XU received the Ph.D. degree in com-
puter architecture from the Institute of Comput-
ing Technology, Chinese Academy of Sciences.
He was a Postdoctoral Researcher with the Insti-
tute of Microelectronics, Tsinghua University.
He is currently an Assistant Professor with the
School of Information Science and Engineer-
ing, Shandong Normal University. His research
interests include video processing and high
performance computing.

VOLUME 7, 2019



	INTRODUCTION
	RELATED WORK
	CONTENT PLACEMENT MODEL FOR DYNAMIC CCDNs
	DYNAMIC CHARACTERISTICS OF CCDNs
	Q-LEARNING BASED CONTENT PLACEMENT MODEL

	ADAPTIVE DELIVERY TREE (Q-ADT) BUILDING ALGORITHM BASED ON Q-CPM
	Q-TABLE AND PACKETS IN CCDNs
	Q-ADT BUILDING ALGORITHM

	EXPERIMENTAL ANALYSIS
	CONGESTION COST ANALYSIS
	EXPERIMENTAL PERFORMANCE ANALYSIS WITH DIFFERNET LOAD
	TREE LENGTH ANALYSIS
	DISCOUNT FACTOR SELECTION

	CONCLUSION
	REFERENCES
	Biographies
	YUJIE LIU
	DIANJIE LU
	GUIJUAN ZHANG
	JIE TIAN
	WEIZHI XU


