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ABSTRACT How to measure the similarity or distance between the basic probability assignment (BPA)
in evidence theory is an open issue. The existing evidence distance function has the shortcoming that the
cardinality of each subset is not reasonably considered. To address this issue, a new similarity coefficients
matrix is presented to model the cardinality of each subset. Based on the proposed similarity coefficients
matrix, a novel distance measure of belief function is presented. Some numerical examples are used to
compare the proposed distance with existing evidence distance. The results show the new evidence distance
has better performance. The application of the proposed measure in target recognition based on sensor data
fusion illustrates the promising aspect of real engineering.

INDEX TERMS Evidence theory, belief function, distance measure, sensor fusion, target recognition.

I. INTRODUCTION
Evidence theory, also known as D-S evidence theory [1], [2],
has been widely used in many fields such as decision
making [3]–[6], target recognition [7], risk and reliabil-
ity analysis [8]–[11], fault diagnosis [12]–[14], game the-
ory [15], information fusion [16]–[19], uncertainty reasoning
andmodelling [20]–[23] and other fields [24]–[26]. However,
counterintuitive results may obtained when using evidence
theory to combine highly conflicting evidence [27], [28].
In order to solve this problem, there are two main kinds
of methods: The first one is to modify the rule of com-
bination [29], [30], which considers that the counterintu-
itive result is caused by the unreasonable normalization
of the Dempster combination rule. The second is to pre-
process the evidences [31]–[33], mainly to assign the differ-
ent weight of different evidences before the combination of
evidences [34]–[37].

Combining uncertainty information is an open
issue [38]–[41]. In order to improve the credibility of the
evidence combination results, the effect of conflict evidence
on the final fusion result should be reduced. Many meth-
ods to measure the similarity between evidences have been
proposed to model the conflict degree [42]–[45]. Some of
them are based on evidence distance [46]–[48]. As a result,
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evidence distance has been heavily explored [49], [50].
Bauer [51] introduced two other measures based on pig-
nistic probabilities. Based on bayes a priori distribution
matrix, Fixen and Mahler [52] proposed a ‘‘classification
error distance’’ between belief functions. Diaz et al. [53]
proposed a similarity measure between the focal elements
used on a distance function of two basic belief assignments
in the theory of evidence. The bet commitment distances [54]
and the Jousselme et al. distance [55] are widely used.
The Jousselme et al.’s distance is based on the weighted
Euclidean distance provided by the geometric interpreta-
tion of the evidence theory. Because the calculation of
Jousselme et al.’s distance is relatively simple and the geo-
metric meaning is clear, it has been widely used to manage
conflicts of evidence [56].

The Jousselme et al.’s distance [55] measures the differ-
ence of evidences by comparing the probability assignment of
the evidence and the similarity between the different subsets,
basically including all the factors that reflect the information
in the evidence. In order to reflect the similarity between sub-
sets, the Jousselme et al. [55] distance uses the Jaccard simi-
larity coefficient tomodify the probability assignment of each
subset, and finally chang the distance between evidences. The
more similar the subsets of the two evidences are, and the
smaller the difference between the probability assignments of
the two evidences for the same subset, the smaller the distance
between the two evidences. However, the Jaccard coefficient
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does not consider the number of elements contained in a
single subset when calculating the similarity between sets.
As a result, the subset has changed, but the distance between
the evidences does not change, this will reduce the sensitivity
of judging the difference in evidence. This paper will give an
example to illustrate this problem.

In this paper, a new similarity coefficient is proposed to
replace the Jaccard similarity coefficient in Jousselme et al.’s
distance [55]. The examples show that the distance proposed
in this paper can effectively judge the difference between
evidences and more sensitive to the change of evidences.
It can obviously improve the convergence speed of informa-
tion fusion.

The rest of the paper is organized as follows. In Section 2,
the related knowledge of D-S theory and Jousselme et al.’s
distance [55] are briefly introduced. In Section 3, a new
distance is proposed. In Section 4 some examples are used to
demonstrate the feasibility of the evidence distance proposed
in this paper. The conclusion is made in Section 5.

II. PRELIMINARIES
In this section, some preliminaries are briefly introduced.

A. DEMPSTER-SHAFER EVIDENCE THEORY
It’s inevitable to handle uncertainty in real world [57]–[60].
Many math tools are developed and widely used, such as
fuzzy sets [61]–[65], Z numbers [66], belief structure [67],
D numbers [68]–[70], R numbers [71], [72], entropy mod-
elling [73]–[76] and rough sets [77]. Evidence theory is one
of the most used math tools due to its efficiency ot deal with
uncertainty [78]. Let 2 be a set of N mutually exclusive
and exhaustive hypotheses, which means the problem has
N possible values, and Hi(i = 1, 2, 3, . . . ,N ) are used to
represent these hypotheses. The following set is called the
frame of discernment [1], [2]

2 = {H1,H2, . . . ,HN }. (1)

P(θ ) is the power set composed of 2N elements A of θ ,
representing the object is in A

P(2){φ,H1,H2, . . . ,HN , (H1,H2), (H1,H3), . . . ,

(HN−1,HN ), . . . , (H1,H2,H3), . . . ,2}. (2)

A basic probability assignment (BPA) is a function from P(θ )
to [0, 1] defined by:

m : P(2)→ [0, 1] (3)

and which satisfies the following conditions:∑
A∈P(2)

m(A) = 1, (4)

m(φ) = 0. (5)

where m(A) represents the belief to A [79].
Suppose two evidencesm1 andm2, which can be combined

into a new evidential body m through Dempster combination

rule

m(A) =

∑
B∩C=A m1(B)m2(C)

1− k
(6)

with

k =
∑

B∩C=∅
m1(B)m2(C) (7)

k represents the degree of conflict between evidences and
also called normalization constant. When k=1, the Dempster
combination rule cannot be used. The following examples
illustrate that the traditional conflict coefficient does not
measure the conflict between two evidences well enough. evi-
dence theory cannot used to combination highly conflicting
evidence
Example 1: The frame of discernment 2 is {A, B, C},

the BPAs of the two evidence bodies are as follows [28]:

m1(A) = 0.99, m1(B) = 0.01, m1(C) = 0;

m2(A) = 0, m2(B) = 0.01, m2(C) = 0.99.

Although these two evidences have low support for subset B,
the result of calculated BPA of B is equal to 1, which is obvi-
ously not credible, so counterintuitive results would obtained
when using evidence theory to combine highly conflicting
evidence. Recently, more and more people use evidence dis-
tance to measure the conflict of evidences, and evidence
distance is more effective than k when dealing with highly
conflicting evidences [80], [81]. The distance is proportional
to the degree of conflict between evidences, the greater the
conflict between the evidence bodies, the less reliable the
results obtained by the Dempster combination rule. Then
let’s briefly review the existing distance used to deal with
conflicting evidence.

B. EXISTING EVIDENCE DISTANCE
Similarity and distance measure play a very important role
in real application [82], [83]. How to measure the similarity
or distance between two mass functions has been paid great
attention [55]. Let m1 and m2 be two BPAs on the same
frame of discernment 2, containing N mutually exclusive
and exhaustive hypotheses. The distance between m1 and m2
is [55]

dBPA(m1,m2) =

√
1
2
(−→m1 −

−→m2)TD(
−→m1 −

−→m2) (8)

where −→m1 and
−→m2 are the associated vectors of BPAs, m1 and

m2 and D is a 2N × 2N matrix whose elements are

D(A,B) =
|A ∩ B|
|A ∪ B|

,

A,B ∈ P(2).

Another way to represent dBPA is

dBPA(m1,m2) =

√
1
2
(‖−→m1‖2 + ‖

−→m2‖2 − 2〈−→m1,
−→m2〉) (9)
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where ‖−→m ‖2 = 〈−→m ,−→m 〉,and 〈−→m1,
−→m2〉 is the scalar product

defined by

〈
−→m1,
−→m2〉 =

2N∑
i=1

2N∑
j=1

m1(Ai)m2(Aj)
|Ai
⋂
Aj|

|Ai
⋃
Aj|

(10)

with Ai,AjεP(2), i, j = 1, 2, . . . , 2N .
It’s reasonable to considering the weigh of the factor or

evidence in complex systems [84], [85]. In conflicting man-
agement, weight also can be determined by the evidence
distance function or other machine learning method [86].

III. THE PROPOSED EVIDENCE DISTANCE
In this section, the shortcoming of existing distance measure
is analyzed firstly. Then, a new distance of belief function is
proposed.

A. THE SHORTCOMING OF EXISTING EVIDENCE DISTANCE
In order to reflect the similarity between subsets,
Jousselme et al.’s distance introduces matrix D and mod-
ifies the basic probability assignment of two evidences by
matrix D. So as to obtain the distance that can reflect the
similarity between two evidences. The elements in D are
calculated by the Jaccard similarity coefficient.

For better explanation, the principle of the jaccard simi-
larity coefficient is represented by venn diagram, which is
often used to reflect the relationship of sets. The premise is
the points in the circle are evenly distributed. The two venn
diagrams in Fig. 1 represent two different sets relationship.
A circle represent a subset. The number of elements contained
in the subset determines the area of the circle. The intersection
of two circles represents the same part of the two sets, and
areas without intersections represent different parts of the
two sets. The combined region of sets A and B is denoted
by |A

⋃
B|, The region in both A and B, where the two sets

overlap is denoted by |A
⋂
B|. In Fig. 1, because |A

⋂
B| = 0,

so set A and B are completely different. Fig. 1 is circles with
unequal areas, though |C

⋂
A| > |B

⋂
A|, but the area of the

circle C is large, the overlap portion is smaller compared to
the area of the circle C , so the similarity of the two circles
is not large. Though|C

⋂
B| is small, the areas of the circle

C and B are relatively small, so the similarity is rather large.
It can be concluded that the number of elements contained in a
single set of collections has an impact on the size of similarity
between sets. The following example is used to illustrate the
shortcoming of the existing distance.
Example 2: Given a frame of discernment 2 is {1,2,

. . . ,10}, the BPAs of the two evidence bodies are as follows:

m1(M ) = 1.

m2(N ) = 1.

M changed from {1}, {12} to . . . {1, 2, . . . , 10}. The results
are shown in Tab. 1 and Fig. 2.

It can be seen that the two sets measured have changed, but
the results do not reflect this change.

FIGURE 1. Use venn diagram to show the relationship between finite
groups of things. (a) Circles with equal area. (b) Circles with unequal area.

TABLE 1. The results of example 2 obtained by Jousselme distance.

FIGURE 2. The result of example 2.

B. THE NEW DISTANCE MEASURE
Belief function, or mass function, is a generalization of prob-
ability distribution. For the two subsets, whether the number
of elements contained in the subset changes or the number
of identical elements in the two subsets changes, it should be
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reflected in the similarity. Therefore, this paper proposes a
new coefficient of similarity between subsets. The main idea
is to measure the similarity by specific to a single subset,
so both subsets can determine the degree of similarity.
Definition 1: Given subsets A and B, the similarity coeffi-

cients matrix Dα is defined with the elements are as follows

Dα(A,B) =
|A
⋂
B|

|A|
×
|A
⋂
B|

|B|
(11)

|A
⋂
B|

|A|
represents the proportion of the parts that are shared

between two sets in each set, it can be understood as the sim-
ilarity between |A

⋂
B| and |A|. Jaccard similarity coefficient

uses the union of two sets as the denominator, and the union of
the sets is used as the numerator, so the characteristics of each
individual set are easily ignored in the calculation process.
Definition 2: The new evidence distance is defined as

dα(m1,m2) =

√
1
2
(−→m1 −

−→m2)TDα(
−→m1 −

−→m2), (12)

and Dα is used to describe the similarity between the subsets
of 2.
Equation (8) can be transformed as follows

dα(m1,m2) =

√
1
2
(‖−→m1‖2 + ‖

−→m2‖2 − 2〈−→m1,
−→m2〉), (13)

and

〈
−→m1,
−→m2〉 =

2N∑
i=1

2N∑
j=1

m1(Ai)m2(Aj)(
|A
⋂
B|

|A|
×
|A
⋂
B|

|B|
)

(14)

with Ai,AjεP(2), i, j = 1, 2, . . . , 2N .
Next we prove that the proposed distance satisfies the

following requirements for any vectors made of BPAs.
1) Nonnegativity: d(m1,m2) ≥ 0.
2) Symmetry: d(m1,m2) = d(m2,m1).
3) Triangle inequality: d(m1,m2) ≤ d(m1,m3) +

d(m2,m3).
First to prove that the new distance satisfies the nonnegative
property.
Proof 1: When all subsets in the body of evidence are

different, we can obtained tha

dα(m1,m2) =

√
1
2
(−→m1 −

−→m2)T (
−→m1 −

−→m2)

Obviously, in this case dα(m1,m2) ≥ 0. Otherwise, ForDα
is positive definite.

Dα = CTC (15)

where C ∈ R2
N
×2N is an invertible matrix, So we can obtain

the following equation

dα(m1,m2) =

√
1
2
(−→m1 −

−→m2)TCTC(−→m1 −
−→m2)

=

√
1
2
(C(−→m1 −

−→m2))T (C(
−→m1 −

−→m2))

=

√
2
2
‖C(−→m1 −

−→m2)‖ (16)

and ‖C(−→m1 −
−→m2)‖ represents the modulus of the vector,

The role of matrix C is to change the modulus of the vector
(−→m1−

−→m2), the greater the similarity between subsets, themore
obvious the scaling effect of matrix C will be. As ‖C(−→m1 −
−→m2)‖ ≥ 0, so it is proved that d(m1,m2) ≥ 0.
Then to prove that the new distance satisfies the symmetry

property.
Proof 2:

dα(m2,m1) =

√
1
2
(−→m2 −

−→m1)TDα(
−→m2 −

−→m1)

=

√
1
2
[−(−→m1 −

−→m2)T ]Dα[−(
−→m1 −

−→m2)]

=

√
1
2
(−→m1 −

−→m2)TDα(
−→m1 −

−→m2)

= dα(m1,m2) (17)

Thus, new distance satisfies symmetry.
Next to prove that the new distance satisfies the Triangle

inequality.
Proof 3: Take 2-norm vector as an example, the BPAs of

the two evidence bodies are as follows:

m1(A) = 0.4,m1(AB) = 0.6;

m2(A) = 0.9,m2(AB) = 0.1;

m3(A) = 0.7,m3(AB) = 0.3

then we have

Dα =
[
1 1

2
1
2 1

]
The Euclidean distance between −→m1 and

−→m2 is

‖(−→m1 −
−→m2)‖ =

√
(−0.5, 0.5)T (−0.5, 0.5) =

√
0.5

The Euclidean distance between −→m2 and
−→m3 is

‖(−→m2 −
−→m3)‖ =

√
(0.2,−0.2)T (−0.2, 0.2) =

√
0.8

According to the new distance

‖C(−→m1 −
−→m2)‖ =

√
(−0.5, 0.5)TDα(−0.5, 0.5)

=

√
(−0.25, 0.25)T (−0.5, 0.5)

=
√
0.5× 0.5

=
√
0.5× ‖(−→m1 −

−→m2)‖ (18)
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‖C(−→m1 −
−→m2)‖ =

√
(−0.2, 0.2)TDα(−0.2, 0.2)

=

√
(−0.1, 0.1)T (−0.2, 0.2)

=
√
0.5× 0.8

=
√
0.5× ‖(−→m2 −

−→m3)‖ (19)

It is obvious that

‖C(−→m1 −
−→m2)‖ ≤ ‖(

−→m1 −
−→m2)‖

This example demonstrates that matrix C changes themod-
ulus of the vector, the similarity between the two sets is
reflected by the matrix Dα to the distance value.

FIGURE 3. Proof using three dimensional space vector.

Next we use 3-norm vectors to prove that the new distance
satisfy the triangle inequality. In Fig. 3, let a = ‖(−→m1−

−→m2)‖,
b = ‖(−→m1 −

−→m3)‖, c = ‖(
−→m2 −

−→m3)‖, ca = ‖C(
−→m1 −

−→m2)‖,
cb = ‖C(−→m1 −

−→m3)‖, cc = ‖C(
−→m2 −

−→m3)‖.
According to the side length relationship of the triangle,

we have a < b + c. Only when m1 = m3 or m2 = m3,
dα(m1,m2) = dα(m1,m3) + dα(m2,m3). otherwise,
dα(m1,m2) < dα(m1,m3) + dα(m2,m3). Thus, it is proved
that the 3-norm satisfies the triangle inequality, in the same
way, we can conclude that the proposed distance satisfies the
triangle inequality under other conditions.

IV. EXAMPLES AND APPLICATION
In this section, some numerical examples and the real appli-
cation in target recognition are used to illustrate the efficiency
of the proposed distance function.

A. NUMBERICAL EXAMPLES
Example 3: The data is the same as Example 2. Given a

frame of discernment 2 is {1,2,. . . ,10}, the BPAs of the two
evidence bodies are as follows:

m1(M ) = 1.

m2(N ) = 1.

M changed from {1}, {1, 2} to . . . {1, 2, . . . , 10}, In contrast,
N changed from {1, 2, . . . , 10} to {1}. The results of our
proposed measure are shown in Tab. 3 and Fig. 4.

TABLE 2. The results of example 2 obtained by new distance.

FIGURE 4. The comparison of the two distances.

FIGURE 5. Situation that both evidences change.

Although both subset M and subset N are changing,
the number of elements shared between the two sets is
unchanged. Venn diagram is used to show the relationship
between the two subsets, as shown in Fig. 5. Under the
premise of ensuring correctness, Drawing a venn diagram to
show the relationship of four evidence groups in the example.
On the premise of correctness, we only give the venn diagram
corresponding to the subset M = {1, 2} and M = {1, 2, 3, 4,
5, 6}. Two circles are used to represent the different subsets,
the intersection of the two circles represents the part shared
by the two sets, and the numbers in the circle represent the
elements in the subset.

It can be seen from the Fig. 3 that the results obtained
by the two distances are not much different, but there is a
significant difference in the trend between the two curve. The
result of calculating with the Jousselme et al.’s distance is
equal to a constant and does not change with the change of
subsets. This is because the Jousselme et al.’s distance does
not consider the change of a single subset when calculating
the similarity, so it does not reflect the specific value of the
difference between the two subsets. The value calculated by
the new distance is correspondingly changed with the subset.
The symmetry of the curve is exactly the same as the trend
of evidence. By measuring the difference by specific to a
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single subset, so the new evidence distance ismore reasonable
in measuring similarity, and it also significantly improves
the sensitivity of calculating the similarity between the two
evidences.
Example 4: Given a frame of discernment 2 is {1, 2,

. . . , 10}, the BPAs of the two evidence bodies are as follows:

m1{A} = 1.

m2{2, 3, 4, 5, 6, 7, 8} = 1.

With A changed from {1} to {1, . . . , 10}. The results are
shown in Tab. 3 and Fig. 6.

TABLE 3. The results of example 4.

FIGURE 6. Situation that only one set changes.

Dividing the curve into two intervals for discussion
according to the number of elements contained in the sub-
set A, Before the curve reaches the lowest point, as the
number of elements in the subset A gradually increases,
the same part between the two evidences is also reduced.
and because the same part between the two evidence does
not change, the distance between the two evidences gradually
decreases,indicated the similarity between the two evidences
gradually increases. When the subset A = {1, 2, . . . , 8},
the distance curve reaches lowest point, because the number
of the same elements between two evidences is themaximum,
while the number of different elements is minimum. Then
the number of elements in subset A continues to increase, but
the number of identical elements between the two evidences
does not change, the value of the evidence distance begins
to increase. Since the same part between evidences is equal
to m2, the distance between the two pieces of evidence is
determined by m1, in which case the evidence distance pro-
posed degenerates into Jousselme et al.’s distance, so the two
curves coincide together.

The above two examples illustrate that the distance pro-
posed in this paper can effectively deal with the various
cases of the single subset evidence. Then to prove that the
new distance can measure the similarity of the multi-subset
evidences equally effectively.
Example 5: Given a frame of discernment 2 is {1, 2,

. . . , 15}, the BPAs of the two evidence bodies are as follows:

m1(A) = 0.5,m1(7) = 0.1,m1(2, 8, 15) = 0.4;

m2(1, 2, 3, 4) = 1

With A changed from {1} to{1, 2, . . . , 15}. The results are
shown in Tab. 4 and Fig. 7.

TABLE 4. The results of example 5.

FIGURE 7. Comparison of the distances in measuring the similarity
between multiple subsets of evidence.

It can be seen from Fig. 7 that the changing trend of
the two distance curves is consistent, and the distance is
first decreased and then increased, but when the number of
elements in the subset A is relatively small. When the number
of elements in subset A is relatively small, the change of
distance is relatively large. When the number of elements
in subset A increases gradually, the distance between evi-
dences keeps increasing, but the rate of increase gradually
slows down. When A = {1, 2, 3, 4}, the distance reaches the
minimum point, because A has a large probability assignment
in both evidences, and the difference between the subsets
contained in the two evidences is also the smallest. This
example shows that the distance function proposed in this
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paper can effectively measure the similarity between multiple
subsets of evidence.

B. TARGET RECOGNITION
Target recognition is a typical sensor data fusion application
under uncertainty [87]–[89], and this sectionwill demonstrate
the usefulness of the new distance by applying the new
distance to the target recognition.

This application is an automatic target recognition method
based on sensor data fusion, where the sensors are radars and
the targets are flights. The target recognition system is based
on Radar/IR seeker, there are two different types of sensor,
one is active radar and the other is infrared imaging seeker.
After the data processing, the sensor reports are transformed
into BPA for futher data fusion. Assume that there are six
objects A, B, C, D, E, F in a target recognition system, there
are five difference kinds of sensors to observe objects which
are sensor(S1), sensor(S2), sensor(S3), sensor(S4), sensor(S5).
The evidences obtained from these kinds of sensors are shown
in Tab. 5.

TABLE 5. The evidence obtained by sensors.

TABLE 6. The result obtained by proposed distance.

First, we measure the similarity between the three evi-
dences and then obtain the weight of each evidence [90].
The results obtained by Jousselme et al. distance are all
equal to 0.408, so the weight of each evidence is equal
to 0.2. Since the evidence obtained by the sensors S3, S4,
S5 is the same with each other, the reliability of those three
evidence is higher than that of the other two evidence, and
S3, S4, S5 should be given a higher weight. It is obvious that
Jousselme et al. distance cannot effectively classify these
evidences. The result obtained by the proposed distance are
shown as Tab.6,

Let’s analyze the inequality that dα(m1,m2) < dα(m3,m2),
because the more elements a subset contains, the less useful
information it can provide when making a decision, so even
though m3(A, B)=m3(A, B, C,D, E, F), the property of the
evidence described by m1(A, B) is more important. The dif-
ference between m1 and m2 is caused by (A, B) and (A, B, C,
D, E, F), while the difference betweenm3 andm2 is caused by
(A, B) and (B, C), so the result that dα(m1,m2) < dα(m3,m2)
is reasonable.

The weights assigned to different evidences according to
the new distance results are as follows:

w1 = 0.1675

w2 = 0.1622

w3 = 0.2234

w4 = 0.2234

w5 = 0.2234

Finally, modify the BPAs by weights and combine the
weighted averaging evidence four times. The final results
are listed in Tab. 7, according to the final results, the real
target is A, B. Because the evidence distance proposed in
this paper is more sensitive when measure the similarity
between evidence, it can find conflict evidence more quickly
and accurately, thus minimizing the impact of unreliable
evidencewhen combining evidence. This example proves that
the new distance has high sensitivity and can be used in target
recognition.

TABLE 7. The evidence combination result of target recognition.

TABLE 8. The BPAs of evidences.

Then compare the new distance with multiple classic dis-
tances. The frame of discernment 2 is {1, 2, 3, 4, 5}, the
BPAs of the two evidence bodies is shown as Tab. 8, the
ruselts are shown as Tab. 9.

It can be seen from the Tab. 9 that there are significant
differences in the results obtained by combining the evidence
in different ways. The D-S evidence combination rule pro-
duces counterintuitive behavior when dealing with highly
conflicting evidence. Only in the evidencem1, the BPA of the
subset {1, 2, 3, 4, 5} is equal to 0. In other evidences, the BPA
of the subset {1, 2, 3, 4, 5} is greater than 0, but the BPA of
the subset {1, 2, 3, 4, 5} obtained after the fusion is all equal
to 0, and the result is not credible. Murphy’s simple average
fusion method converges faster and robustness is better than
the D-S evidence combination rule, but simply averaging
the BPA of the evidences and assigning the same weight
to all the evidence makes conflict evidences have a greater
impact on the combined results. Taking the subset {1, 2} as
an example, the BPA of the subset {1, 2} is still smaller after
completing the evidence combination twice, it indicate that
the conflict evidence body m2 still has a great influence on
the fusion result. therefore the result of this combination is
not good enough.

Compared with the above two methods, the results is more
ideal to combine evidences after changing the weight of the
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TABLE 9. The results of the evidence combination. For the layout of the
table, let A = 1, 2. B = 2, 3. C = 3, 4, 5. D = 1, 2, 3, 4, 5.

evidence, as the BPA of the subset {1, 2} is greater than the
result of fusion with the Dempster’s method twice after the
first fusion.

FIGURE 8. Comparison of different combination methods .
(a) Combination result of m(1, 2). (b) Combination result of m(2, 3).
(c) Combination result of m(3, 4, 5). (d) Combination
result of m(1, 2, 3, 4, 5).

Through the Fig. 8, we can see the convergence speed of
different methods in the combination of evidence. The BPA
of target subset {1, 2} calculated by the proposed method
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has the fastest rate of increase, after four fusions, m(1, 2) =
0.8911, while the results obtained by other methods are
smaller than it. Except for the target subset, the BPAs of other
subsets are gradually decreasing as the number of fusions
increases, and the BPAs of all non-target subsets obtained by
the proposed method is minimal. Due to the existence of con-
flict evidence m2, after the combination of evidence m1,m2
and m3, the BPA of {2, 3} is still large. Average the BPA of
{2, 3} of evidence m1,m2 and m3, we have m(2, 3) = 4.333,
only the distance value obtained by the new method is less
than this average value. Because the new distance has high
sensitivity in measuring the similarity between evidences,
it has a fast convergence speed in the application of target
recognition. The above application shows that the proposed
method can recognize the target with the minimum number
of fusion times, and less affected by conflict evidences, so it
is excellent in the sensor data fusion.

V. CONCLUSION
This paper proposes a new distance measure of belief func-
tion by the presented similarity coefficients matrix. The new
similarity coefficient takes the cardinality of the subsets of
the power set. Therefore, the distance of evidence presented
in this paper can more sensitively measure the change of
evidence. The ability to measure differences between two
BPAs is also significantly improved. The application of the
proposed measure in target recognition based on sensor
data fusion illustrates the promising aspect in real engineer-
ing [17], [40], [80], [81], [92].
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