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ABSTRACT Head pose estimation methods evaluate the amount of head rotation according to two or three
axes, aiming at optimizing the face acquisition process, or extracting neutral-pose frames from a video
sequence. Most approaches to pose estimation exploits machine-learning techniques requiring a training
phase on a large number of positive and negative examples. In this paper, a novel pose estimation method that
exploits a quad-tree-based representation of facial features is described. The locations of a set of landmarks
detected over the face image guide its subdivision into smaller and smaller quadrants based on the presence or
lack of landmarks within each quadrant. The proposed pose descriptor is both effective and efficient, provid-
ing accurate yaw, pitch and roll axis estimates almost in real-time, without need for any training or previous
knowledge about the subject. The experiments conducted on both the BIWI Kinect Head Pose Database and
the challenging automated facial landmarks in the wild dataset, highlight a pose estimate precision exceeding
the state-of-the-art with regard to methods not involving training and machine learning approaches.

INDEX TERMS Biometrics, face recognition, image analysis.

I. INTRODUCTION

Face is currently considered one of the most diffused
biometrics as well as one of the most accepted for both
person authentication and identification, mainly because it is
possible to capture it without direct contact by simply using
a digital camera. It is a well-known fact that face’s poten-
tially high discriminant power can be significantly affected
by subject’s pose, and this is particularly true for uncon-
trolled/unsupervised acquisition often occurring for face
capture at a distance and/or in-the-wild. The impact that a not-
neutral pose may possibly have on the recognition accuracy
depends on the intrinsic robustness of the feature-extraction
algorithm considered, but it is always proportional to the
overall head rotation extent with regard to each rotation axis
and to the combination of rotations.

More precisely, for the same algorithm it is not unusual to
have different values of recognition error for a head rotation
involving, for instance, mainly the yaw axis, instead of mainly
the roll axis or a combination of all three axis. It is worth
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noting that along with actual head rotations, also “apparent”
head rotations due to the head-camera angles may have a
negative impact on the subsequent processing stages.

This kind of situation is very common when face is cap-
tured at a distance by unattended imaging devices, such as the
surveillance cameras typically present inside many buildings
as well as in most urban contexts. In these scenarios, from the
one side there is a high chance that in a randomly selected
image the acquired face will not be in a neutral pose, but,
on the other side, there is also a high chance that in at least
one frame of the captured sequence the face will be close to
the neutral pose.

The capability of selecting that optimal frame, possibly
in real time, could actually improve the recognition perfor-
mance. Moreover, in a multi-biometric system, by knowing
the degree of head rotation affecting the acquired image,
it would be possible to adjust the weight of this descriptor
accordingly, thus optimizing the result in a score-level data-
fusion strategy.

This paper describes a Head Pose Estimation (HPE)
method capable of quickly measuring rotations of the head
in a single intensity image according to yaw, pitch and
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FIGURE 1. Overall workflow of proposed head pose estimation method.

roll axes. The proposed approach, schematically outlined in
Figure 1, exploits a novel (for the HPE context) version of a
well-known data structure, the quad-tree, expressly adapted
to store a landmark-based representation of face orientation.

By measuring the distance between this representation and
a reference model is possible to obtain a discrete estimate
of actual head orientation in the three-dimensional space.
The inherent efficiency of the quad-tree descriptor as well
as the good measurement accuracy achieved, have been both
confirmed by the experiments conducted on two databases,
the BIWI Kinect Head Pose Database and the Automated
Facial Landmarks in the Wild (AFLW) dataset. The pro-
posed methodology, not involving any learning/training stage
and the related optimization effort, not requiring to know
anything in advance about the subject in input, is able to
deliver MAE values lower than same-category state-of-the-
art methods. We explicitly aim at improving performance
without exploiting machine-learning techniques and related
NN architectures, as well as without requiring depth-data and
related hardware.

To resume its main contributions, the proposed HPE
method:

- does not require any learning/training stage;

- works on a single intensity image and does not require
depth/3D data nor dedicated hardware;

- is capable of near real-time performance on ordinary
single CPU hardware platform, thanks to the efficient
quad-tree based pose representation;

- features an average pose estimation precision exceed-
ing the state-of-the-art (with regard to methods only
exploiting 2D images and not requiring a learn-
ing/training stage).
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The rest of the work is organized as follows. Section 2 takes
up the main contributions related to the issue of estimating
and normalizing facial pose. Section 3 contains a detailed
description of proposed approach. Section 4 resumes the
results of the experiments conducted to assessing the perfor-
mance of proposed method. Finally, section 5 concludes sum-
marizing the work done and providing guidance for future
research.

Il. RELATED WORKS

Head/face pose estimation is an active research topic for
the computer vision community since almost three decades,
as reported by Murphy-Chutorian and Trivedi in their sur-
vey [1] and more recently in [2]. There is no surprise, indeed,
that a wide number of methods and algorithms has been
proposed through the years. However, with regard to the
aforementioned aims of the present work, it is possible to
classify available approaches according to four main cate-
gories, depending on whether they work on 2D (intensity)
or 3D (depth) images and whether they exploit some kind
of training step (typically involving machine learning tech-
niques) or not (i.e. they can work on completely unknown
subjects).

It has to be remarked that the requirement of 3D (depth)
data, implies the usage of a specialized sensor for capturing
the subject, thus limiting the practical applications of such
methods due to the limited subject-camera operative distance
typical of this kind of equipment which are generally not
suited to outdoor acquisition. Moreover, for 3D methods,
head pose estimation from conventional video stream/footage
is not possible. For these reasons, methods using both 2D
and 3D image (intensity+depth) can be assimilated into the
general “3D” category since they share the same operational
limitations of the “pure 3D’ methods. Though the proposed
method works on intensity images without requiring any
learning stage, we decided to include both 3D methods and/or
training-based methods to allow a thorough comparison with
the best available solutions to the head pose-estimation
problem.

A. 2D METHODS WITH LEARNING/TRAINING

The largest category of pose estimation methods among
those considered include approaches working on 2D images
and involving machine learning techniques in general, with
particular regard to deep-networks/convolutional-networks
architectures. A convolutional neural network (CNN) is used
indeed in [3] to project face images onto a low-dimensional
pose-space, whereas a combination of CNN and adaptive
gradient provide the best pose-estimation accuracy accord-
ing to [4]. The method proposed in [5] fuse the hidden
layers of a deep CNN via an additional CNN and a multi-
task learning algorithm working on the fused features. DNN
based multi-task learning is also used in [6] to learn shared
features from low-res intensity images, while dictionary-
learning and a classifier based on sparse representation are
exploited in [7] for improving pose classification robustness.
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Multi-task learning is also used in [8] since the authors aim at
real-time performance in combined face detection and pose
estimation by means of a multi-CNN cascade architecture.
Continuous regression by means of a probabilistic framework
is proposed by Aghajanian and Prince [9] to address pose
estimation in uncontrolled conditions. Similarly, in [10] a
CNN is trained over a synthetic dataset to learn head fea-
tures by the procedurally annotated head pose and solve the
regression problem. A mixture of tree-structures part mod-
els is exploited in [11] providing high accuracy even when
trained on a limited number of examples, while a multi loss
network using image intensities to estimate head pose Euler
angles is described in [12]. Heatmap-CNN regressors are
learnt in [13] by training on face’s visibility, fiducials and
3D-pose to achieve key-points estimation and pose predic-
tion. Multiple region-based classifiers are learned by means
of FlExible GrAph-guided Multi-Task Learning in [14] to
address head pose estimation in multiple-cameras monitored
environments.

In [15], DNN for head pose estimation produce initializa-
tion shape according to two different initialization schemes,
by either projecting a mean 3D face shape to the test
image or searching nearest neighbor shapes from the training
set based on head pose distance. Support Vector Regres-
sion (SVR) applied to histogram of oriented gradients (HoG)
feature is used for head pose estimation on low-resolution
images in [16].

Peng et al. [17] propose a coarse-to-fine framework
exploiting a unit circle to model the coarse layer and a
3-sphere to model the fine layer within a generative approach
to handle multiple head variations. A coarse-to-fine approach
is also behind the work described in [18], where joint hier-
archical head pose estimation and landmark detection is
achieved by the learning system exploring both global and
local CNN features.

B. 3D METHODS WITH TRAINING
Various training-based methods exploiting the additional
information provided by 3D data have been proposed.

Face range data are used in [19] to address pose estimation
through regression by means of a random forest framework.
The proposed method addresses the need of training the
regressor on labeled data, by training it only on synthetic
examples not requiring laborious and error-prone annota-
tions. Microsoft Kinect built-in depth sensor is exploited for
real-time head pose estimation in [20] by means of a novel
viewpoint invariant triangular surface patch (TSP) descriptor,
mapping the shape of face’s 3D surface into a triangular
region and matching it to gallery TSPs.

Another approach involving the Kinect camera is repre-
sented by [21], where Viola Jones face detector (in frontal and
profile versions) is used to locate the face in the RGB image,
with size and position of the search window determined by
means of the depth image. The head pose is then inferred from
appearance-based features, extracted from both the face’s
depth and RGB images, using SVM regressors.
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C. 2D METHODS WITHOUT TRAINING
Another category of methods not requiring any previous
learning or training stage, relies solely on specific descriptors
and metrics to estimate 3D face orientation from 2D images.
To this aim, in [22], accurate pose estimation is addressed
through a multi-level structured hybrid forest (MSHF). Head
boundary is obtained from patches classified as either belong-
ing to head region or to the background, then, selected
patches sub-regions are used to develop the MSHF for head
pose estimation. Gaussian mixture of locally-linear map-
ping (GLLiM) is the regression technique on which the
approach described in [23] is based. More recently in [24],
the same authors propose to learn with both head-pose
parameters and bounding-box-to-face alignments, such that,
at runtime both the head-pose angles and bounding-box
shifts are predicted. This approach ensures that the predicted
bounding-box-to-face alignments are similar with those used
for training. Consequently, background variations have min-
imal influence on the observed feature vector from which the
pose is being predicted. An approach aimed to provide fast
head yaw/pitch estimation is proposed in [25]. It is based
on an expressly adapted version of quad-tree to represent
facial landmarks. By comparing this descriptor with previ-
ously stored templates, this method is able to provide a rough
estimate of face rotations in a small amount of time. In [26],
Diaz-Chito propose to combine HoG features and gener-
alized discriminative common vectors within a continuous
local regression approach to achieve low errors in head pose
estimation.

D. 3D METHODS WITHOUT TRAINING
In the last category, fall methods exploiting 3D information
but not based on machine-learning techniques.

3D pose of an unknown subject is estimated in [27] by
finding nose shape in input range image and then using a
GPU optimized generative algorithm to evaluates many pose
hypotheses in parallel. In [28], Hough transform is applied
to central profile, a unique characteristic curve defined over
3D face surface, to find the symmetry plane by means of a
voting strategy. In [29] a framework based on random forests
trained by the SIFT-HOG features is used to approach pose
estimation as a regression problem. To cope with extreme
poses and partial occlusions, a weighted-vertices morphable
face model is registered to the 3D data captured by com-
modity depth cameras by combining particle swarm opti-
mization and the iterative closest point algorithm in [30].
Finally, Darby et al. [31] explore real-time head pose estima-
tion capability of Microsoft Kinect v2 High Definition Face
Tracking (HDFT) component, evaluating the sensor’s rota-
tional and translational precision.

The head pose estimation approach proposed in this paper
belongs to the aforementioned category of “2D methods
without learning” and represents an evolution of [25] extend-
ing the pose estimation to three axis and significantly improv-
ing both estimate accuracy and speed.
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lll. PROPOSED METHOD

From an operational point of view, the proposed method
aims at estimating a subject’s pose on three axis, with an
approximation of 5° , starting from a single intensity image
or frame (in a video sequence), in near real-time. To achieve
these results an effective and efficient processing pipeline is

devised, made up of two main phases:
1. the building of a reference pose-gallery, performed only

once to create a gallery of quad-tree based descriptors
of each of the head poses present in the angular range
and step considered on each rotation axis,

2. the evaluation of the input image and its associated
quad-tree based pose descriptor to find a matching
pose in the reference pose-gallery and therefore the
related pitch, yaw and roll values;

A. REFERENCE POSE-GALLERY

The present method is optimized for estimating head pose
in a range of +45° for Yaw, £30° for Pitch and +20° for
Roll discretized at 5° of angular step, accounting for a total
of 2223 head poses which represent the method’s discrete
search space.

These ranges have been selected to reduce the search-space
in the light of practical considerations such as the statistical
prevalence of the yaw rotation values compared to pitch
and roll values as well as the working limits of most face
detection and facial landmark localization algorithms. Simi-
lar reasoning applies to the angular granularity of 5° adopted,
which is reasonably small, however still visually significant.
A smaller angular step would be barely noticeable, though
it would have a significant impact on the efficiency of the
method. It is worth to note that the proposed approach has
no inherent limitations in terms of angular range and could
work on large poses as well. Actually, apart from the con-
siderations made above, the limit is more in the landmark
localization algorithm we used, that provides optimal results
within limited angular ranges and suggested the current num-
ber of poses distributed on the three axes. On the other side,
there is a practical trade-off between pose-range and quad-
tree size, that in turn has an impact on computing time.
The required 2223 head poses can be obtained by synthetic
generative methods, involving the procedural rendering of a
3D face (s) either modelled with CGI tools or captured via
3D scanning of a real subject. More in detail, a synthetic 3D
head model is procedurally rotated and rendered in real-time
across the chosen angular ranges and according to a 5° step
for a total of 2223 poses. Within this procedure, there are
three main time-consuming steps: rendering of head pose,
landmarks association to the rendered image and quad-tree
representation as a 1D vector; the bottleneck being mainly the
landmarks predictor which on an average laptop may reach 30
Fps. In the end the overall procedure may require a few min-
utes on ordinary hardware and is performed only once. The
procedural pose generation has the additional advantage of
providing an implicit annotation of head pose angles, which
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FIGURE 2. Simulated head pose variations involving three axis of rotation
and the associated landmarks displayed in green.

FIGURE 3. Example of four subsequent quad-tree subdivision steps from
the coarser to the finer level.

will be valuable, at a later time, for the objective assessment
of method’s estimation accuracy. As shown in section V, both
the pose generation methodologies cited above have been
investigated in the experiments conducted. As an example,
the synthetic head model depicted in Figure 2, was used
to build one of the reference pose-galleries by procedurally
rotating it with respect to pitch, yaw and roll axis.

B. FACE DETECTOR E LANDMARK PREDICTOR

For each head pose image, the first two steps of the processing
pipeline perform whole face detection and, subsequently,
facial landmarks localizations. The fast and robust Viola
Jones algorithm [33] has been used to this purpose. Once
the rectangular region containing a face has been detected,
reliable facial key-points have to be found to generate a more
compact face pose model, suited to be represented by the
proposed quad-tree based descriptor. The localization of 68
2D facial landmarks is therefore rapidly performed through
the algorithm described in [34] by means of an ensem-
ble of regression trees and resulting in a feature vector of
size 68x2.
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FIGURE 4. (a) Synthetic poses (b) Face detection and Landmark prediction (c) Quad-tree decomposition (d) Binary-tree array.

C. QUAD-TREE BASED HEAD POSE DESCRIPTOR
From this point on, the original image can be discarded and
its associated landmarks-based description is used instead.

The following step, indeed, is to represent this description
through a quad-tree [35].

This particular kind of unbalanced tree is often used for
image representation by dividing the image into smaller
and smaller quadrants based on the presence of information
within each quadrant. In the proposed method, the root of the
tree contains the entire face, that can always be divided into
four quadrants due to the presence of the landmarks, which
represent the relevant information. Each quadrant created is
then subdivided into four quadrants or none, depending on
whether or not at least one landmark is present in the quad-
rant. The subdivision continues in this way up to quadrants
of 4x4 pixel size.

The process is illustrated in Figure 3 where both land-
marks and local subdivisions are graphically represented and
in Figures 4 and 5 in terms of the processing flow, respec-
tively from a visual and a logical point of view.

Along with the subdivision process, a tree-vector is built
to represent the structure of the specific tree associated to
a given pose. This tree vector always contains 1365 nodes
if the number of generations in the tree is set to 6, a value
that has been found to be adequate to the purpose. The
tree-vector is a binary vector, in which each element is either 1
(indicating the existence of the node and, therefore, that
the parent quadrant of the node has been subdivided), or 0
(indicating the non-existence of the node and, therefore, that
the parent quadrant of the node has not been subdivided). The
resulting complete binary tree represents the distribution of
the landmarks in the image.

The pose of the subject in the image is indeed strongly
linked to this tree that is unbalanced on one side rather than
on the other and that creates or does not create child nodes
in relation to the position of the landmarks in the image and
therefore to the rotation of the subject along the three axes.

This also explains the need for a complete tree, since
associating to each pose a fixed-length vector, makes possible
to organize all the poses in a sparse matrix (that will represent

64260

FIGURE 5. Quad Tree generation workflow.

our reference pose-gallery) and perform pose matching.
The accuracy of the method depends from the capability
of the quad-tree based representation of the input-subject
to retain 3D orientation information according to the 2D
landmarks coordinates. So, it is reasonable to expect that
local tree-subdivision process could be somewhat affected
by subject appearance and/or expression, yet the experiments
have shown that by using 68 landmarks the impact of these
variations is limited.

IV. REFERENCE DATASETS

Two reference datasets have been used for testing the pro-
posed method and assessing its performance compared to the
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FIGURE 6. Samples from the BIWI Kinect Head Pose Database.

FIGURE 7. Landmarks positions provided in the AFLW Database.

state-of-the-art. The first database is the BIWI Kinect Head
Pose Database originally introduced in [36]. Over 15000 rgb
images captured from 20 subjects (14 males and 6 females,
four of which have been acquired twice) are included, along
with range data and ground truth annotations for both head
position and rotation (see Figure 6). The second database
is the Annotated Facial Landmark in the Wild (AFLW)
database [37].

AFLW contains about 25000 sample faces gathered from
Flickr, mostly rgb, featuring a wide range of poses, ages,
expressions, ethnical traits, imaging and environmental con-
ditions. Roughly sixty percent of these images depict female
subjects, while the rest represents male subjects and, in lim-
ited cases, multiple faces. The images, which have not been
resized or cropped, contain twenty-one facial landmarks each,
manually annotated upon visibility as depicted in Figure 7.

V. DESCRIPTION OF EXPERIMENTS

Three groups of experiments, for a total of six trials, have
been conducted on either the BIWI or the AFLW (Figure 8)
datasets. The testbed was an i5 quad core single CPU Mac-
book Pro, with an integrated Intel Iris 540 GPU. No multi-
threading optimization has been used for the computing tasks.
The first group is aimed at assessing the pose estimation
accuracy of the proposed method (QT_PYR) whenever the
probe image belongs to AFLW or BIWI and the reference
pose-gallery is generated either from the synthetic model
or from the 3D capture of a real subject from the BIWI
database. This group includes three experiments. The first
one is based on both BIWI and AFLW 2D images as probes
and the synthetic model for generating the 2223 elements
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FIGURE 8. QT_PYR estimates on samples from AFLW Database.

TABLE 1. Pose estimation accuracy of proposed QT_PYR method. Probe:
BIWI, AFLW - Gallery: generated via synthetic model.

Pitch Yaw Roll Mean

ar_PYR (deg) | (deg) | (deg) (deg
MAE 12.80 5.41 6.33 8.18

BIWI | RMSE 15.88 7.38 8.91 10.73
STD 9.36 5.01 6.22 6.86

MAE 7.60 7.60 7.17 7.45

AFLW | RMSE 9.58 12.42 10.39 10.80
STD 7.51 11.66 9.14 9.44

making up the pose-gallery. The results achieved are resumed
in Table 1 including MAE, RMSE and STD values for each
axis and the three axes mean value as well. The two graphs
in Figure 9-10 show the percentage of correctly estimated
poses for a given value of estimation error, with regard to
to Pitch, Yaw and Roll respectively in the BIWI and AFLW
testing.

For what concerns the time-cost of the algorithm, time
required for the whole process is 0.11 seconds which enables
operations at 9-10 Fps. In the second experiment, the refer-
ence pose-gallery is the same of the previous one.

However, instead of building the quad-tree with regard
to Pitch, Yaw and Roll, the image is previously normal-
ized with respect to the Roll and only Pitch and Yaw are
considered (QT_PY+R). More in detail, starting from the
rotation of the eyes (by measuring the angular coefficient of
the straight line passing through the two points represented
by the external corners of the eyes) face’s Roll is roughly
estimated. The image is therefore normalized by rotating it
so as to eliminate the Roll component. The resulting image
will possibly have posing variations only referred to Pitch
and Yaw axes, accounting for a total of only 207 images
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FIGURE 9. Correctly estimated poses for a given value of estimation
error (BIWI).

FIGURE 10. Correctly estimated poses for a given value of estimation
error (AFLW).

TABLE 2. Pose estimation accuracy of proposed QT_PY+R method. Probe:
BIWI, AFLW - Gallery: generated via synthetic model.

Pitch Yaw Roll Mean

QT_PY+R
- (deg) (deg) (deg) (deg)
MAE 14.95 6.28 4.12 8.45
BIWI RMSE 18.11 8.58 5.42 10.70
STD 10.19 5.82 3.48 6.50
MAE 17.84 9.33 3.44 10.20
AFLW | RMSE 23.73 14.28 4.84 14.28
STD 15.12 11.24 3.36 9.90

comprising the usual ranges of +30° for Pitch, +45° for
Yaw with 5° step (see Table 2). This much smaller search-
space suggests the possibility of achieving an even faster
performance. The results confirm this prevision, with a time
cost of 0.044 seconds or 22 Fps of operating speed, at the cost
of a higher Pitch error.

Though these results do not match the typical 30 Fps
requirement to allow the method to be fully considered
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TABLE 3. Pose estimation accuracy of proposed QT_PYR method. Probe:
BIWI - Gallery: generated from each of ten different subjects in BIWI.

Subject Pitch Yaw Roll Mean
(deg) (deg) (deg) (deg)

01 9.41 4.64 5.31 6.45
02 7.84 4.19 5.78 5.94
03 9.61 7.93 14.41 10.65
04 7.51 4.07 5.50 5.69
05 7.17 4.90 6.61 6.23
06 7.32 4.77 5.51 5.87
07 9.35 4.25 5.52 6.37
08 7,46 7,46 5,91 6.94
09 7.58 4.13 5.59 5.76
10 7.96 5.48 6.61 6.68

TABLE 4. Comparison of proposed methods to state-of-the-art on the
AFLW datab + Implemented on Nvidia GTX Titan-X GPU. 1
Implemented on Nvidia GTX 1080-Ti GPU.

Training Pitch Yaw Roll Mean | Time
Methods | +NN |\ ) | (deg) | (deg) | (deg) | (sec)
required s J s g
[5] Yes 6,13 7,61 3,92 587 | o1t
[13] Yes 5,85 6,45 8,75 7.02 0.37t
[12] Yes 6,56 6,47 5,43 6.15 -
QT_PYR No 7,60 7,60 7,17 7.45 | 0,11
QT_PY+R No 17.84 9.33 3.44 10.20 | 0,044

TABLE 5. Comparison of proposed methods to state-of-the-art on the
BIWI database. {{{lmplemented on Nvidia GTX Titan Black GPU.

[29] No 8.5 8.8 7.4 8.23 | 0.067
[10] Yes 6.1 6.0 5.7 594 |0.76ttt
[24] No 7.65 6.06 562 | 6.44 -
[12] Yes 6,97 5,16 338 | 5.17 -

QT_PYR No 7.51 4.07 5.50 5.69 0.11

QT_PY+R No 14.95 6.28 4.12 8.45 0.044

real-time, that goal can be easily achieved if a slightly
more performing hardware is used. To further clarify the
relevance of the hardware adopted, it is worth noting that
some of the recent real-time CNN-based HPE methods cited
in Table 4 and 5, reach this performance on workstation-class
machine equipped with a high-end GPU (typically Nvidia
GTX 1080-Ti or GTX Titan-X) to efficiently implement
the neural network. If the most diffused GPU benchmarks
are used for comparing the integrated graphics board within
the notebook used in our experiments (Intel Iris Graphics
540) to the aforementioned Nvidia GTX 1080-Ti, a speed
increment of 1411% is found for the latter. According to the
14xboost provided, the actual performance of the aforemen-
tioned GPU-enhanced real-time methods would drop of more
than an order of magnitude on ordinary hardware, on which,
probably, the most diffused DL environments would not work
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FIGURE 11. Search for the desired pose in a sequence of frames extracted from a video interview (a) Search for an image that matches the frontal
pose of the synthetic model with angles: P +00, Y +00, R +00 (b) Front-most frame in the sequence (c) Search for an image that matches the
synthetic model with angles: P +10, Y +30, R +05 (d) Frame more similar to the required pose.

at all. The third experiment is based on a different pose-
gallery, made up from real 3D data captured from each of
the real subjects included in the BIWI database as indicated
in the leftmost column of Table 3.

According to the results shown, using one of the subjects of
BIWTI as a pose-gallery allows to reduce errors, especially in
Pitch. In particular, subject 04 appears to be the best candidate
for the generation of the reference pose-gallery.

The second group of experiments is designed to compare
the proposed approach to the state-of-the-art of head pose
estimation algorithms. To this aim, and consistently to the
categories of methods described in section II, some of the
best performing training based and not-training based meth-
ods have been considered. With regard to training-based the
results are shown in Table 4 and Table V. As can be seen
from Table 4, on a competitive dataset like AFLW our method
competes with neural networks, approaching the best error
levels in Pitch (41, 75°), Yaw (41, 15°) and Roll (1, 74°).
In Table 5 the proposed method is compared to state-of-the-
art training-based approach [12] on the same BIWI database.
Though this kind of comparison would usually be considered
unfair toward a method not taking advantage of learning
by example, it is noteworthy that the results are very close.
Indeed, with regard to Pitch, the error in our method is less
than one degree higher than in [12], the Yaw error is lower
for our method than more than one degree and the Roll error
is higher for our method for just over two degrees. In Table 6,
results from a comparison to state-of-the-art methods belong-
ing to the same category of proposed method (2D, no training)
are reported. It is worth noting that the method [24] works
on a manual annotation of the faces, whereas our methods
exploits a synthetic pose generation process.

Nevertheless, our method outperforms the other approa-
ches. The accuracy of the method depends from the capability
of the quad-tree based representation of the input-subject
to retain 3D orientation information according to the 2D
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landmarks coordinates. So, while it is reasonable to expect
that local tree-subdivision process could be somewhat
affected by subject appearance, the experiments proved that
by using 68 landmarks this impact is limited. This is con-
firmed by comparing the results achieved on AFLW to those
achieved on BIWI. While AFLW includes a much larger
number of variations, the performance obtained are close to
those scored on the less-challenging BIWI, and sometimes
even better.

Finally, to demonstrate further use of the method pre-
sented, we performed tests on video sequences. The aim
was to search in a sequence of frames the one with
the desired pose. In this case then the method has been
implemented in a slightly different way (see Figure 11).
Instead of using the entire reference pose-gallery, only the
tree-vector of the desired pose is used as a reference. As
the frames are acquired, they are processed as described
in section III-B and III-C, obtaining the related tree vectors
that are compared with the reference tree-vector (here the
comparison is one by one).

In this way, the distance of each frame is obtained from the
reference pose used. After video capture, the shortest among
these distances is chosen and the required frame is the one
featuring the requested head pose.

VI. CONCLUSION
We presented a head pose estimation method from a single
intensity image not requiring any previous learning/training
stage. The proposed method, based on a quad-tree adaptation
to represent facial landmarks is able to estimating head pose
with regard to pitch, yaw and roll axis with a discrete angular
resolution of five degrees at an operating speed close to
10 Fps on a single CPU computing hardware.

According to the results of experiments carried out on both
BIWI and AFLW reference datasets, the reported pose esti-
mation accuracy significantly exceeds that of state-of-the-art
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methods not based on training and gets very close to the
best performances achieved by state-of-the-art training-based
methods. The proposed quad-tree based HPE method has no
inherent limitations in terms of angular range and could work
on large poses as well.

We are currently working to exploit more advanced land-
mark predictors to fully exploit the potential of proposed
method.
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