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ABSTRACT This paper investigates the robust control problem of uncertain nonlinear systems subject to
actuator faults via the integral sliding mode control (ISMC) scheme. The actuator failures contain the cases
of an outage, loss of effectiveness, and stuck fault, which are frequently encountered in practical applications.
Furthermore, in this paper, the time-varying delay considered obeys the probability distributionwithin certain
intervals. By fully considering the information of the probabilistic random delay, new sufficient conditions
are given to ensure the asymptotical stability of the controlled system with prescribed H∞ performance.
Moreover, a new control law is proposed to compensate for the effects induced by the actuator faults, and
an adaptive mechanism is adapted to estimate the unknown terms. In a word, the proposed ISMC scheme
ensures the asymptotical stability with guaranteed H∞ performance of the closed-loop system and forces
that the state trajectories are attracted to the pre-designed sliding surface. Finally, a practical example of the
rocket fairing structural acoustic model is used to clarify the validly of the presented control method.

INDEX TERMS Networked system, integral sliding mode control, actuator faults, adaptive mechanism,
probabilistic random delays.

I. INTRODUCTION
It is well known that systems would undergo the malfunction
when the actuators/sensors suffer from the wear or damage.
Then, an effective strategy for fault diagnosis or compensat-
ing the effect of faults onto the whole performance is urgently
required [1], [2]. Accordingly, considerable contributions
have been devoted to the synthesis problem for controlled
systems with fault signals [3], [4]. Among them, the fault-
tolerant control (FTC) plays a special role in practical sys-
tems with crucial safe such as passenger aircraft and modern
fighter aircraft, due to its super advantages to compensate
the faults by using the configured system redundancy. When
the fault-tolerant control scheme is utilized, the systems can
still keep stability with an acceptable performance when
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suffering from actuator faults. Accordingly, a great number
of results have been reported to handle the actuator/sensor
faults by utilizing robust mechanism [5], [6], observer-based
method [7], [8] and adaptive technique [9]. To mention a few,
several approaches have been proposed in [10], [11] concern-
ing on the control systems by using the fault-tolerant control
design scheme. In [12], a velocity-free controller has been
considered for a set of nonlinear systems with external distur-
bance and multiple actuator faults. In [10], [13], the actuator
failures including the cases of outage, loss of effectiveness
and stuck fault have been addressed for nonlinear systems
based on fuzzy logic scheme. Besides, the approach devel-
oped in [14] only addresses the actuator degradation without
the consideration of stuck fault.

In the past several decades, the sliding mode control
(SMC) has been successfully applied to a variety of engi-
neering domains [15]–[18]. By using this method, if the state
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trajectories are attracted to the sliding surface, the robustness
properties against matched disturbance or other features can
be obtained [19]–[23]. Due to the superior features of SMC,
the SMC methods has been widely used to stabilize the fault-
tolerant systems [24], [25]. To mention a few, a novel optimal
sliding mode control has been presented in [26] for uncertain
linear time-invariant system, where two fault-tolerant control
schemes have been described. In [7], an observer-based actu-
ator fault detection and isolation approach has been given
for a class of nonlinear systems with faults, where the idea
of equivalent output error injection has been utilized for the
reconstruction of the fault signal. Moreover, in [10], an inte-
gral sliding-mode-based fault-tolerant controller has been
designed for uncertain nonlinear systemwith degradation and
stuck. Recently, the analysis of time-varying actuator failures
in uncertain systems is appealing [8], [25], thus additional
effort is desirable to be made on the developments of efficient
control strategies for time-varying actuator failures, which
consists of one motivations of the present work.

On the other hand, the time-delays are commonly
inevitable during the modeling of realistic problems,
which could cause instability, oscillation and chaotic
attractors [9], [27]. To clearly discuss the effect of delays,
the information of variation range or variation rate of delay
has been employed in [5], [28]–[30]. In the real systems,
the value of time delay may be large suddenly although
this situation does not occur often with small probability.
As mentioned in [31], this case might encounter in the wire-
less network, where the probabilistic distribution delays have
been modeled and discussed. Thus, the traditional method for
delayed systems [23] relying on the variation rate of delay
becomes invalid here since the suddenly changes of delay.
Accordingly, new technique for system with probabilistic
delay is urgently required. In fact, the main challenging issue
is on how to take the probabilistic characteristics of delay
into consideration. Owing to these issues, the researchers
have paid much attention to study the stability problems
of dynamic systems with probabilistic delays. For example,
in [32], some sufficient conditions have been established to
ensure the exponential stability of impulsive systems subject
to random delays via the reciprocal convex technique. Fur-
thermore, in [31], both the information of variant range of
time delay and the probabilistic characteristic of the time-
varying delay have been fully taken into account, and a new
delay-dependent stability criterion has been given. To the
best of authors’ knowledge, the H∞ sliding mode control
problem has not gained adequate consideration for uncertain
systems with probabilistic random delays and actuator fault
due probably to the complexities/difficulties with respect to
the probabilistic random delays, not to mention the case that
the involved bounds might be unknown, which constitutes
another motivation of this paper.

Based on the above analysis, we aim to handle the adaptive
H∞ sliding mode control problem for uncertain systems with
probabilistic random delays and time-varying actuator faults.
New sufficient criteria are given to ensure the asymptotical

FIGURE 1. The schematic diagram of adaptive sliding mode FTC.

stability with guaranteed H∞ performance of the sliding
mode dynamics. Besides, a new control law is synthesized
to ensure the reachability, where an adaptive mechanism
is employed to estimate the involved unknown terms. The
main advantages of this paper can be highlighted as follows:
1) The considered system has a general form, which covers
probabilistic random delays, actuator faults and external dis-
turbance in a same framework. Moreover, the actuator fault
contains the cases of outage and stuck fault. 2) New suffi-
cient conditions to guarantee the stability with satisfactory
H∞ performance are presented by fully taking the infor-
mation of probability of random delays into account, and
an algorithm is developed to calculate the gain matrix.
3) An integral sliding mode fault tolerant scheme is presented
to cope with the effects of actuator fault and the sliding mode
controller ensuring the reachability is constructed.
Notations: Rn and Rn×m depict the n−dimensional

Euclidean space and set of n× m real matrices, respectively.
The symmetric positive definite (semi-definite) matrix P is
represented by P > 0 (P ≥ 0). ‖ · ‖ is the Euclidean
vector norm or its induced norm of a matrix. E{?} denotes the
mathematical expectation of random variable ?. The symbol ∗
in symmetric matrix characterizes the term induced
by symmetry.

II. PROBLEM FORMULATION AND PRELIMINARIES
The schematic diagram of the presented sliding mode
FTC method for nonlinear system is depicted in Fig. 1.

Consider the following class of uncertain systems with
time-varying delays and actuator fault:

ẋ(t) = (A+1A)x(t)+ Aτ x(t − τ (t))+ BuF (t)+ D1w(t)

z(t) = Cx(t)+ Aτ1x(t − τ (t))+ D2w(t)

x(t) = φ(t), t ∈ [−τ2, 0] (1)

where x(t) ∈ Rn is the system state, z(t) denotes the con-
trolled output, w(t) ∈ Rq represents the external disturbance
in L2[0,∞), φ(t) are initial conditions. The uncertain term
1A is of the form 1A = EFH , where F satisfies FTF ≤ I .
Moreover, the matrices A, Aτ , Aτ1, B, C , D1, D2, E and
H are all known matrices and have corresponding suitable
dimensions.
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The control input vector uF (t) ∈ Rm adopts the following
actuator fault model

uF (t) = ρu(t)+ ςuf (t) (2)

where ρ is unknown time-varying diagonal matrix repre-
senting the actuator efficiency factor. Specially, ρ and ς
satisfy ρ ∈ {ρ1, ρ2, · · · , ρL}, ς ∈ {ς1, ς2, · · · , ςL}

with L being the number of total faulty modes and ρj ∈
diag{ρj1, ρ

j
2, · · · , ρ

j
m}, ς j ∈ diag{ς j1, ς

j
2, · · · , ς

j
m} with

ρ
j
i ∈ [ρ

i
, ρ̄i], ς

j
i = 0 or 1. Moreover, uf (t) =[

uf ,1(t) uf ,2(t) · · · uf ,m(t)
]T
∈ Rm is given to denote

the unknown stuck actuator fault with unknown bound.
Accordingly, we set ρ = diag{ρ

1
, ρ

2
, · · · , ρ

m
} and ρ̄ =

diag{ρ̄1, ρ̄2, · · · , ρ̄m}. From a practical viewpoint, this paper
considers the following actuator failure cases:

ρ
j
i = 1, ς ji = 0, the ith actuator is normal;

ρ
j
i = 0, ς ji = 0, the ith actuator is outage;

ρ
j
i ∈ (0, 1), ς ji = 0, the ith actuator is loss of

effectiveness;

ρ
j
i = 0, ς ji = 1, the ith actuator is undergoes stuck

fault.

The time-varying delay τ (t) belongs to [0, τ2] and there
exists a constant real scalar τ1 (0 ≤ τ1 < τ2) such that either
τ (t) ∈ [0, τ1] or τ (t) ∈ (τ1, τ2]. Next, introduce the Bernoulli
sequence α(t) depicting the situations of τ (t) taking values in
[0, τ1] or (τ1, τ2] with the following probability

Prob{α(t) = 1} = E{α(t)} = ᾱ
Prob{α(t) = 0} = 1− E{α(t)} = 1− ᾱ

where ᾱ ∈ [0, 1] denotes the probability of τ (t) taking values
in [0, τ1].

To describe the probability distribution of the time-varying
delay, introduce two sets

F1 = τ (t) ∈ [0, τ1],
F2 = τ (t) ∈ (τ1, τ2],

and two functions τ1(t) : R → [0, τ1] and τ2(t) : R →
[τ1, τ2] such that

τ1(t) =

{
τ (t), if α(t) = 1
τ1, if α(t) = 0

τ2(t) =

{
τ1, if α(t) = 1
τ (t), if α(t) = 0.

It is obvious that α(t) = 1 means that the event F1
occurs and α(t) = 0 means that the event F2 occurs. Hence,
the above system (1) can be equivalently written as

ẋ(t) = (A+1A)x(t)+ α(t)Aτ x(t − τ1(t))
+ (1− α(t))Aτ x(t − τ2(t))+ BuF (t)+ D1w(t)

= (A+1A)x(t)+ ᾱAτ x(t − τ1(t))+ BuF (t)
+ (1− ᾱ)Aτ x(t − τ2(t))+ D1w(t)

+ (α(t)− ᾱ) (Aτ x(t − τ1(t))− Aτ x(t − τ2(t))) ,

z(t) = Cx(t)+ ᾱAτ1x(t − τ1(t))

+ (1− ᾱ)Aτ1x(t − τ2(t))+ D2w(t)

+ (α(t)− ᾱ)Aτ1(x(t − τ1(t))− x(t − τ2(t))) (3)

The purpose of this paper is to design a robust sliding
mode controller such that, in the simultaneous presence of
the probabilistic random delays and actuator fault, the state
trajectories of the addressed systems are driven onto the spec-
ified sliding surface in mean square sense and the stability of
sliding motion with specifiedH∞ performance is guaranteed.

To end this section, the following lemmas are presented
which will be used in the subsequent analysis.
Lemma 1 [31]: For a given scalar h ∈ [0, 1], constant

matrices X1 and X2 with same dimensions, the inequality
qX1 + (1 − q)X2 < 0 holds for any q ∈ [h, 1] if and only
if X1 < 0 and hX1 + (1− h)X2 < 0.
Lemma 2 [31]: For the probabilistic random delays τi(t)

(i = 1, 2), constant matrices 8i, 5i (i = 1, 2), and
9 = 9T with appropriate dimensions, if the following
inequalities hold:

τ181 + (τ2 − τ1)51 +9 < 0,

τ181 + (τ2 − τ1)52 +9 < 0,

τ182 + (τ2 − τ1)51 +9 < 0,

τ182 + (τ2 − τ1)52 +9 < 0,

then one has

τ1(t)81 + (τ1 − τ1(t))82

+ (τ2(t)− τ1)51 + (τ2 − τ2(t))52 +9 < 0.

Lemma 3 [15]: Let E , F and H be real matrices of com-
patible dimensions with F satisfying FTF ≤ I . Then, for
matrix Q = QT , we have Q + EFH + HTFTET < 0 if and
only if there exists a scalar ε > 0 such that Q + εEET +
ε−1HTH < 0.
Lemma 4 [15]: For given matrices X , Y , vectors x, y

with suitable dimensions and positive scalar ε, the following
inequality

2xXTYy ≤ εxTXTXx + ε−1yTY TYy

is satisfied.

III. SLIDING MODE CONTROLLER DESIGN
In this section, an integral sliding surface is firstly con-
structed and the stochastically stability with specified H∞
performance of the sliding mode dynamic is guaranteed by
proposing a new sufficient condition. What’s more, the feed-
back gain matrix is obtained by solving the sub-optimization
problem. Finally, the integral SMC (ISMC) law is synthesized
to guarantee that the state trajectories are attracted to the
sliding surface and remain there thereafter.

Firstly, factorize the matrix B as B = B1B2 where
B1 ∈ Rn×l and B2 ∈ Rl×m both have rank l ≤ m. To proceed,
the following assumptions are provided.
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Assumption 1: For any efficiency vector ρ ∈ {ρ1, ρ2,
· · · , ρL}, rank(B2ρ) = rank(B2) and (A,B) is completely
controllable.
Assumption 2: The actuator stuck fault uf (t) and distur-

bancew(t) are both bounded, i.e. there exist unknown positive
constants ūfi and w̄i such that ‖ufi‖ ≤ ūfi and ‖wi‖ ≤ w̄i,
respectively.

It is worthwhile to note that Assumption 1 is quite natural
and common in FTC systems and has been used in [10], [13].
In what follows, we consider the variable controller of the
form u(t) = Kx(t)+u1(t) with the explicit form of feed-back
gain matrix K being provided later.

A. SLIDING SURFACE DESIGN
In this paper, we consider the integral switching surface
defined by

s(x(t)) = Gx(t)− Gx(0)− G
∫ t

0
[Ax(ξ )+ BKx(ξ )] dξ

where G is a design matrix satisfying GB1 = I . Introducing
the free weighting matrix L, a general solution of G is given
by G = B+1 + L(I − B1B

+

1 ) with B
+

1 = (BT1 B1)
−1BT1 .

Once the state trajectories enter into the sliding surface,
the condition ṡ(x(t)) = 0 is satisfied, i.e.

ṡ(x(t)) = G1Ax(t)+ GB(ρ − I )Kx(t)+ GB(ρu1(t)

+ ςuf (t))+ GD1w(t)+ ᾱGAτ x(t − τ1(t))

+ (α(t)− ᾱ)(GAτ x(t − τ1(t))− GAτ x(t − τ2(t)))

+ (1− ᾱ)GAτ x(t − τ2(t)) = 0. (4)

Then, we can derive the equivalent control law u1,eq(t) as

u1,eq(t) = −(B2ρ)+G1Ax(t)− (B2ρ)+GB(ρ − I )Kx(t)
− (B2ρ)+GBςuf (t)− (B2ρ)+GD1w(t)
− ᾱ(B2ρ)+GAτ x(t − τ1(t))
− (1− ᾱ)(B2ρ)+GAτ x(t − τ2(t)) (5)

where (B2ρ)+ is the Moore-Penorse inverse of B2ρ.
Substituting (5) into (3), one gets the sliding mode dynam-

ics as follows:

ẋ(t) = [A+ BK + (I − B1G)1A] x(t)+ (I − B1G)
×D1w(t)+ ᾱ(I − B1G)Aτ x(t − τ1(t))
+ (1− ᾱ)(I − B1G)Aτ x(t − τ2(t))
+ (α(t)− ᾱ) (Aτ x(t − τ1(t))− Aτ x(t − τ2(t))) .

Set A = A + BK , Āτ = (I − B1G)Aτ , E1 = (I − B1G)E
and D̄1 = (I − B1G)D1. The sliding mode dynamics can be
rewritten as:

ẋ(t) = [A + E1FH ] x(t)+ ᾱĀτ x(t − τ1(t))

+ (1− ᾱ)Āτ x(t − τ2(t))+ D̄1w(t)

+ (α(t)− ᾱ) [Aτ x(t − τ1(t))− Aτ x(t − τ2(t))] . (6)

By defining

y(t) = [A + E1FH ] x(t)+ ᾱĀτ x(t − τ1(t))

+ (1− ᾱ)Āτ x(t − τ2(t))+ D̄1w(t),

M = [0 Aτ 0 − Aτ 0 0 0],

ξT (t) =
[
xT (t) xT (t − τ1(t)) xT (t − τ1)

xT (t − τ2(t)) xT (t − τ2) wT (t) yT (t)
]
,

then (6) can be expressed as

ẋ(t) = y(t)+ (α(t)− ᾱ)Mξ (t). (7)

It is noted that time delays in (7) are probability dependent,
hence the stability analysis should incorporate the informa-
tion of the occurrence probability. Moreover, when w(t) = 0,
the closed-loop system (7) is described by

ẋ(t) = y(t)+ (α(t)− ᾱ)M̄ζ (t) (8)

with

M̄ = [0 Aτ 0 − Aτ 0 0] ,

ζ T (t) =
[
xT (t) xT (t − τ1(t)) xT (t − τ1)

xT (t − τ2(t)) xT (t − τ2)qyT (t)
]
.

Theorem 1: Consider the closed-loop control system (8)
without external disturbance, i.e. w(t) = 0. For given con-
stants τ1, τ2 and matrix K , if there exist matrices P > 0,
Q1 > 0, Q2 > 0, R1 > 0, R2 > 0, T1 > 0, T2 > 0 and N̄j
(j = 1, 2, · · · , 5) of suitable dimensions satisfying

� =

�11 �12 �i
13

∗ �22 0
∗ ∗ �33

 < 0, (i = 1, 2, 3, 4) (9)

where

�11 =

[
�
ij
11

]
6×6

,

N̄i =
[
N̄T
i1 N̄T

i2 · · · N̄T
i6

]T
,

N̄5 =
[
N̄T
51 N̄T

52 N̄T
53 N̄T

54

]T
,

�12 =
[√

στ1M̄T √σ (τ2 − τ1)M̄T
]
,

�22 = diag{−T−11 ,−T−12 },

�1
13 =

[
τ1N̄2 τ1N̄2 τ2−1N̄4 τ2−1N̄4

]
,

�2
13 =

[
τ1N̄1 τ1N̄1 τ2−1N̄4 τ2−1N̄4

]
,

�3
13 =

[
τ1N̄2 τ1N̄2 τ2−1N̄3 τ2−1N̄3

]
,

�4
13 =

[
τ1N̄1 τ1N̄1 τ2−1N̄3 τ2−1N̄3

]
,

�33 = diag{−τ1R1,−τ1T1,−τ2−1R2,−τ2−1T2},

�11
11 = N̄11 + N̄T

11 + N̄51 ¯A + ¯A TNT
51 + Q1,

�12
11 = N̄T

12 − N̄11 + N̄21 + ᾱN̄51Āτ + ¯A TNT
52,

�13
11 = N̄T

13 − N̄21 + N̄31,

�14
11 = N̄T

14 − N̄31 + N̄41 + ¯A TNT
53 + βN̄51Āτ ,

�15
11 = N̄T

15 − N̄41,

�16
11 = P+ N̄T

16 − N̄51 + ¯A TNT
54,

�22
11 = −N̄

T
12 − N̄12 + N̄22 + N̄T

22

+ ᾱ(N̄52Āτ + ĀTτ N
T
52),

�23
11 = −N̄

T
13 + N̄

T
23 − N̄22 + N̄32,

�24
11 = −N̄

T
14 + N̄

T
24 − N̄32 + N̄42 + ᾱĀTτ N

T
53

+βN̄52Āτ ,
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�25
11 = −N̄

T
15 + N̄

T
25 − N̄42,

�26
11 = −N̄

T
16 + N̄

T
26 + ᾱĀ

T
τ N

T
54 − N̄52,

�33
11 = −Q1 + Q2 − N̄23 − N̄T

23 + N̄33 + N̄T
33,

�34
11 = −N̄

T
24 + N̄

T
34 − N̄33 + N̄43,

�35
11 = −N̄

T
25 + N̄

T
35 − N̄43, �36

11 = −N̄
T
26 + N̄

T
36,

�44
11 = −N̄34 − N̄T

34 + N̄44 + N̄T
44

+β(N̄53Āτ + ĀTτ N
T
53),

�45
11 = −N̄

T
35 + N̄

T
45 − N̄44,

�46
11 = −N̄

T
36 + N̄

T
46 + βĀ

T
τ N

T
54 − N̄53,

�55
11 = −Q2 − N̄45 − N̄T

45, �
56
11 = −N̄

T
46,

�66
11 = τ1R1 + (τ2 − τ1)R2 − N̄54 − N̄T

54,

τ2−1 = τ2 − τ1,

with ¯A = A + E1FH , β = 1 − ᾱ, σ = ᾱ(1 − ᾱ), then
the closed-loop control system (7) is asymptotically stable in
mean-square sense.

Proof: Firstly, construct the following Lyapunov
functional

V (ζ (t)) =
7∑
i=1

Vi(ζ (t))

where

V1(ζ (t)) = xT (t)Px(t),

V2(ζ (t)) =
∫ t

t−τ1
xT (s)Q1x(s)ds,

V3(ζ (t)) =
∫ t−τ1

t−τ2
xT (s)Q2x(s)ds,

V4(ζ (t)) =
∫ t

t−τ1

∫ t

s
yT (v)R1y(v)dvds,

V5(ζ (t)) =
∫ t−τ1

t−τ2

∫ t

s
yT (v)R2y(v)dvds,

V6(ζ (t)) = σ
∫ t

t−τ1

∫ t

s
ζ T (v)M̄TT1M̄ζ (v)dvds,

V7(ζ (t)) = σ
∫ t−τ1

t−τ2

∫ t

s
ζ T (v)M̄TT2M̄ζ (v)dvds, (10)

with P > 0, Qi > 0, Ri > 0 and Ti > 0 (i = 1, 2) to be
determined. Taking the infinitesimal operator L of V (ζ (t)),
one gets

LV (ζ (t))
= 2xT (t)Py(t)+ 2(α(t)− ᾱ)xT (t)PM̄ζ (t)
+ xT (t)Q1x(t)+ xT (t − τ1)(Q2 − Q1)x(t − τ1)
− xT (t − τ2)Q2x(t − τ2)+ τ1yT (t)R1y(t)
+ (τ2 − τ1)yT (t)R2y(t)+ στ1ζ T (t)M̄TT1M̄ζ (t)
+ σ (τ2 − τ1)ζ T (t)M̄TT2M̄ζ (t)

−

∫ t

t−τ1
yT (s)R1y(s)ds−

∫ t−τ1

t−τ2
yT (s)R2y(s)ds

− σ

∫ t

t−τ1
ζ T (s)M̄TT1M̄ζ (s)ds

− σ

∫ t−τ1

t−τ2
ζ T (s)M̄TT2M̄ζ (s)ds. (11)

Furthermore, on the basic of Newton-Leibnitz formula,
we have the following equations:

0 = 2ζ T (t)N̄1ψ(x, 0, τ1(t)), (12)

0 = 2ζ T (t)N̄2ψ(x, τ1(t), τ1), (13)

0 = 2ζ T (t)N̄3ψ(x, τ1, τ2(t)), (14)

0 = 2ζ T (t)N̄4ψ(x, τ2(t), τ2), (15)

0 = 2rT (t)N̄5
[
(A + E1FH )x(t)+ ᾱĀτ x(t − τ1(t))

+ (1− ᾱ)Āτ x(t − τ2(t))− y(t)
]
, (16)

where

rT (t) =
[
xT (t) xT (t − τ1(t)) xT (t − τ2(t)) yT (t)

]
,

ψ(x, y, z) , x(t − y)− x(t − z)−
∫ t−y

t−z
ẋ(s)ds,

and N̄i (i = 1, 2, · · · , 5) are free-weighting matrices.
Considering the results in (12)-(16), we have

2ζ T (t)N̄1ψ(x, 0, τ1(t))

≤ 2ζ T (t)N̄1x(t)− 2ζ T (t)N̄1x(t − τ1(t))

+ τ1(t)ζ T (t)N̄1(R
−1
1 + T

−1
1 )N̄T

1 ζ (t)

+

∫ t

t−τ1(t)
yT (s)R1y(s)ds

+

∫ t

t−τ1(t)
(α(s)− ᾱ)2ζ T (s)M̄TT1M̄ζ (s)ds, (17)

2ζ T (t)N̄2ψ(x, τ1(t), τ1)

≤ 2ζ T (t)N̄2x(t − τ1(t))− 2ζ T (t)N̄2x(t − τ1)

+ (τ1 − τ1(t))ζ T (t)N̄2(R
−1
1 + T

−1
1 )N̄T

2 ζ (t)

+

∫ t−τ1(t)

t−τ1
yT (s)R1y(s)ds

+

∫ t−τ1(t)

t−τ1
(α(s)− ᾱ)2ζ T (s)M̄TT1M̄ζ (s)ds, (18)

2ζ T (t)N̄3ψ(x, τ1, τ2(t))

≤ 2ζ T (t)N̄3x(t − τ1)− 2ζ T (t)N̄3x(t − τ2(t))

+ (τ2(t)− τ1)ζ T (t)N̄3(R
−1
2 + T

−1
2 )N̄T

3 ζ (t)

+

∫ t−τ1

t−τ2(t)
yT (s)R2y(s)ds

+

∫ t−τ1

t−τ2(t)
(α(s)− ᾱ)2ζ T (s)M̄TT2M̄ζ (s)ds, (19)

2ζ T (t)N̄4ψ(x, τ2(t), τ2)

≤ 2ζ T (t)N̄4x(t − τ2(t))− 2ζ T (t)N̄4x(t − τ2)

+ (τ2 − τ2(t))ζ T (t)N̄4(R
−1
2 + T

−1
2 )N̄T

4 ζ (t)

+

∫ t−τ2(t)

t−τ2
yT (s)R2y(s)ds

+

∫ t−τ2(t)

t−τ2
(α(s)− ᾱ)2ζ T (s)M̄TT2M̄ζ (s)ds. (20)
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Combining the results in (11)-(20) and taking the expecta-
tion yield

E{LV (ζ (t))}
≤ E

{
ζ T (t)

[
�11 + ᾱ(1− ᾱ)τ1M̄TT1M̄ + ᾱ(1− ᾱ)

×(τ2 − τ1)M̄TT2M̄ + τ1(t)N̄1(R
−1
1 + T

−1
1 )N̄T

1

+ (τ1 − τ1(t))N̄2(R
−1
1 + T

−1
1 )N̄T

2 + (τ2(t)− τ1)

×N̄3(R
−1
2 + T

−1
2 )N̄T

3 + (τ2 − τ2(t))N̄4

×(R−12 + T
−1
2 )N̄T

4
]
ζ (t)

}
, (21)

where �11 is defined below (8).
Considering the results in (21) and utilizing Lemma 2,

it can be seen that (9) are sufficient conditions for guar-
anteeing that E{LV (ζ (t))} is less than zero. Thus, the sys-
tem (8) is asymptotically stable in mean-square sense when
w(t) = 0.

In order to examine the effect from external disturbance
onto whole control performance, the following definition is
adopted.
Definition 1 [33]: Letting γ > 0 be a given scalar,

under the zero initial condition, the system (7) is said to have
specified H∞ performance, if the following inequality holds

E
{∫
∞

0
zT (t)z(t)dt

}
<

∫
∞

0
γ 2wT (t)w(t)dt.

Next, sufficient conditions will be derived for guaranteeing
the stability under satisfactory H∞ performance.
Theorem 2: The closed-loop control system (7) is asymp-

totically stable in mean-square sense with disturbance atten-
uation level γ , if for the given constants τ1, τ2 and matrix K ,
there exist matrices P > 0, Q1 > 0, Q2 > 0, R1 > 0,
R2 > 0, T1 > 0, T2 > 0 and Nj (j = 1, 2, · · · , 5) of suitable
dimensions such that the following inequalities hold:

� =


�11 �12 �i

13 �14
∗ �22 0 0
∗ ∗ �33 0
∗ ∗ ∗ −I

 < 0, (i = 1, 2, 3, 4)

(22)

where

�11 =

[
�
ij
11

]
7×7

,

NT
i = [NT

i1 NT
i2 · · · NT

i7 ], (i = 1, 2, 3, 4),

NT
5 = [NT

51 NT
52 · · · NT

55],

�12 =
[√

στ1MT √
σ (τ2 − τ1)MT

]
,

�1
13 =

[
τ1N2 τ1N2 τ2−1N4 τ2−1N4

]
,

�2
13 =

[
τ1N1 τ1N1 τ2−1N4 τ2−1N4

]
,

�3
13 =

[
τ1N2 τ1N2 τ2−1N3 τ2−1N3

]
,

�4
13 =

[
τ1N1 τ1N1 τ2−1N3 τ2−1N3

]
,

�22 = diag{−T−11 ,−T−12 },

�33 = diag{−τ1R1,−τ1T1,−τ2−1R2,−τ2−1T2},

�14 =

[
C ᾱAτ1 0 (1− ᾱ)Aτ1 0 D2 0
0
√
σAτ1 0 −

√
σAτ1 0 0 0

]T
,

�11
11 = N11 + NT

11 + N51 ¯A + ¯A TNT
51 + Q1,

�12
11 = NT

12 − N11 + N21 + ᾱN51Āτ + ¯A TNT
52,

�13
11 = NT

13 − N21 + N31,

�14
11 = NT

14 − N31 + N41 + ¯A TNT
53 + βN51Āτ ,

�15
11 = NT

15 − N41,

�16
11 = NT

16 + N51D̄1 + ¯A TNT
54,

�17
11 = P+ NT

17 − N51 + ¯A TNT
55,

�22
11 = −N

T
12 − N12 + N22 + NT

22

+ ᾱ(N52Āτ + ĀTτ N
T
52),

�23
11 = −N

T
13 + N

T
23 − N22 + N32,

�24
11 = −N

T
14 + N

T
24 − N32 + N42 + ᾱĀTτ N

T
53

+βN52Āτ ,

�25
11 = −N

T
15 + N

T
25 − N42,

�26
11 = −N

T
16 + N

T
26 + N52D̄1 + ᾱĀTτ N

T
54,

�27
11 = −N

T
17 + N

T
27 + ᾱĀ

T
τ N

T
55 − N52,

�33
11 = −Q1 + Q2 − N23 − NT

23 + N33 + NT
33,

�34
11 = −N

T
24 + N

T
34 − N33 + N43,

�35
11 = −N

T
25 + N

T
35 − N43,

�36
11 = −N

T
26 + N

T
36, �

37
11 = −N

T
27 + N

T
37,

�44
11 = −N34 − NT

34 + N44 + NT
44

+β(N53Āτ + ĀTτ N
T
53),

�45
11 = −N

T
35 + N

T
45 − N44,

�46
11 = −N

T
36 + N

T
46 + N53D̄1 + βĀTτ N

T
54,

�47
11 = −N

T
37 + N

T
47 + βĀ

T
τ N

T
55 − N53,

�55
11 = −Q2 − N45 − NT

45, �
56
11 = −N

T
46,

�57
11 = −N

T
47, �

66
11 = N54D̄1 + D̄T1N

T
54 − γ

2 I ,

�67
11 = D̄T1N

T
55 − N54, τ2−1 = τ2 − τ1

�77
11 = τ1R1 + (τ2 − τ1)R2 − N55 − NT

55,

with ¯A = A + E1FH , β = 1− ᾱ and σ = ᾱ(1− ᾱ).
Proof: The proof is same with the analysis as in

Theorem 1. Construct the following Lyapunov functional

V (ξ (t)) =
7∑
i=1

Vi(ξ (t))

where

V1(ξ (t)) = xT (t)Px(t),

V2(ξ (t)) =
∫ t

t−τ1
xT (s)Q1x(s)ds,

V3(ξ (t)) =
∫ t−τ1

t−τ2
xT (s)Q2x(s)ds,

V4(ξ (t)) =
∫ t

t−τ1

∫ t

s
yT (v)R1y(v)dvds,

V5(ξ (t)) =
∫ t−τ1

t−τ2

∫ t

s
yT (v)R2y(v)dvds,
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V6(ξ (t)) = σ

t∫
t−τ1

t∫
s

ξT (v)MTT1Mξ (v)dvds,

V7(ξ (t)) = σ

t−τ1∫
t−τ2

t∫
s

ξT (v)MTT2Mξ (v)dvds, (23)

with P > 0, Qi > 0, Ri > 0 and Ti > 0 (i = 1, 2) to be
determined.

The following equations along the same way in (12)-(16)
are true

0 = 2ξT (t)N1ψ(x, 0, τ1(t)), (24)

0 = 2ξT (t)N2ψ(x, τ1(t), τ1), (25)

0 = 2ξT (t)N3ψ(x, τ1, τ2(t)), (26)

0 = 2ξT (t)N4ψ(x, τ2(t), τ2), (27)

0 = 2rT (t)N5

[
(A + E1FH )x(t)+ ᾱĀτ x(t − τ1(t))

+ (1− ᾱ)Āτ x(t − τ2(t))+ D̄1w(t)− y(t)
]
, (28)

where rT (t) = [xT (t) xT (t−τ1(t)) xT (t−τ2(t)) wT (t) yT (t)].
Here, it should be noted thatNi (i = 1, 2, · · · , 5) are different
from the definitions of N̄i in Theorem 1 due to the existence
of external disturbance.

Along the analysis process of (16)-(20) and using
Lemma 2, it is easy to verify that (22) can guarantee
E{LV (ξ (t))} + E

{
z(t)T z(t)

}
− γ 2 wT (t)w(t) less than zero.

Therefore, the closed-loop system (7) is asymptotically
stable in mean-square sense with disturbance attenuation
level γ .

Theorem 2 shows the stability of (7) with specified
H∞ performance by utilizing Definition 1, where the gain
matrix K is assumed to be given. The following theorem
further gives the design way for the gain matrix K according
to the results in Theorem 2.
Theorem 3: For given constants τ1, τ2 and γ , if there exist

matrices P̂ > 0, Q̂1 > 0, Q̂2 > 0, R̂1 > 0, R̂2 > 0,
T̂1 > 0, T̂2 > 0, X and N̂j (j = 1, 2, · · · , 5) with appropriate
dimensions such that the following inequalities

�̂ =


�̂11 �̄12 �̄i

13 �̄14 �̄15 �̄16

∗ �̂22 0 0 0 0
∗ ∗ �̄33 0 0 0
∗ ∗ ∗ �̄44 0 0
∗ ∗ ∗ ∗ �̄55 0
∗ ∗ ∗ ∗ ∗ −I

 < 0,

i = 1, 2, 3, 4 (29)

are satisfied, where

�̄12 =
[√

στ1M̂
√
σ (τ2 − τ1)M̂

]
,

�̄1
13 =

[
τ1N̂2 τ1N̂2 τ2−1N̂4 τ2−1N̂4

]
,

�̄2
13 =

[
τ1N̂1 τ1N̂1 τ2−1N̂4 τ2−1N̂4

]
,

�̄3
13 =

[
τ1N̂2 τ1N̂2 τ2−1N̂3 τ2−1N̂3

]
,

�̄4
13 =

[
τ1N̂1 τ1N̂1 τ2−1N̂3 τ2−1N̂3

]
,

�̄T
14 =

[
�̄

(1)
14 �̄

(2)
14

]
, �̄T

15 =

[
�̄

(1)
15 �̄

(2)
15

]T
,

�̄T
16 =

[
�̄

(1)
16 �̄

(2)
16

]T
,

�̄
(1)
14 =

[
ET1 ρ2ET1 0 ρ3ET1
HST 0 0 0

]
,

�̄
(2)
14 =

[
0 ET1 N

T
54 ρ5ET1

0 0 0

]
,

�̄
(1)
15 =

[
AS + BK ᾱĀτS 0 βĀτS

0 0 0 0

]
,

�̄
(2)
15 =

[
0 0 −S
0 NT

54 0

]
,

�̄
(1)
16 =

[
CS ᾱAτ1S 0 (1− ᾱ)Aτ1S
0

√
σAτ1S 0 −

√
σAτ1S

]
,

�̄
(2)
16 =

[
0 D2 0
0 0 0

]
,

�̂22 = diag{−S − ST + T̂1,−S − ST + T̂2},
�̄33 = diag{−τ1R̂1,−τ1T̂1,−τ2−1R̂2,−τ2−1T̂2},
�̄44 = diag{−ε1I ,−ε

−1
1 I },

M̂T
= [0 AτST 0 − AτST 0 0 0],

�̄55 = diag{−ε2I ,−ε
−1
2 I },

�̂11
11 = N̂11 + N̂T

11 +8+8
T
+ Q̂1,

�̂12
11 = N̂T

12 − N̂11 + ρ28+ N̂21 + ᾱĀτST ,

�̂13
11 = N̂T

13 − N̂21 + N̂31,

�̂14
11 = N̂T

14 − N̂31 + N̂41 + ρ38+ βĀτST ,

�̂15
11 = N̂T

15 − N̂41, �̂16
11 = D̄1 + N̂T

16,

�̂17
11 = P̂+ N̂T

17 − S
T
+ ρ58,

�̂22
11 = −N̂

T
12 − N̂12 + N̂22 + N̂T

22

+ ᾱρ2(ĀτST + SĀTτ ),

�̂23
11 = −N̂

T
13 + N̂

T
23 − N̂22 + N̂32,

�̂24
11 = −N̂

T
14 + N̂

T
24 − N̂32 + N̂42 + ᾱρ3SĀTτ

+βρ2ĀτST ,

�̂25
11 = −N̂

T
15 + N̂

T
25 − N̂42,

�̂26
11 = ρ2D̄1 − N̂T

16 + N̂
T
26,

�̂27
11 = −N̂

T
17 + N̂

T
27 + ᾱρ5SĀ

T
τ − ρ2S

T ,

�̂33
11 = −Q̂1 + Q̂2 − N̂23 − N̂T

23 + N̂33 + N̂T
33,

�̂34
11 = −N̂

T
24 + N̂

T
34 − N̂33 + N̂43,

�̂35
11 = −N̂

T
25 + N̂

T
35 − N̂43, �̂36

11 = −N̂
T
26 + N̂

T
36,

�̂37
11 = −N̂

T
27 + N̂

T
37, �̂46

11 = −N̂
T
36 + N̂

T
46 + ρ3D̄1,

�̂44
11 = −N̂34 − N̂T

34 + N̂44 + N̂T
44

+βρ3(ĀτST + SĀTτ ),

�̂45
11 = −N̂

T
35 + N̂

T
45 − N̂44,

�̂47
11 = −N̂

T
37 + N̂

T
47 + βρ5SĀ

T
τ − ρ3S

T ,

�̂55
11 = = −Q̂2 − N̂45 − N̂T

45,

�̂56
11 = −N̂

T
46, �̂57

11 = −N̂
T
47,

�̂66
11 = N54D̄1 + D̄T1N

T
54 − γ

2I , �̂67
11 = ρ5D̄

T
1 ,

�̂77
11 = τ1R̂1 + (τ2 − τ1)R̂2 − ρ5(S + ST ) (30)
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with τ2−1 = τ2 − τ1, 8 = STAT + XTBT , then system (7)
is asymptotically stable with disturbance attenuation level γ
and the gain matrix K can be obtained by K = XS−1.

Proof: Firstly, define N51 = S−1, N52 = ρ2S−1, N53 =

ρ3S−1, N55 = ρ5S−1, where ρ5 6= 0 and S > 0.
Set L1 = diag{S, S, S, S, S, I , S}. Then pre- and post-

multiplying� in (22) withL=diag{L1, I , I , S, S, S, S, I , I }
and its transpose, respectively, one gets �̄ = L�L =[
�̄ij
]
3×3 with �̄11 = L1�11L

T
1 . Next, set P̂ = SPST ,

Q̂i = SQiST , R̂i = SRiST , T̂i = STiST (i = 1, 2), N̂ij =
SNijST , N̂i6 = Ni6ST (i = 1, 2, 3, 4, j = 1, 2, 3, 4, 5, 7),
N̂T
i = [N̂T

i1 N̂
T
i2 · · · N̂

T
i7 ].

Subsequently, notice

�̄11 = �̂11 +81FT82 +8
T
2 F8

T
1 +8384 +8

T
48

T
3

where

81 =

[
SHT

0

]
, 84 =

[
0n×5n NT

54 0
]
,

82 =
[
ET1 ρ2ET1 0 ρ3ET1 0 ET1 N

T
54 ρ5ET1

]
,

8T
3 =

[
AS + BX ᾱĀτS 0 βĀτS 0 0 −S

]
.

By applying Lemmas 3-4 and using Schur complement,
the inequality (22) can be transformed into

�̄i =


�̂11 �̄12 �̄i

13 �̄14 �̄15 �̄16
∗ �̄22 0 0 0 0
∗ ∗ �̄33 0 0 0
∗ ∗ ∗ �̄44 0 0
∗ ∗ ∗ ∗ �̄55 0
∗ ∗ ∗ ∗ ∗ −I

 < 0,

i = 1, 2, 3, 4 (31)

with �̂11 = [�̂pq
11]6×6, �̄1l (l = 2, 4, 5, 6), �̄i

13 (i =
1, 2, 3, 4), �̄jj (j = 2, 3, 4, 5) being defined as in (30).
It can be seen that inequality (31) is a nonconvex one due

to the existence of −T−1i in (31) and ε−11 , ε−12 . Noticing
(STi − I )T

−1
i (STi − I )T ≥ 0, we can easily obtain −T−1i ≤

−S − ST + T̂i (i = 1, 2). Considering the above analysis,
it’s not difficult to verify that the inequality (29) guarantees
�̄i < 0.
Remark 1: Notice the existence of ε−11 and ε−12 in (29),

by setting ε̄1 = ε−11 , ε̄2 = ε−12 and applying cone-
complementarity, then (29) can be approximated by the fol-
lowing sub-optimization problem:

min(ε1ε̄1 + ε2ε̄2)

E� =



�̂11 �̄12 �̄i
13 �̄14 �̄15 �̄16

∗ �̂22 0 0 0 0
∗ ∗ �̄33 0 0 0
∗ ∗ ∗ �̂44 0 0
∗ ∗ ∗ ∗ �̂55 0
∗ ∗ ∗ ∗ ∗ −I

 < 0,

i = 1, 2, 3, 4 (32)[
εj I
I ε̄j

]
> 0, j = 1, 2 (33)

with �̂44 = diag{−ε1 I ,−ε̄1 I }, �̂55 = diag{−ε2 I ,−ε̄2 I }.
According to [34], if the solution of the above minimization
problem is 2, then (29) is solvable.

Based on the above analysis, we provide the following
algorithm for the solvability of (29).
Algorithm for Theorem 3:
Step1: Given constants ρm (m = 2, 3, 5) and maximum

number N of iterations, set k = 0.
Step2: Find feasible solutions

{P̂, Q̂i, R̂i, T̂i, S, N̂j, εl, ε̄l,X}

(i = 1, 2, j = 1, 2, · · · , 5, l = 1, 2) satisfying the following
minimization problem:

min
2∑
i=1

(εiε̄i,k + εi,k ε̄i)

subject to (32) and (33)

εi,k+1 = εi, ε̄i,k+1 = ε̄i, i = 1, 2

if there is no feasible solution, then go to Step 3. Otherwise,
exit (found the feasible solutions).
Step3: Set k = k + 1 and try another constants ρm

(m = 2, 3, 5). If k < N , then go to Step 2. Otherwise, exit
(no feasible solution is found).

B. REACHABILITY ANALYSIS
Consider the variable controller as follows:

u(t) = Kx(t)+ u1(t)

where

u1(t) = −η(x, t)BT2 sign(s(x(t))), (34)

with K being designed in Theorem 3, s(x(t)) being sliding
function and

η(x, t) =
1
µ

[ (
‖GE‖‖H‖ + ‖B2(ρ̂(t)− I )K‖

)
‖x(t)‖

+ ᾱ‖GAτ‖‖x(t − τ1(t))‖ +
m∑
i=1

‖B2i‖ûfi(t)

+ (1− ᾱ)‖GAτ‖‖x(t − τ2(t))‖

+

q∑
i=1

‖GD1,i‖ŵi(t)+ ε
]
. (35)

Here, µ is a positive scalar to be given, ρ̂, ûfi and ŵi are the
estimates of ρ, ufi and wi, ε > 0 is a real number.
We now present the following adaptive laws to estimate the

unknown parameters:

˙̂ρi(t) = Proj[ρ
i
,ρ̄i]{F} =

 0 if
ρ̂i = ρi

and F ≤ 0

or ρ̂i = ρ̄i and F ≥ 0

F otherwise

,

˙̂ufi(t) = γ1i‖s(x(t))‖‖B2i‖, ûfi(0) = ufi0,
˙̂wi(t) = γ2i‖s(x(t))‖‖GD1,i‖, ŵi0 = wi0, (36)
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where F = γ0isTB2iKix(t), and γ0i, γ1i, γ2i are positive
design parameters. ufi0 and wi0 are given initial values.
B2i and D1,i are, respectively, the ith column of B2 and D1,
Ki is ith row of gain matrix K .
Let

ρ̃(t) = ρ̂(t)− ρ,

ũf (t) = ûf (t)− ūf , w̃(t) = ŵ(t)− w̄, (37)

then the time-derivative of the error systems can be rewritten
as

˙̃ρ(t) = ˙̂ρ(t), ˙̃uf (t) = ˙̂uf (t), ˙̃w(t) = ˙̂w(t) (38)

use the fact that ρ, ūs and w̄ are all unknown parameters.
Remark 2: It is worth mentioning that the projection oper-

ator in (36) forces ρ̂i limit to convex set [ρ
i
, ρ̄i], which can be

solved by the LMI approach. The initial condition of ρ̂i can
be selected as ρ̂i0 = (ρ

i
+ ρ̄i)/2 to guarantee the projection

constrained.
Remark 3: The free parameters γ0i, γ1i and γ2i in (36) are

introduced to adjust the convergence rates of ρ̂i, ûfi and ŵi,
respectively. Note that the higher parameters may lead to a
big overshoot and the lower parameters could cause slow
response of adaptive parameters.
Lemma 5 [10]: The matrix B2ρBT2 is invertible for

every ρ and there exist two positive real numbers µ and κ
such that the inequality

µI ≤ B2ρBT2 ≤ κI

holds.
In fact, let µ = λmin(B2ρBT2 ) and κ = λmax(B2ρ̄BT2 ),

then Lemma 5 can be easily obtained. Based on the presented
ISMC laws in (34)-(36) and using Lemma 5, the following
theorem further reveals the reachability.
Theorem 4: Let ISMC law be given in (34) and (36), then

the state trajectory of the closed-loop FTC system (1) with
actuator fault (2) can be driven onto the integral sliding
manifold S =: {x ∈ Rn

|s(x(t)) = 0}.
Proof: Construct the following candidate Lyapunov

function for the reachability analysis

V (s(x), ρ̃, ũf , w̃) = V1(t)+ V2(t) (39)

with

V1(t) =
1
2
sT (x(t))s(x(t)),

V2(t) =
m∑
i=1

(
ρ̃2i

2γ0i
+

ũ2fi
2γ1i

)
+

q∑
i=1

w̃2
i

2γ2i
.

For simplicity, here and below, define s or s(x) as s(x(t)).
Taking the infinitesimal operator L of V1(t) along the
system (3) leads to

LV1(t) = sT (x)
[
G1Ax(t)+ ᾱGAτ x(t − τ1(t))

+ (1− ᾱ)GAτ x(t − τ2(t))+ GB(ρ − I )u0(t)

+ (α(t)− ᾱ)(GAτ x(t − τ1(t))− GAτ x(t − τ2(t)))

+GBu1(t)+ B2ςuf (t)+ GD1w(t)
]

= sT (x)
{ [
GEFTH + B2(ρ̂(t)− I )K

]
x(t)

+B2(ρ − ρ̂(t))Kx(t)+ B2ρu1(t)+ B2ςuf (t)

+ ᾱGAτ x(t − τ1(t))+ (1− ᾱ)GAτ x(t − τ2(t))

+GD1w(t)+ (α(t)− ᾱ)(GAτ x(t − τ1(t))

−GAτ x(t − τ2(t)))
}

≤ ‖s‖
[
‖GE‖‖H‖ + ‖B2(ρ̂ − I )K‖

]
‖x(t)‖

+ ᾱ‖s‖‖GAτ x(t − τ1(t))‖ + (1− ᾱ)‖s‖

×‖GAτ x(t − τ2(t))‖ − sTB2ρ̃Kx(t)

+ sTB2ρu1(t)+ sTB2ςuf (t)+ sTGD1w(t)

+ (α(t)− ᾱ)sT (x)(GAτ x(t − τ1(t))

−GAτ x(t − τ2(t))). (40)

Hence, we see that

E{LV1(t)}
≤ ‖s‖

[
‖GE‖‖H‖ + ‖B2(ρ̂ − I )K‖‖x(t)‖ + ᾱ‖GAτ‖

×‖x(t − τ1(t))‖ + (1− ᾱ)‖GAτ‖‖x(t − τ2(t))‖
]

−sTB2ρ̃Kx(t)+ sTB2ρu1(t)+ sTB2ςuf (t)

+ sTGD1w(t). (41)

Now, considering the several terms in the above equa-
tion, the following inequalities are true according to
Assumption 2,

sTB2ρ̃Kx(t) =
m∑
i=1

sTB2iKix(t)ρ̃i, (42)

sTB2ςuf (t) =
m∑
i=1

sTB2iςiufi ≤
m∑
i=1

‖s‖‖B2i‖ūfi, (43)

sTGD1w(t) =
q∑
i=1

sTGD1,iwi ≤
q∑
i=1

‖s‖‖GD1,i‖w̄i. (44)

Substituting (42)-(44) into (41) yields

E{LV1(t)}
≤ ‖s‖

[
‖GE‖‖H‖ + ‖B2(ρ̂ − I )K‖‖x(t)‖ + ᾱ‖GAτ‖

×‖x(t − τ1(t))‖ + (1− ᾱ)‖GAτ‖‖x(t − τ2(t))‖
]

−

m∑
i=1

sTB2iKix(t)ρ̃i + sTB2ρu1(t)

+

m∑
i=1

‖s‖‖B2i‖ūfi +
q∑
i=1

‖s‖‖GD1,i‖w̄i. (45)

Considering the several terms in (45) and taking (36) into
account, we have

E{LV1(t)}
≤ ‖s‖

[
‖GE‖‖H‖ + ‖B2(ρ̂ − I )K‖‖x(t)‖ + ᾱ‖GAτ‖

‖x(t − τ1(t))‖ + (1− ᾱ)‖GAτ‖‖x(t − τ2(t))‖
]
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−

m∑
i=1

sTB2iKix(t)ρ̃i + sTB2ρu1(t)

+

m∑
i=1

‖s‖‖B2i‖(ûfi − ũfi)

+

q∑
i=1

‖s‖‖GD1,i‖(ŵi − w̃i). (46)

Furthermore, noticing the formula of u1(t), we get

sTB2ρu1(t) = −ηsTB2ρBT2 sign(s) ≤ −ηµ‖s‖1. (47)

Noticing that ‖s‖1 ≥ ‖s‖ and combining (46) with (47) result
in

E{LV1(t)} ≤ −ε‖s‖ −
m∑
i=1

sTB2iKix(t)ρ̃i

−

q∑
i=1

‖s‖‖GD1,i‖w̃i −
m∑
i=1

‖s‖‖B2iũfi. (48)

Moreover, in view of the adaptive laws (36) and noticing the
fact (38), one can further get

E{LV (t)}

≤ −ε‖s‖ −
m∑
i=1

sTB2iKix(t)ρ̃i −
q∑
i=1

‖s‖‖GD1,i‖w̃i

−

m∑
i=1

‖s‖‖B2iũfi +
m∑
i=1

ρ̃i ˙̃ρi

γ0i
+

m∑
i=1

ũfi ˙̃ufi
γ1i

+

q∑
i=1

w̃i ˙̃wi
γ2i
= −ε‖s‖. (49)

It means that V (t) is decrease when s(x) 6= 0. Thus the state
trajectory will arrive at sliding manifold S in finite time and
force to remain there subsequently.
Remark 4: It should be noticed that the large initial values

of ρ̂i0, ûfi0 and ŵi0 can compensate the effect of faults and
external disturbance in the systems. Also, we can confine
the sliding function to the convergence set in finite time by
adaptive laws, even though the bound of the actuator fault is
unknown.
Remark 5: So far, a new sliding-mode-based FTC scheme

for delayed system has been proposed. Owing to the exis-
tence of probabilistic delay, actuator fault and bounded-
unknown disturbance, the existing techniques using variant
rate of delay, exact actuator information and upper bound
of disturbance become invalid here. Accordingly, some chal-
lenges/difficulties are faced in the process of deriving the
new results. To be specific, 1) how to utilize the information
of variation range of delay rather than the variation rate of
delay; 2) how to reduce the effect caused by actuator fault; and
3) how to cope with bounded-unknown disturbance and stuck
fault effectively. To overcome these obstacles, the informa-
tion of variation range of delay has been used with the help
of Lemmas 1-2 to guarantee the stability. Moreover, a new
sliding mode controller with adaptive mechanism has been

proposed to attenuate the effects from actuator and bounded-
unknown disturbance. Specifically, the integral switching
surface is firstly given by introducing the gain matrix and
design matrix. With the help of Lemmas 1-2, the stability
for the sliding motion is then guaranteed and an algorithm
for calculating gain matrix is presented. Finally, the adaptive
laws for estimating the unknown parameters are presented
to compensate the effects from actuator fault and external
disturbance. It is worthwhile to note that the proposedmethod
is analyzed from the viewpoint of the theoretical analysis and
verified by the rocket fairing structural acoustic model given
later.

IV. A PRACTICAL EXAMPLE
Example 1: In this section, we consider a practical exam-

ple on rocket fairing structural acoustic [6], [35].
The following parameters are considered:

A =


0 1 0.0802 1.0415

−0.1980 −0.115 −0.0318 0.3
−3.0500 1.1880 −0.4650 0.9

0 0.0805 1 0

 ,

Aτ =


−0.04 0.0311 0.012 −0.53
0.03 −0.71 0 −1.02
0.10 0.01 −1.503 0.40
0.02 0 0.1 −0.87

 ,

B =


1 1.55 0.75

0.975 0.8 0.85
0 0 0
0 0 0

 ,

D1 =


0.1563 −0.0876
0.3067 0.2562

0 −0.2155
−0.3144 −0.2362

 , E =


1
0
0
0

 ,
H =

[
0 1 1 0

]
, F = 0.1,

C =
[

0.1324 −0.1121 0.0132 0.4015
−0.1534 −0.5427 0.0237 −0.0064

]
,

D2 =

[
0.1437 0.0983
0.2812 0.2631

]
,

Aτ1 =
[
−0.1532 0.321 0.0054 −0.1561
−0.1049 −0.2927 0.1739 0.0602

]
.

In addition, consider the variation range of time delay as
τ1 = 0.1, τ2 = 0.3 and the corresponding probability
is Prob{α(t) = 1} = 0.95. Furthermore, set the bounds
of the actuator efficiency as ρ = diag{0.65, 0.7, 0.7} and
ρ̄ = diag{0.8, 0.8, 0.8}. It is assumed that the third actu-
ator accurse stuck fault between 15s-15.3s with stuck fault
uf 2(t) = 20 + 10 cos(20(t − 5)) and the disturbance w(t) is
set as

w(t) =
[

1
(1+ t)2

1
1+ exp(0.5t)

]T
.
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FIGURE 2. State response of the open-loop system.

Let the adaptive gains in (30) be γ0i = 0.01, γ1i = 0.01,
γ2i = 0.01 (i = 1, 2). Then, select

B1 =


1 1.55

0.975 0.8
0 0
0 0

 , B2 =
[
1 0 1.0088
0 1 −0.1670

]
,

which satisfy B = B1B2. Accordingly, choose

G =
[
−1.1248 2.1793 0 0
1.3708 −1.4060 0 0

]
.

Based on the results in Theorems 2-3, solving the
Algorithm yields

X =

−3.0806 −4.9684 0.1177 −0.7103
0.5072 0.8231 −0.0196 0.1172
3.0561 4.9222 −0.1165 0.7039

×103,
S =


0.5998 0.1796 0.0721 0.1612
0.1796 0.8974 −0.0901 −0.0854
0.0721 −0.0901 0.8894 −0.0604
0.1612 −0.0854 −0.0604 0.9691

 .
Then, by calculating K = XS−1 leads to

K=

−3.4931 −4.9060 −0.1219 −0.5921
0.5729 0.8140 0.0208 0.0987
3.4686 4.8586 0.1199 0.5853

×103.
In the simulation, select the initial conditions as x0 =[
−0.5 0.3 1 − 1

]T , ρ̂i(0) = (ρ
i
+ ρ̄i)/2, ûf 1(0) = 0.1,

ûf 2(0) = 0.2, ûf 3(0) = 0.15, ŵ1(0) = 0.1, ŵ2(0) = 0.2.
To eliminate the phenomenon of chattering, we take the
strategy by replacing sign(s(x)) with sat(s(x)) satisfying

sat(s(x)) =


1 if s(x) > d,
s(x)/d if − d ≤ s(x) ≤ d,
−1 if s(x) < d .

Select d = 0.003 and index γ = 3, then we know all param-
eters and the simulation results can be depicted in Figs. 2-8.
The state responses without control are shown in Fig. 2,
it can be seen that the original open-loop system is unstable.
However, based on the proposed control method, the state

FIGURE 3. The state trajectory of the closed-loop system.

FIGURE 4. The trajectories of the sliding function.

FIGURE 5. The estimations of actuator efficiency factors.

trajectory of the closed-loop system presented in Fig. 3 is
stable ultimately. The estimations of the actuator efficiency
factors are presented in Fig. 5. Figs. 6-7 depict the estimations
of the bounds of uf (t) and w(t).
On the other hand, a sever fault scenario occurred at

t = 15s, which leads to suddenly tremor, but doesn’t affect
the ultimate stability. At the same time, the adaptive laws
changed suddenly to adapt the sever fault. It should be noticed
that the estimations ρ̂, ûf and ŵ are not necessary to con-
verge to their exact values. Noting the depicting in Fig. 4-7,
the adaptive laws do not converge to the ideal values within
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FIGURE 6. The estimation ûf (t).

FIGURE 7. The estimation ŵ(t).

FIGURE 8. The responses of J1(t) and J2(t).

the first few seconds which causes a small deviation of
the sliding function in Fig. 4 and the sliding mode takes
place after the convergence of the adaptive laws. It further
shows the efficiency of the proposed ISM control scheme.
Moreover, noting Fig. 3, we can see that the sudden actuator
fault leads to a transient instability which further causes a
small deviation of sliding surface in Fig. 4. Then, in view
of the adaptive laws in (36), it reveals that the parameters
ûfi (t), ŵi(t) increase and ρ̂i(t) changes in a moment which is
consistent with Figs. 5-7. Introducing J1(t) =

∫ t
0 z

T (s)z(s)ds
and J2(t) = γ 2

∫ t
0 w

T (s)w(s)ds, the responses of J1(t) and
J2(t) are depicted in Fig. 8, which further explains that the

desired H∞ performance can be achieved. Overall, it follows
from the simulation results that the validity of the achieved
FTC scheme is revealed.

V. CONCLUSION
In this paper, the sliding mode control problem has been
discussed for uncertain system with the probabilistic random
delays, actuator fault and external disturbance. By fully uti-
lizing the information of the probability distribution delay,
the asymptotically stable under satisfactoryH∞ performance
has been guaranteed when the state trajectory enters into
the sliding surface. An algorithm has been firstly given to
transform the traditional nonconvex problem into a con-
vex one, then new sufficient results have been obtained.
In the meanwhile, a novel adaptive ISM controller has been
designed, which not only attenuate the effect of actuator
fault but guarantee the stability with probabilistic delay and
unknown external noises in a unified framework as well. Fur-
ther topics include the discussions on the designs of FTCwith
time-varying actuator efficiency factor and communication
protocols.
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