IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 22, 2019, accepted May 13, 2019, date of publication May 17, 2019, date of current version June 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917628

Cryptographic Accumulator-Based Scheme for
Critical Data Integrity Verification

in Cloud Storage

WALID I. KHEDR™, HEBA M. KHATER, AND EHAB R. MOHAMED

Faculty of Computers & Informatics, Zagazig University, Zagazig 44519, Egypt
Corresponding author: Walid I. Khedr (wkhedr@fci.zu.edu.eg)

ABSTRACT Public cloud storage is a fundamental cloud computing service. Currently, most owners of large
data outsource their data to cloud storage services—even high-profile owners such as governments. However,
public cloud storage services are not optimal for ensuring the possession and integrity of the outsourced data,
a situation that has given rise to many proposed provable data possession check schemes (PDP). A PDP
scheme allows data owners to efficiently, periodically, and securely verify that a cloud storage provider
possesses the outsourced data. Most of the currently available provable data possession check schemes make
selective (i.e., probabilistic) checks using random data blocks to verify data integrity rather than checking
the entire dataset. Therefore, these schemes are considered inadequate by critical infrastructure sectors that
involve highly sensitive data (critical data). In this paper, a new and efficient deterministic data integrity check
scheme called cryptographic-accumulator provable data possession (CAPDP) is proposed. The CAPDP
surpasses the common limitations exhibited by other currently proposed schemes. The underlying scheme of
the CAPDP is based on a modified RSA-based cryptographic accumulator that has the following advantages:
1) it allows the data owner to perform an unlimited number of data integrity checks; 2) it supports data
dynamics; 3) it is efficient in terms of communication, computation and storage costs for both the data owner
and the cloud storage provider; 4) the verification operation in the proposed scheme is independent of the
number of blocks being verified; 5) it minimizes the burden and cost of the verification process on the data
owner’s side, enabling verification to be performed even on low-power devices; and 6) it prevents tag forgery,
data deletion, replacement, and data leakage attacks and detects replay attacks. Moreover, the prototype
implementation and experimental results show that the scheme is applicable in real-life applications.

INDEX TERMS Cloud storage, cryptographic accumulator, data integrity verification, dynamic operations.

I. INTRODUCTION

Cloud computing is based on outsourcing computing
resources rather than relying on local servers or personal
devices [1]. Outsourcing large amounts of data from differ-
ent devices to a cloud storage provider (CSP) saves data
owners from having to acquire a concomitant amount of
storage without compromising their ability to manage these
data remotely. Nevertheless, data owners worry about the
possibility of uploaded data being modified or erased without
their knowledge or permission. To resolve this concern, a data
owner must execute regular data integrity checks to verify
data possession and detect any unauthorized modifications.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yinghui Zhang.

Provable data possession (PDP) is a technique for verifying
the integrity of the outsourced data. The main objective of any
PDP scheme is

to enable a verifier to efficiently, periodically and securely

verify that a cloud storage provider is not deceiving the data
owner. Technically, there are two approaches for performing
such integrity verification [2]:

1) The deterministic approach: In this approach, the data
owner requests that all the data blocks be checked to
verify their integrity, thus providing a 100% guarantee
of the integrity and possession of the data.

2) The probabilistic approach: In this approach, the data
owner requests random checks of chosen blocks of data
to verify their integrity, thus providing less than a 100%
guarantee of the integrity and possession of the data.

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

65635

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8930-6230

IEEE Access

W. . Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

As reported in [3]-[5] cloud computing has been adopted
by critical infrastructure sectors such as energy, finance,
transport, and many others. In the U.S., for example,
the C.ILA. recently partnered with Amazon web services [6]
as its cloud storage provider [5], whereas the U.S. Depart-
ments of State, Homeland Security, and Veterans Affairs have
partnered with NetApp [7], [8]. All these federal agencies
have strict requirements regarding data integrity and posses-
sion and will accept no less than a 100% guarantee of intact
data because if any of their files were damaged or corrupted,
they could potentially suffer a huge loss. Likewise, if any of
their confidential files were abused, that would be a disaster.
Allowing any party to verify the integrity of the infrastructure
sectors’ critical data may allow that party to obtain useful
information about the sensitive files. Therefore, we propose
a deterministic private verification integrity check scheme
to avoid this situation while providing a 100% guarantee
that the data are correct. The deterministic nature of this
scheme means it is immune to CSP data falsification because
it checks on all the data blocks in a dataset rather than only
a subset. Moreover, because this scheme is private, the data
owners can feel confident about the safety of their data;
i.e., no data leakage will occur. In practice, however, a CSP
using the deterministic approach would incur high compu-
tation overhead, especially when verifying sizeable datasets
[2], [9]. Thus, another limitation to the approach is the limited
number of data integrity checks a data owner can perform.
To overcome these limitations, our deterministic scheme uses
a modified RSA-based cryptographic accumulator [10]. The
main contributions of the proposed scheme are:

1) The data owner would be able to execute an unlimited
number of data verifications against the entire dataset
while limiting computational overhead to acceptable
levels.

2) The proposed scheme supports features such as block-
less verification and dynamic data operations.

3) In comparison to other deterministic schemes, the pro-
posed scheme is highly secure against tag forgery, data
deletion, replacement, and data leakage attacks.

4) The verification operation in the proposed scheme is
independent of the number of blocks being verified.

5) The proposed scheme minimizes the burden and cost
of the verification process on the data owner’s side,
enabling verification to be performed even on low-
power devices

6) The proposed scheme is efficient in terms of communi-
cation, computation and storage costs, for both the data
owner and the CSP.

Prototype implementation and experimental results using the
proposed scheme show that it is applicable in real-life appli-
cations.

A. RELATED WORK
As mentioned above, data integrity checks are classi-
fied into two approaches: probabilistic and deterministic.

65636

Although a wide variety of probabilistic schemes have been
proposed [11]-[13], few deterministic schemes have been
proposed due to the limitations mentioned above. In his work,
Caronni and Waldvogel [14] presented a simple deterministic
mechanism that supports public verifiability of the data but
not the handling of dynamic operations. A data owner using
his scheme would not be able to insert, modify and/or delete
any of the data uploaded to the provider. Every time the
data owner would send a challenge message to the provider,
she would receive a Message Authentication Code (MAC)
of the data in response. To cross-check the data’s authen-
ticity, therefore, the data owner would need to have a repli-
cated copy of the data. Another scheme was proposed by
Deswarte et al. [15] based on the well-known cryptographic
protocol of Diffie-Hellman for key exchange. Two main
limitations were reported in this scheme. First, the CSP
must compute exponentiation over the entire file in each
verification process which results in high computation over-
head for the CSP, especially when dealing with large files.
In addition, the number of challenges allowed for a data
owner to check the data integrity is limited. To overcome
the second limitation, Filho and Barreto [16] proposed a sim-
ple deterministic data integrity check protocol that is based
on an RSA-based homomorphic hash function. Although
the number of verifications in his scheme was limitless,
the computation cost remained high and the data dynam-
ics were not supported as well. Sebé et al. [17] then pro-
posed a protocol based on the Diffie-Hellman key exchange
that did not require computing the exponentiation over the
entire file. It divided a data file into blocks and gener-
ated an RSA-based homomorphic hash function for each
block. Using this scheme, the computation cost for the
CSP decreased but caused the data owners storage cost to
increase due to the large size of the hash values that were
stored for each block. Another drawback of the scheme
was that it neither supported data dynamic operations nor
public integrity checks. Following the work of Sebe et al.,
Barsoum [18] proposed a multicopy provable data possession
scheme to support the public verifiability of multiple replicas
of the data while preserving the data privacy. To support
all; the dynamic data operations, the public verifiability, and
the data privacy, Hao er al. and Yi et al. proposed remote
data integrity check schemes [19], [20]. A verifier using
Hao et al. scheme would need a long time to setup and verify
the data due to the large number of modular exponentia-
tions. Furthermore, their scheme did not prevent any leakage
of the data from malicious providers. Regarding Yi ef al.
scheme, they proposed a probabilistic/deterministic multi-
copy Provable Data Possession (PDP) scheme which is based
on Fully Homomorphic Encryption (FHE) algorithm [21].
It verifies the integrity of replicated data stored on multiple
servers across multiple data centers. The authors have used a
third-party verification approach for analyzing the file copies
according to the reliability and integrity conditions based on
the verification methods. However, the scheme is inefficient
in terms of communication cost as it requires the CSP to

VOLUME 7, 2019

W. 1. Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

IEEE Access

send all the challenged blocks of each data to a third-party
auditor (TPA) for verification.

B. ORGANIZATION OF THE PAPER

The rest of this paper is organized as follows: Section II
describes the preliminaries for the proposed scheme.
Section III describes the structure of the proposed
scheme. Section IV elaborates the scheme’s characteristics.
Sections V and VI discuss the security and performance anal-
ysis respectively. Section VII concludes this paper.

Il. PRELIMINARIES
In this Section, we will provide a short note concerning the
concepts used throughout the paper.

A. THE RSA ONE-WAY ACCUMULATOR

One-way accumulators were first proposed by Benaloh and
de Mare [22] and are defined as one-way hash functions with
the quasi-commutative property. A one-way hash function % :
X x Y — X satisfies the quasi-commutative property, if for
allx € X and forall y;,y2 € Y:

h(h(x, y1), ¥2) = h(h(x, y2), y1) (1

One-way accumulators can be useful in multiple situations.
First, they can accumulate a finite set X = {x1, - -- , x,;} into
a secure digest called an accumulator, accy, by repeatedly
applying h to each x;. Note that accy does not depend on
the order in which the x; values are accumulated. Considering
g € G as an initial value, the one-way accumulator is defined
as following [22]:

accy Zh(h(l’l(o h(h(h(g» xl)s xz)v X3), T -xn—Z)a xn—l)’ .Xn)

Second, these accumulators can also be used to generate a
witness w; to verify the membership of an element x; in X
by accumulating all the elements x;, such that i # j. Then,
the membership of x; in X is verified if A(wj, x;) = accy.
It should be computationally infeasible for a probabilistic
polynomial-time adversary to find a witness w’ for any value
x' ¢ X such that h(w',x’) = accx due to the collision-
freeness property [23]. One well-known implementation of
one-way accumulators is the RSA accumulator [22].

The basic RSA accumulator works as follows. Given that
two strong primes [24] p and g are ¢-bit integers such that

N = pqg and given that a base g € Zy is coprime to
N, the accumulation value for a set X = {xy,---,x,} is
computed as shown below:

accy = g mod N. 2)

The modulus N should be at least k-bits, where k is the
number of bits required for the maximum number in the set
X [10]. To verify the membership of x; in X, a witness w; is
generated by accumulating all the elements in X except x;:

wj = "I+ mod N A3)

The membership of x; in X is verified if w;j = accxy mod N.
The elements of the set X must be restricted to only prime

VOLUME 7, 2019

numbers to avoid collision [23], i.e., it should be computa-
tionally infeasible to generate a witness for an unaccumulated
element. Because most applications must accumulate arbi-
trary integers, a prime representative [25] for each x; € X is
usually generated and used as an input to the RSA accumu-
lator. However, different variants of RSA accumulators that
relax the primality constraint have been proposed [26]-[28].
In this paper, we propose a new algorithm (BlockGen) that
eliminates the need for the primality constraint while avoid-
ing collisions, as discussed in Section III-A-1.

B. CHARACTERISTICS OF CLOUD DATA

INTEGRITY SCHEMES

All cloud data integrity schemes should possess all or a subset
of the following characteristics [2]:

C1) Block-less verification means that the data owner should
not have to retrieve the complete file blocks from the cloud
provider for verification.

C2) Unrestricted challenge frequency means that the data
owner is not restricted to a limited number of challenges when
verifying the integrity of the outsourced data.

C3) Soundness: This means that the CSP cannot pass a
challenge request without actually holding the data or with
corrupted data.

C4) Stateless verification: Every challenge request is inde-
pendent of all previous verifications with respect to the CSP
and the data owner.

C5) Robustness: is the ability to identify even insignificant
corruptions of the data.

C6) Data recovery: is the ability to support data recovery
along with identifying any data corruptions.

C7) Dynamic data handling: indicates that the dynamic data
(insertion, deletion, and modification) should be supported by
the integrity scheme.

C8) Public auditability: The data owner can delegate the
task of the data integrity check to a third-party auditor (TPA).
C9) Privacy-preserving: A third party auditor can verify
the integrity of the outsourced data but cannot breach the
confidentiality of the data.

C10) Fairness means that dishonest users cannot accuse a
reliable CSP of tampering with the outsourced data.

C. OVERVIEW OF THE PROPOSED CAPDP SCHEME

Two main roles exist in any cloud storage service: (1) the
cloud storage provider (CSP), whose main objective is to
offer the required storage space to data owners who wish
to outsource their data; and (2) the data owner, who takes
a risk by saving significant amounts of critical data in the
CSP without having backup copies and demands a 100%
data integrity and possession guarantee due to the importance
of the data outsourced. In this paper, we hold the realistic
assumption that the connection between these two players
is secured against all types of attacks through the use of a
secure socket layer (SSL) connection. We also assume that
the CSP has the computational resources required to perform
any cryptographic operations on the outsourced data and that

65637

IEEE Access

W. . Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

TABLE 1. Notations.

Symbol Meaning
C The data owner
CSpP The cloud storage provider
kg A symmetric key that is known only to the data owner
ky A symmetric key that is known only to the data owner
H() A secure one-way hash function
Cert,. Data owner’s certificate
PR, Data owner’s private key
PR, Private key used for the tag generation process
Cert, Data owner’s tag generation certificate
TS Timestamp
E,. () Symmetric/Asymmetric key encryption with key &
D, () Symmetric/ Asymmetric key decryption with key k&
M The outsourced Data
b’ Data block
acc, RSA accumulator
w, Witness
Accr Accumulator-based register
T A data block tag

The size of x

it may behave unreliably while doing so. Based on these
assumptions, we carefully designed our deterministic scheme
to ensure that the CSP has the complete version of the data to
be able to pass a verification process successfully. Table 1
shows a list of notations used throughout the paper. The main
idea underlying the proposed scheme is that the data M is
split into n encrypted segments of ¢;-bits each using kg,
M = {my, - - - m,}. A block generation (BlockGen) algorithm
is used to generate a £;-bit tag t; for each segment m; and
store it at the data owner’s side. A data block b is then
generated by using each tag concatenated to its corresponding
segment, such that B” = {b{,---, b]}. The data owner C
uses (2) to compute the accumulation value accpr for the set
B” and then outsources B” to the CSP. To verify the integrity
of M, the data owner challenges the CSP with a random
block index j. In turn, the CSP uses the proof generation
(ProofGen) algorithm to compute the witness w; for block b
by accumulating all the elements in B” except b]’/ using (3).
Note that the ProofGen algorithm compels the CSP to use
all the data blocks except b} to compute w;. The CSP then
returns w; and bj’.’ to the data owner, who uses them to execute
the block verification algorithm (ProofVer) to check the data
integrity. All three algorithms, BlockGen, ProofGen, and
ProofVer, use this basic CAPDP scheme for static data and
are discussed in Section III-A. For the dynamic data support
discussed in Section III-B, a new data structure called a tag
record table (TRT) is introduced.

D. TAG RECORD TABLE
The TRT data structure is a simplified version of the map-
version table (MVT) introduced in [29]. This table tracks

65638

data blocks during all dynamic operations by storing the
tags (7) that uniquely identify each block at the data owner’s
side. It is composed of two columns: the block index (BI),
which represents the real-time index of the block, and the tag
value (TV), which represents the block tag (;) that uniquely
identifies the block. In addition, the TRT is used to sort data
blocks when retrieving data files from the CSP. Although this
approach demands extra storage space from the data owner
(due to the storage overhead of the TRT), the overall space
required is small. For example, a 1 GB file with a 384-byte
block size would require 2% of the file’s size space to store
the TRT.

E. SECURITY REQUIREMENTS

Because the CSP is not fully trusted, it could potentially
behave maliciously regarding the outsourced data and hide
any damage that occurred in the data. According to [2], secure
data integrity check schemes should resist the following
attacks that are launched by a semi-trusted CSP:

S1) Tag forgery attack: Almost all cloud data integrity check
schemes use tags, which are metadata appended to the origi-
nal data. To bypass an integrity verification process, the CSP
may try to forge these tags.

S2) Data deletion attack: CSP may use only the tags to
generate valid proof of data possession even when the original
data may be corrupted or deleted.

S3) Replace attack: In response to a data possession chal-
lenge, the CSP may replace the corrupted or deleted data
blocks and their corresponding tags with other valid data
blocks and tags.

S4) Replay attack: CSP might use an old challenge response
to respond to a new challenge that matches it

VOLUME 7, 2019

W. 1. Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

IEEE Access

S5) Data leakage attack: An attacker might reveal stored data
during the verification process.

A secure RDPC protocol that resists all the attacks men-
tioned above guarantees that the CSP cannot successfully
pass the verification process without possessing all the data
blocks. Referring to [30], we initiate a data possession check-
ing game to prove that our proposed integrity scheme is
secure against all the above-mentioned attacks. The game
includes a challenger C and an adversary A that serves as a
semi-trusted CSP. The game is conducted as follows:

Setup: C generates two symmetric keys kg and kg.

Query: A selects some file segments of its choice m;, where
1 < i < n, and sends it to C. C executes the BlockGen
algorithm to obtain a valid tag (verification metadata) for each
segment and then returns all the computed tags 7 concate-
nated to the encrypted file segments M = {my, ---m,} as
b; = mj||t; to A. A continues to query C to generate tags on
the segments of its choice and stores the results on its side.
Challenge: C challenges A with a random block index j.
Forge: A computes the proof P and sends it as a valid proof
to C, in an attempt to cheat her.

Output: C verifies the proof. A wins the game if P was a valid
proof.

lll. PROPOSED SCHEME

We first provide the basic RDPC scheme only for static
data integrity checking. Then, we show the advanced RDPC
scheme that supports fully dynamic block operations based
on TRT.

A. BASIC CAPDP SCHEME

The proposed scheme is based on an RSA cryptographic
accumulator [10] that satisfies the characteristics and security
requirements mentioned in Section II. It is composed of two

phases: a setup phase and a proof generation-verification
phase (PGV).

1) SETUP PHASE

This phase is a one-time operation executed by the data
owner C before outsourcing the data to the CSP. C gen-
erates two symmetric keys kg and kg known only to C.
Next, C splits the data M into n encrypted segments with
£1-bits each using kg, i.e., M = {my,---m,}, where m;
is the integer value of the encrypted i segment. A block
generation (BlockGen) algorithm is used to generate an £,-bit
tag 7; for each segment m; such that t; = H (m;||ky), where
i is the segment index. Then, each tag is appended to its
corresponding segment m; to generate a precomputed data
block b; such that B = {by, - - -, b,}. C saves a copy (1) of
each tag (t;) in the TRT for use in subsequent verifications.
Finally, C compute’sl the accumulation value for set B using

bi

(2), i.e., accg = gil;ll mod N. To compute accp, the prod-
uct of the exponent is transformed into a series of modular
exponentiations such that: accg = (((g?)?2)»*)" mod N
(i.e., single modular exponentiation) is executed for each

VOLUME 7, 2019

element in set B.However, as the size of B increases or for
large operands, this computation quickly becomes infeasible.
For a one u-bit number and a v-bit exponent, the cost of
modular exponentiation is O(vM (1)), where M (u) is the time
required to multiply two u-bit integers [31]. Consequently,
computing accp would cost O(nf¢M (£)), where £ = €1 + £5.
According to Euler’s totient theorem [31], the exponent of g
n

in accp is equivalent to] b; mod ¢(N), where ¢(N) = (p —

=1
1)(g—1). Given ¢(N), tile exponent of g could be easily com-
puted by reducing it to modgp(N) after each multiplication
process, then by calculating single modular exponentiation

[] bi mod (V)

in the end, i.e., accp = gi=! mod N. The computa-
tion cost of accp would, therefore, become O(nM (£)). Using
this same argument, the witness w; could also be computed
easily as will be explained later in Section III-A-2. Hence,
the knowledge of ¢(N) allows the data owner and CSP to
easily compute accg and w; respectively. However, the data
owner does not trust the CSP with the knowledge of ¢ (V) that
can allow a dishonest CSP to pass a challenge request without
holding the data. The following scenario illustrates how this
could happen:

1) To outsource the data to the CSP, the data owner
would first compute a prime representative r(x) for
each block b; € B to make it collision-free, as dis-
cussed in Section II-A, such that b, = r(b;) and B =
(B B,

ﬁ b, mod ¢(N)

2) The data owner then computes accg = gi=!
mod N and outsources B’ to the CSP.

3) Once the CSP receives B, it computes the same accu-
mulation value accp'.

4) When the data owner challenges the CSP with arandom
block index j, the CSP could use ¢(N) and b’ j_l, which
is the modular multiplicative inverse of bj’. mod ¢(N)
(and can be found using the extended Euclidean algo-
rithm [24]), to compute the witness w; without the need
to accumulate all elements in B’ except b, as shown
below:

b ﬁ /i mod ¢(N)

—1
w; = (accp)’i modN =g = =i mod N

“

From this scenario, we can infer the main drawbacks of
using prime representatives to represent the precomputed data
blocks B = {by, - - - , b,}, summarized in the following two
points:

1) Despite using collision-free prime representatives as
the actual inputs to the accumulator, the computation
of the accumulation value becomes increasingly infea-
sible as the number of inputs increases. This is due to
the large number of modular exponentiations involved
in the computation process. To avoid this problem,
the CSP could be allowed to use ¢(N) to compute
the accumulation value. Unfortunately, this would also

65639

IEEE Access

W. . Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

Setup:

BlockGen:

4) Csavesacopy (7,)ofeachtag(z,)inthe TRT.

ﬁb," mod (N)
7) C computes accy, =g '

1) Two symmetric keys &, and k, are generated, which are known only to C.
2) Csplits Minto {, -bits encrypted segments by using k, ;M ={m,,---m }.

3) C generates (,-bits tag 7, for each segment such that 7, = H (m, || k,,), where i is the segment index.

5) Eachtag 7, is appended to its corresponding segment (m,) to generate a precomputed data block b, =m, || 7, .
6) Each block b, is left shifted by one bit, to generate the non-coprime representative (the data block) b =5, <<1

modN and stores it on her side. Then outsources B” and @(N) to the CSP

FIGURE 1. Setup phase.

allow an unreliable CSP to compute the accumulation
value without actually holding the data.

2) A prime representative r(x) for a value x is gen-
erally generated by computing the digest H(x) as
described by Bari? and Pfitzmann [32], where H is
a one-way hash function. This means that the data
owner cannot retrieve the data block b; from its prime
representative b/.

To overcome both drawbacks, we introduce the notation
for the non-coprime representative of the precomputed data
blocks NCR(b;). A non-coprime representative maps each b;
to a non-coprime number b using ¢(N). According to [33],
the multiplicative inverse of an integer a mod N exists if
and only if a and N are coprime (gcd(a, N) = 1). This
means that a non-coprime representative b, of a precomputed
data block b; does not have a modular inverse with ¢(N),
which would force the CSP to use all the data blocks except
block j to compute w;. However, using non-coprime numbers
instead of prime numbers as inputs to the accumulator does
not meet the “collision-free” requirement and would allow
the CSP to factor b/ into two factors and exponentiate one
onto the witness wj, providing the second as a response to
the verification request, which allows the verification pro-
cess to work successfully. To prevent such an occurrence,
we propose the BlockGen algorithm, which is executed by the
data owner to both generate the non-coprime representatives
B’ and satisfy the “collision-free” requirement. As already
mentioned, every encrypted segment (m;) is appended to its
corresponding tag t; to generate a precomputed data block
b;i = mj||t; Yb; € B. Using the BlockGen algorithm, each
block b; would instead be left-shifted by one (multiplied by
2) to make it non-coprime with ¢(N), i.e. b/ = b; < 1. This
is true because ¢(NV) is an even number when N > 3 [31] and
because the greatest common divisor between any two even
numbers is also an even number. Hence, b;’ and ¢(N) are not
relatively prime. When b; is left-shifted by one (multiplied
by 2), it’s value could exceed the value of the RSA modulus
(N). Therefore, p and q are chosen such that 2 % b; < N.

65640

Note that each b! (which is the final data block) is an
£-bit integer, where £ = £1 + £> + 1. This secure structure
of b} prevents any replace attacks from the CSP, as will be
described later in Section III-A-2. Finally, the data owner
would compute the accumulation value accgr for the set
B” = {b],---, b} using (5) and store it on her side; then,
she outsources B” and ¢(N) to the CSP. Fig. 1 demonstrates
the setup phase.

ﬁ b mod p(N)
accpr = gi=! mod N @)

2) PROOF GENERATION-VERIFICATION PHASE (PGV)

In this phase, the data owner challenges the CSP to prove the
integrity of the outsourced data in its possession, as shown
in Fig. 2. The CSP responds by generating a proof that it holds
the complete and uncorrupted dataset using the ProofGen
algorithm. This generated proof is then verified by the data
owner using the ProofVer algorithm. Checking the integrity
of the outsourced data would proceed as follows:

1) The data owner C challenges the CSP with a random
block index j.

2) The CSP uses ¢(N) to compute the witness w; for the
challenged block b by accumulating all the data blocks
B" = {b],---, b} except bj’.’:

ﬁ b mod ¢(N)
i=1
wj = g7 mod N (6)
3) The CSP sends (w, b}’) to C as proof of data posses-
sion.
4) Upon receiving (w}, bj/.’) from the CSP, C computes the
accumulated value:

1

accly, = wjf' mod N 7

5) C extracts bj from b]’/ by right-shifting b]// by one bit:
bj = bj’./ >> 1. Recall that b; = mj||tj and 7; =
H (mj|lkp).

VOLUME 7, 2019

W. I. Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage IEEEACC@SS

ProofGen:

3) The CSP sends (w; ,b;') to C as proof of data possession.

ProofVer:

1) Upon receiving (w ,b;’) , C computes acc,. :w?’ mod N

2) C extracts b, from b7 by right shifting b’ by
T, =H(m, | k,).

7 =Hm] k).

5) The proof holds if accy- =acc,.,and7, =7, =17, ,i.e. h

1) The data owner C challenges the CSP with a random block index ;.
2) The CSP uses ¢(N) to compute the witness w ; for the challenged block b;' using (6).

3) C extracts the received encrypted block mj' from the extracted b, and uses it along with &, to compute

4) C uses the TRT to locate the index (/) of the received tag 7, .

:‘j.

one bit: b, =b7>>1. Recall that b, =m, ||z, and

FIGURE 2. PGV phase.

6) C extracts the received encrypted segment m; from
the extracted b; and uses it along with ky to compute
v/ = Homjllkn).

7) C uses the TRT to locate the index (&) of the received
tag ;.

8) To be qualified as valid, the proof should meet the
following three conditions:

a) The computed accumulated value accy, must
match the stored accumulated value accgr, which
ensures that the CSP must use all the data blocks
to compute the accumulated value using (6). Note
that the non-coprime condition on any b € B”
prevents the CSP from finding the multiplicative
inverse of b mod ¢(N), which would allow it to
compute the witness
w; without the need to accumulate all elements in
B" using (8).

b/~
wj = (accgr)/ mod N
bj’.”] ﬁ b mod ¢(N)
=g =l mod N ®)

b) The computed tag t/ must match the received
tag 7; which ensures that it is computationally
infeasible for the CSP to find a witness (w) for
any value (a ¢ B”) such that accgr = w® mod N.
This means that the CSP cannot replace the data
block (b]/./) with any other nonvalid block (a ¢ B”)
to compute the witness because b/ depends on the
hash value 7; (which is computationally infeasible
to generate without kz). Recall that kg is a sym-
metric key known only to C.

c) The received tag r; must match the stored tag
7, which implies that 2 = j. This condition

VOLUME 7, 2019

ensures that the CSP sends the requested block b]’/

in step 2 without replacing it with any other valid
block b

B. DATA DYNAMICS SUPPORT

In the previous section, we assumed that M is static data.
However, in real-world scenarios, outsourced data are usually
dynamic. Therefore, we supported dynamic data operations
in our proposed scheme i.e. insert, delete and update whether
for a single block or a batch of blocks. In the following
discussion, we will assume that dynamic data operations are
performed on a batch of blocks.

1) INSERT OPERATION

If the data owner C wants to insert a set of new contigu-
ous or non-contiguous segments {my, --- , my4,;} where z
is the number of the new segments, she would perform the
following steps:

e C computes the ¢»-bit tags {tp,---, Tny,} that is
correspondent to the new encrypted data segments
{mp,--- ,mpy;} such that ; = H(millky), h < i <
h+z.

o C generates the data blocks {0}, - - - , b} . Jas described
in Section I1I-A-1.

« An insert request, consisting of the data blocks and its
indexes {(by,, h), -+ , (b, ,_, h + 2)} is sent by C to the
CSP.

« The CSP inserts the blocks in the requested positions and
sends an insertion confirmation message to C.

e When C receives the insertion confirmation mes-
sage, she adds a new row for each new data block
{b, -+, b, .} in its appropriate position in the TRT.
The values of the BI and TV fields of the inserted rows
aresetto {h, --- ,h+z}and {ty, - - - , T4} respectively.

65641

IEEE Access

W. . Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

BI [TV BI | TV
1 Tlv 1 TIS
2 | 7 2 | 7
3 T; 3 ’Z'; +1
4 T, 4 73
n | 7, n |7
nt+l| 7
a) b)

BI | TV BI | TV
1| 75 1| %
2 | & 2 |7
3|7 3 |z
4 75 4 |7,

n-1| 7, n |7,

c) d)

FIGURE 3. Dynamic operations using the TRT. a) Initial state. b) Insert a tag at position 3. c) Delete a tag at position 3.

d) Update a tag at position 3.

« Since the new blocks are added to the set B”, C updates
the accumulation value accgr to include the newly added
h]i[b} mod p(N)
blocks, i.e. accgr = accg,h mod N and then
deletes these blocks from its local storage.

2) DELETE OPERATION

If the data owner C wants to delete a data block bZ, where A is
the block’s index, this block should be decumulated from the
accumulation value accgr. However, the deaccumulation of
b), from accpr is infeasible because of the non-coprime con-
dition, i.e. neither the data owner nor the CSP can compute
the multiplicative inverse of any data block bg_l. To allow
both of the CSP and the data owner to delete data blocks
without the need for de-accumulating values, an accumulator-
based register (Accr) is introduced. The Accr is initialized by
1 and is used by the CSP to accumulate all the deleted blocks.
To delete a set of contiguous or non-contiguous data blocks
w,---, bZ +Z} where z is the number of the deleted blocks,
the following steps should be performed:

o C locates the indexes {£, - - - , h + z} of the data blocks
{bj,--- b ..} in the TRT and sends a delete request
consisting of the data blocks indexes to the CSP.

e The CSP uses the received indexes {h,--- ,h + z} to
locate the blocks that need to be deleted {b}, - - - , bj,)

« Before deleting the data blocks {b},, - - - , b, } from the

set B”, the CSP updates the Accr as follows: Accr =

h+z
Accr. [] b} mod ¢(N)

i=h
o The CSP deletes {bj, - -- ,bzﬂ} from B” and sends a
deletion confirmation message to C.
o Upon receiving the confirmation message, C deletes

{th, - -+, Thy;} from the TRT. Note that C cannot decu-
mulate {b}, - - -, b}l’ﬂ} from accpr.

3) UPDATE OPERATION

The update operation is a two-step operation; the deletion of
the existing version of data blocks, and the addition of the
newer version. If the data owner C wants to update a set of

65642

contiguous or non-contiguous blocks {0}, - - - , b} 4.} where
z is the number of the modified blocks, she should perform
the following steps:

o To update the data blocks to the new version
{b},, - -+, by}, C sends an update request consisting of
the updated data blocks and their indexes {(b}, h), - - -,
(b, h+ 2)} to the CSP.

e The CSP uses the received indexes {h,--- ,h + z},
to locate the positions of the data blocks that need to be
updated {by, --- , by}

« Before updating the set B” with the new version of data
blocks, the CSP updates the Accr to include the old

version of blocks as follows:

h+z
Accr = Accr. 1_[b mod ¢(N).
i=h
o The CSP replaces the old version of data blocks with
the new version in the requested positions and sends an
update confirmation message to C.
o C updates the corresponding tags {tj, - - - , Tp4} of the
updated blocks {b}, - - - , b) in the TRT.
« Since there are updated data blocks in the set B”, C
updates the accumulation value accpr to include them,

h]ir[Z b} mod ¢(N)
ie. accgr = acc;,” mod N and then deletes
these blocks from the local storage. Note that the accgr
still includes the old version of data blocks. Fig. 3 shows

an example of data dynamics using the TRT.
To support the delete and update operations, a slight mod-
ification to the PGV phase is required. For any succeeding
data integrity verifications that use a random block index j,
the CSP would compute the witness w; for the block b/ by
accumulating all data blocks in B” except b using (3), then
raise w; to the power of Accr,i.e. wj = w?“r mod N. Finally,
the CSP sends (wj, bj’/) to C as proof of data possession. It is

clear that w,’ mod N should match the accumulated value
accpr stored at the data owner side.

VOLUME 7, 2019

W. 1. Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

IEEE Access

IV. DISCUSSION

In this section, we elaborate on how our proposed scheme
satisfies the characteristics of the cloud data integrity schemes
discussed in Section II-B.

A. BLOCK-LESS VERIFICATION (C1)

In our proposed scheme, the data owner does not need to
retrieve all the data blocks from the CSP to perform the
verification process. Instead, the data owner challenges the
CSP with a random block index j to verify the integrity
of M. The CSP computes the witness w; and sends it along
with block b to the data owner for verification as described
in Section III-A-2.

B. UNRESTRICTED CHALLENGE FREQUENCY (C2)

The proposed scheme allows the data owner to challenge the
CSP an unlimited number of times. In our scheme, it would
be pointless for a CSP to cache the witness of the challenged
block and use it to respond to a new challenge matching it,
even though it could. The CSP might cache block witnesses
for any of the following three reasons: 1) to hide an incident
loss or any corruption of the outsourced data; 2) to spare
more storage space, or 3) to reduce the computational cost of
computing the witness. Below, we describe how our scheme
addresses each case:

« Hiding an incident loss or any corruption of the out-
sourced data: Caching the witnesses would be neither
an optimal nor a practical method for hiding any data
loss or corruption. In our scheme, because the CSP
must send the witness along with the requested block
as a proof for data integrity, if the requested block is
corrupted or deleted, the data owner can easily recognize
that fact, as mentioned in Section III-A-2. Even if the
corrupted block was not the requested block, the CSP
caches the witnesses of all the blocks to hide any data
corruption and deceives the data owner. Since the data
blocks and their corresponding witnesses have the same
size, caching the witnesses along with the uncorrupted
data blocks would increase the storage overhead on the
CSP. Instead, the CSP would store a backup copy of
the outsourced data using the same storage space that
it would have used if it had cached the witness of each
data block.

« Increasing available storage space by deleting all the
outsourced data: In our scheme, because the CSP must
send the witness along with the requested block as a
proof for data integrity, the CSP cannot delete the data
blocks.

« Reducing the computational cost of computing the
witness: Although caching the witnesses reduces the
computational cost for the CSP, its storage cost would
increase due to the extra storage space needed to save
both the data blocks and their corresponding witnesses.
Hence, CSP would not benefit by reducing the compu-
tational cost at the expense of the storage cost because
the main objective of CSP is to offer more storage space
to its clients.

VOLUME 7, 2019

C. SOUNDNESS (C3)

As discussed in Section IV-B, the assumption that the CSP
can store the witness of the challenged block and use it to
respond to a new challenge matching it is not a realistic
assumption. In addition, due to the non-coprime condition on
any b € B”, an unreliable CSP could not pass a challenge
request without actually holding the data. Therefore, it would
be computationally infeasible for the CSP to compute the
witness w; without accumulating all the elements in B”.
Additionally, the CSP could not pass a challenge request with
corrupted data because the witness w; of the challenged block
b’ would have been computed by accumulating all the blocks,
including the corrupted blocks. Thus, the resulting computed
accumulated value accg,, would not match the accumulated
value accpr stored at the data owner’s side.

D. STATELESS VERIFICATION (C4)

Each challenge request in our proposed scheme is inde-
pendent of the previous challenges with respect to both
the CSP and the data owner; a data owner can challenge
the CSP with a randomly chosen block index regardless of
any prior verifications. Likewise, on the CSP side, witness
computation is based exclusively on the current randomly
chosen index. Accordingly, the computed witness of the
challenged block is independent of any previously computed
witnesses.

E. ROBUSTNESS (C5)

In the proposed scheme, any change of even a single bit in the
data invalidates the integrity check. Because the outsourced
file is divided into n segments converted to integers, any
change to any bit in the n segments would lead to a different
integer. Consequently, when the CSP computes the witness,
the witness will also be altered. The CSP knows that the data
owner will compute the accumulated value accl,, based on
the received proof (w;, bj’/) and compares it with the stored
value accpr. Accordingly, the CSP can try to deceive the
data owner by modifying the accumulated value to match
the one stored at the data owner’s side. Fortunately, however,
this process is infeasible for CSP because the data owner
extracts the encrypted segment m; from the received block
bj’.’, computes its tag using the secret key kg, tj’ = H(mj||kg),
and then compares it with the received tag t; extracted from
the received block bj’/ to cross-check the validity of the block.
Finally, the data owner will locate the index (%) of the received
tag 7; in the TRT to ensure that the received block is the
requested block. This proves the robustness property of the
proposed scheme.

F. DATA RECOVERY (C6)

As discussed earlier in Section III-A-2, data corruptions
could be easily detected in our scheme. To support data
recovery along with error-detection, error-correcting code
based schemes, e.g. [34], could be easily integrated into our
scheme.

65643

IEEE Access

W. . Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

G. DYNAMIC DATA HANDLING (C7)

As was previously discussed in Section III-B, the pro-
posed scheme can handle data dynamics. After any dynamic
operation executed on a single block or multiple blocks,
the proposed integrity scheme remains intact. In addition,
the proposed scheme does not require the retrieval of all the
data blocks to execute any of the dynamic operations on the
outsourced data.

H. PUBLIC AUDITABILITY (C8)

The proposed scheme supports the delegation of the responsi-
bility for integrity verification to a trusted third-party auditor
without the need to retrieve the outsourced data. To perform
this process, the following three values must be transferred
to the TPA: accgr, TRT and the hash key ky. We assume that
the transmission channel between the TPA and the data owner
is secured with the SSL protocol. Note that, in such cases,
the key ky would be a symmetric key generated per-TPA to
prevent the TPA from having access to any confidential data
that belongs to the data owner. To delegate the verification
process to the TPA, the data owner C would perform the
following steps:

1) C sends a signed request with her private key PRc
along with her public key certificate Certc to the TPA:

Ry : (Eprc(IDc), Certc).
2) The TPA verifies C’s signature and replies with

Ry : (Epryps(IDc, IDTPA), Certrpa).

3) C sends a signed request with her private key (PR¢)
to the CSP. The request includes C’s ID, the TPA’s
ID, the public key certificate of the TPA (Certrps),
a timestamp and a verification permission flag (P) that
could be either granted or denied:

R3 : Eprc(IDc, ID7pa, Certpa, TStpa, P).

4) Upon receiving the request, the CSP verifies C’s sig-
nature and the TPA’s certificate and then saves the
received request as a record in its database.

5) To perform the data integrity check on behalf of the
user, the TPA sends a data verification request includ-
ing IDc, ID1ps and Certrpy to the CSP.

R4 : Epgypy(IDc, IDTpA, Certrpa).

6) The CSP compares the received request against the
stored record to either grant or deny the TPA’s request.

I. PRIVACY-PRESERVING (C9)

When assigning responsibility for the verification process to
the TPA, the data owner must ensure that the TPA cannot
access any of her confidential data. Therefore, our proposed
scheme encrypts the segments in M using the encryption key
K, which would be known only to her.

65644

J. FAIRNESS (C10)

The proposed scheme protects a reliable CSP against dishon-
est users who may accuse the CSP of tampering with the
outsourced data [35], as follows:

1) The data owner (C) requests a certificate for the
tag generation process (Certrg) from the certificate
authority (CA).

2) The CA generates Certrg and sends it to C.

3) C generates an £»-bit tag t; for each segment using the
private key PR7GPR71g instead of Ky such that ; =
H (m;||PRrG).

4) C saves a copy (z77;) of each tag (7;) in the TRT.

5) Each tag 71; is appended to its corresponding seg-
ment (m;) to generate a precomputed data block b; =
mi||Tib; = m;l|z;.

6) Each block b; is left-shifted by one bit to generate the
non-coprime representative (the data block) b/ = b; <
lb;/ =b; K 1.

ﬁ b} mod ¢p(N)

7) C computes accgr = gi=0

outsources B” and ¢(N) to the CSP.

8) If a legitimate but dishonest C were to accuse the
CSP of tampering with block b, the law enforcement
agencies (LEA) would require C to reveal the certified
private key of the tag generation process PR;PR/
according to the key disclosure law [36].

9) To ensure the correctness of the revealed private key
PR’ PR, the LEA challenges C with a random string
() encrypted with the C’s certified public key of the
tag generation process PUrg (i.e., (Epy;;(S))) and
requires C to decrypt it using the corresponding private
key PRPRY.

10) The LEA requires the CSP to reveal the data block b}

11) The LEA regenerates the block tag 7:j/ = H(m;||PR;)
and then extracts the tag 7;7; from b}’ and compares it
with /.

12) Finally, 7;7; must match ‘L'j/ rj’ to prove the credibility of
the CSP.

mod N and then

V. SECURITY ANALYSIS
The proposed RDPC scheme is proven secure under the
security model in Section II-E.

Theorem 1: A cannot forge a tag and send it to the data
owner as if it were a valid tag.

Proof-

Setup: C generates two symmetric keys kg and kg Kg known
only to her, and the challenged file M is divided into n
encrypted segments M = {my, - - - m,}
Query: A selects some encrypted file segments of its choice
m; where 1 < i < n, and sends it to C. C performs the
BlockGen algorithm to obtain a valid tag for each segment
i = H(m;||ky) and stores the tag in the TRT. Then, C
concatenates the computed tags t to its corresponding file
segments M = {my, ---my} as b; = m;||t;b; = m;||t; and
left-shifts them by one bit (i.e., b} = b; K 1b] = b; K 1)

VOLUME 7, 2019

W. 1. Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

IEEE Access

to generate the data blocks. Then, C sends the data blocks
B = {b”, . b//} to A.

Finally, C computes the accumulated value of all the blocks

]_[b} mod ¢(N)

and stores it on her side accgr = gi=0 mod N.
Challenge: C challenges A with a random block index j and
waits for the proof P = (wj, bj’.’).
Forge: First, A computes the accumulator accgraccgr for all
the outsourced blocks and caches the value to deceive the
challenger C in the future. Upon receiving the challenge, if all
the blocks are deleted, A will forge the proof P = (wj, b_”j) in
such a way as to ensure they match the cached accpraccp:

. _b//.
(i.e., accgr = w; /' mod N). However, for deleted segments

and valid tags, A will forge block b” ; by concatenating a
forge segment m;m; to a valid tag t;7;, making both blocks
% 7 and w; match the cached accgraccgr. Then, A will send
the forged proof P as a valid proof to C in an attempt to
cheat her.

Output: When C receives the proof P = (wj, b";), she com-

putes accy, = wjb mod N and checks whether accB/,accB,,
matches accpraccpr. There is some probability that A can win
the game at this step. Therefore, to ensure the data is intact, C
extracts the encrypted segment m;m; from b 7 and computes
its tag r = H(mj||ky). After that, C compares r/ ! with the

recelved tag 7;7; which is extracted from b/ ’ Because kpky is
secret, it is extremely unlikely that rj’ = fjrj/ = T;. Therefore,
A cannot succeed in deceiving C.

Theorem 2: A cannot replace any damaged or deleted block
with another valid block to deceive C.

Proof:

Challenge: C challenges A with a random block index j and
waits for the proof P = (wj, bj’.’).
Forge: A replaces the proof with a valid proof P = (wx, by)
for another block b} and sends it to C in an attempt to cheat
her.

Output: When C receives the proof P = (w, b)), she com-

putes accy, = w:k mod N and checks whether accy, accl,
matches accpraccgr. Then, C computes the tag 7, =
H(my|lky) and compares it with the received tag 7.
Thus far, A will win the game. Therefore, to ensure the
data is intact, C checks whether the computed tag 7,7/ is
the requested tag 7;7; by using the TRT to ensure that no
replacements have been made. Hence, A cannot succeed in
deceiving C.

Theorem 3: A cannot use an old challenge response to
respond to a new challenge that matches it to deceive C.

Proof: Consider that A deleted all the outsourced data

blocks and cached their witnesses ww and the accgraccgr.
Challenge: C challenges A with a random block index j and
waits for the proof P = (wj, bj’.’).
Forge: A retrieves the cached witness w; for the requested
block and forges the block b’ i, making both b’ 7 and w; match
the cached accpraccpr. Then, A sends P = (wj, b’ /) to C in
an attempt to cheat her.

VOLUME 7, 2019

Output: When C receives the proof P = (wj, b}), she com-

putes accy, = wjb mod N and checks whether accB,,accB,,
matches accgraccgr. Then, C computes the tag ;7 =
H (mj||kp) and compares it with the received tag 7T Because
kpky is secret, it is highly unlikely that t = 7T J = T
Therefore, A cannot succeed in deceiving C

But in case the CSP deletes some not all data blocks and the
data owner challenged one of the undeleted blocks, the CSP
could cache the witnesses of the undeleted blocks in order to
deceive the data owner. In this case, the CSP would be dou-
bling its storage cost since the block size and the witness size
are the same. In order to gain storage benefits from the dele-
tion of blocks, the CSP should delete more than 50% of the
outsourced data. For example, if the CSP wants to save 10%
of the storage space occupied by the outsourced data, it should
delete 55% of the data blocks and cache the witnesses of the
remaining 45% along with their corresponding data blocks
(R90% of the outsourced data). However, by deleting more
data blocks, the CSP risks higher chances of being detected by
the data owner challenging a deleted block. In order to check
if the CSP is deceiving the data owner, we simulated replay
attack against the proposed scheme to determine the number
of challenges required for the data owner to detect any CSP
falsification in the case of deletion of 10% to 95% of the
outsourced data. As observed in Table 2, as the CSP deletes
more blocks, the probability of the data owner in detecting the
occurrence of a replay attack increases. In specific, if the CSP
deletes more than 50% of the outsourced data, the data owner
would be able to detect the occurrence of the attack either
on the first challenge or the second challenge at most. But
if the deleted blocks are less than 50%, then the probability
of the data owner’s early detection decreases. However, due
to the two-fold increase in the storage space on the CSP side
caused by caching the witnesses, this latter attempt is highly
unlikely (or unfavorable for the CSP).

TABLE 2. Required challenges to detect replay attacks.

Percentage of deleted blocks | Number of challenges
(CSP) (Data Owner)
10% 9
25%
40%
55%
70%
85%
95%

—_ == NN [

Theorem 4: A cannot reveal the outsourced data during the
verification process (i.e., no data leakage will occur).

Proof: In our proposed scheme, all the data segments are
encrypted using the encryption key kg Kg, which is known
only to the data owner; therefore, there is no possibility of
data leakage.

65645

IEEE Access

W. . Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

As shown in the previous theorems, our proposed scheme
prevents tag forgery, data deletion, replacement, data leakage
attacks and detects replay attacks.

VI. PERFORMANCE ANALYSIS

This section analyses the performance of the proposed
scheme regarding computation cost, storage cost and com-
munication cost from the viewpoint of the CSP and the data
owner. To evaluate the efficiency of the proposed scheme,
a prototype of the proposed scheme is introduced. Then,
it is followed by a comparison with other deterministic and
probabilistic schemes which are Hao’s scheme [19] which
is applying the deterministic data integrity check, Yong Yu’s
scheme [11] which is applying the probabilistic check and
Mingxu Yi’s scheme [20] which is applying both types of data
integrity check. Table 3 shows a list of notations representing
operation costs used throughout this section.

TABLE 3. Notations of operation costs.

Symbol Operation cost
Modular operation
T, mod P
Modular multiplication
mul
T Modular addition
add
T Modular exponentiation
exp
T Symmetric encryption
enc
T Pseudo-random number generator
pmg
Th .\ Hash function computation
s,
T Pseudo-random permutation function
perm
T . Pairing operation
par

A. COMPUTATION COST

The proposed scheme is composed of two phases: the setup
phase and the PGV phase. The setup phase is a one-time oper-
ation which is performed at the data owner’s side. Through
the setup phase, the file M is divided into n segments which
are encrypted, hashed, and left shifted by one bit to generate
the data blocks that will be accumulated as discussed in
Section III-A-1. The computation cost in the setup phase
can be expressed as nTenc + nTpasn + 0Ty + Texp- In the
PGV phase,//the data owner computes the accumulated value

acc%,, = w, mod N, where b is the challenging block, so,
the computation cost of the verification operation is ZTexp. The
CSP’s computation cost is based on (6) whose computation
costis (n—1)Tu + Texp. For data dynamics, the computation
cost is presented from the viewpoint of both the CSP and the
data owner. In the insert and update operations, the computa-
tion cost at the data owner side is d7Tepe + dThasn + AT +
Texp where d is the number of the new inserted/updated
blocks. There is no computation overhead on the CSP dur-
ing the insert operation. Whereas in the update and delete
operations, the computation overhead on the CSP is dT;,,

65646

~
=
o

—o—Proof generation time
Verification time
—o—Storage cost

~
o

=
o

- 50

- 40

- 30

Normalized Time
o
Storaage cost (MB)

o
o

. /

-15
2 0
0 128 256 384 512 640 768 89 1024 1152

Block size (bytes)

=
o

FIGURE 4. Trade-off between storage cost and both proof generation and
verification time for 1 GB file.

where d is the number of the deleted/updated blocks that the
CSP needs to accumulate to update Accr as mentioned in
Sections III-B-2 and III-B-3. While at the data owner side,
there is no any computation overhead during the delete oper-
ations. As the proof generation will be slightly modified as
mentioned before, the computation cost of the proof gener-
ation operation will be (n — 1) Tjy1 + 2Texp. The additional
modular exponentiation operation is added due to raising w;
to the power of Accr as discussed in Section III-B-3.

B. STORAGE COST

In the proposed scheme, the data owner needs storage space
to store the TRT, accpr, ky and kg. Regarding the CSP,
the storage cost consists of the file, tags, and Accr.Therefore,
the storage cost at the data owner’s side is |TRT | + |accpr | +
|kt |+ |kg | where at the CSP’s the storage costis |[M |+n |T|+
|Accr|. Note that |TRT | = n|t;].

C. COMMUNICATION COST

The communication cost in our proposed scheme consists of
two parts: the challenge sent from the data owner to the CSP
which is a random block index (j) and the response sent back

from the CSP to the data owner (wj, bj/.’) So, the commu-
i
bj

operations, the communication cost of the insert or update

nication cost is |Wj| + + |j|. Regarding data dynamic

operations is d ‘bj’.’

, where in the delete operation the com-

munication cost is d |j|. Table 4 shows a performance com-
parison between the proposed scheme, Hao’s, Yong Yu’s, and
Mingxu Yi’s schemes.

D. PROTOTYPE IMPLEMENTATION

The prototype for the proposed scheme CAPDP is imple-
mented using the C++ programming language with GMP
library [37] and Crypto++ Library [38]. The AES-128 [39]
algorithm is used for block encryption and SHA-3 algorithm
with variable output length [40] for generating collision-free

VOLUME 7, 2019

W. 1. Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

IEEE Access

TABLE 4. Performance comparison between the proposed scheme and other schemes.

Costs Proposed Scheme | Hao’s Scheme [19] Yong Yu’s Scheme [11] Mingxu Yi’s Scheme [20]
Probabilistic I Deterministic
c C
nT,. +nT,,, + T, +nT,., +2n mT,, +2¢T,, +mn[(z+2)T,,, +(7+
nT, +nT " “
Setup nl ., +T5XP ene P T DT, op T (T+DT g +T 0]
exp
Challenge T T b
+2T T, +T,) mnT
pmg exp pmg el pmg
Gen. pem pme me(T perm +T pmg)
Computation (l’l _1)Tmu1 + n(Tpmg +Tmul + C(Tperm +Tpmg +Tudd
Proof Gen. mc Tcxp +Tmu1) mn Tcxp +Tmu1)
exp Texp +Tm0d) +Texp +Texp + 2T‘mul)
T, +(met+me+z+ | 2T, +(mnt+mn+7+
' . I’lTpmg +(n+1) T, + (2¢ + I)TCX DT, +Tey +(mz+me | DT, +T,, +(mz+mn
Verification T P , ,
Texp +nT, , +2cT, +met+met)T, +mnt +mnt)T,
+mctl,,, +mntl,,,
Communication . 5 |C| +12 |N | +20, me (L°) +me |’”| T | mn(0)+mn|r|+2,
l+2N] | +2in] ‘ :
[N] e+,
nl®, +|N|+
Data owner n |N| 2z'|r|
Storage |K// | + |K1: | -
Ccsp |M|+nt, +|N| |M | M |+n|N|+6|N|+¢, m|M|+nt,
“r , represents the message digest size.
by represents a random number and ¢ represents the number of challenging blocks.
¢ In Mingxu Yi’s scheme, m represents the number of all file copies, T represents the number of sectors in each block, £ represents the block size,
and £ , represents the tag size.
22 24
—o— Setup time
20 —e— Proof-Gen time 22
18 Verification time 20
16 a 18
14 S 16
z 14
5 2 S
o) 12
% 10 Eﬂ
E 3 s 10
= &
6 8
2 6
2 4
0 2
0 128 256 384 512 640 768 896 1024 1152 0
File size (MB) 0 128 256 38 512 640 768 896 1024 1152
File size (MB)

FIGURE 5. The computation cost of the proposed scheme computed on
different file sizes and a 384-byte block size.

64-bit tags. The implementation is executed on a Lenovo
Laptop Z50 with Ubuntu operation system, Core i7-4510U
@2.60 GHz CPU, 8G. The optimal block size used in Hao’s,
Yong Yu’s, and Mingxu Yi’s schemes are 8 KB, 4 KB, and

VOLUME 7, 2019

FIGURE 6. The storage cost of the proposed scheme computed on
different file sizes and 384-byte block size.

8 KB respectively. To figure out the optimal block size of the
proposed scheme, we analysed the trade-off between the stor-
age cost from one side and the proof generation time and ver-

65647

IEEE Access

W. . Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

10000
1000 /M‘M
°
3 100
[
©
a 10
an
o
k=3 1
(]
£
e 01 ~&— Proposed scheme
p=l
< —8-— Hao's Scheme
(%]
0.01
0.001
0 128 256 384 512 640 768 896 1024 1152
File-size (MB)
(@)

60

—o— Proposed scheme

50 ~—e— Hao's Scheme

40

30

20

Proof generation time (sec)

10

M

[o] 128 256 384 512 640 768 896
File-size (MB)

©

1024 1152

100

10

~—=8— Proposed scheme

——&— Hao's Scheme

0.1

0.01

Verification time in log-scale (sec)

0.001

0] 128 256 384 512 640 768 896
File-size (MB)

(b)

1024 1152

S
o

—o— Proposed scheme
—@—Hao's Scheme

w
wv

Storage cost(MB)
= -) N w
o (6] o (6] o

w

o

0 128 256 384 512 640 768 896 1024 1152
Filesize(MB)
@

FIGURE 7. The computation and storage costs of the proposed and Hao's schemes on different size of files. (a) Setup time comparison. (b) Verification
time comparison. (c) Proof generation time comparison. (d) Storage cost comparison.

ification time from the other side, for a fixed file size of 1 GB
and different block sizes from 128 to 1024-byte, with an
increment of 128-byte for each step. From Fig 4., we can see
that the best trade-off between the storage cost and both the
proof generation and verification time is achieved when the
block size is closed to 384. Thus, we choose 384-byte as
the optimal block size in all experiments. To provide a proper
basis for comparison, the proof generation and verification
time values are normalized using z-score normalization [41]
as shown in Fig. 4. In the implementation phase, we measured
the computation cost (i.e. setup time, proof generation time,
and verification time), and the storage cost of the proposed
scheme for all file sizes that ranged from 64 MB to 1 GB, with
the increments of 64 MB. The results of these measurements
are shown in Fig. 5 and Fig. 6. As we can see, the setup
time, proof generation time and storage cost increase almost
linearly with the increase of the file size whereas the verifi-
cation time remains constant (9 ms) and independent of the
file size. In this phase, we also evaluated and compared the

65648

computation and the storage costs of our scheme versus Hao’s
scheme for all file sizes that ranged from 64 MB to 1 GB,
with the increments of 64 MB. The experimental results are
shown in Fig. 7. Due to the massive difference between the
two schemes, the setup and verification time are plotted in
log scale, as shown in the figure. Additionally, a performance
comparison between both schemes, in terms of, computation,
communication, and storage costs for a 1 GB file, is shown
in Table 5. As shown in Fig. 7-a, the setup time of Hao’s
scheme is much higher than that of the proposed scheme. For
a 1 GB file, the setup time for the proposed scheme and Hao’s
scheme is 19 and 15205 s, respectively (*~99.9% reduction
in the setup computation time), see Table 5. In Fig. 7-b,
the verification time is constant (9 ms), whereas in Hao’s
scheme it increases as the file size increases. This is because
the verification operation, performed by the data owner dur-
ing the PGV phase, is independent of the file size, unlike
the verification process in Hao’ scheme which is dependent
on the file size. Therefore, the verification operation of the

VOLUME 7, 2019

W. 1. Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

IEEE Access

1000
900
800
700
600
500
400
300
200
100

—=&— Proposed scheme
—=&— Jinxia Wei's scheme

Provider Time (ms)

0 5 10 15
FileSize (MB)
()

20

18 —=a8— Proposed scheme
—~ 16 =8 Jinxia Wei's scheme
(%]
En
)
£ 1
|_
S0 e— —— —
o 8
2
T 6
9]
> 4

2

0

0 5 10 15
FileSize (MB)

(b)

FIGURE 8. The computation costs of the proposed and Mingxu Yi's schemes on different size of files. (a) Proof generation time comparison.

(b) Verification time comparison.

TABLE 5. Performance of the proposed scheme and Hao's scheme
on 1 GB file.

Proposed Hao’s
Costs Scheme Scheme
Setup 19s 15205 s
Challenge Gen. 0.8 us 4.8 us
Computation Proof Gen. 6s 50 s
Verification 0.0095 s 57 s
784
Communication 776 bytes bytes
Overhead 21.3 MB 48 MB
Storage
Percentage 2.1% 4.7%

proposed scheme is lightweight and can be performed by a
low-power data owner regardless of the file size. As observed
in Fig. 7-c, the proof generation time of the proposed scheme
is much lower than that of the Hao’s scheme, where in the lat-
ter scheme the proof generation time increases as the file size
increase at a rate higher than that of the proposed scheme. For
a 1 GB file, the proof generation time for the proposed scheme
and Hao’s scheme is 6 and 50 s, respectively (*=88% reduction
in the proof generation computation time), see Table 5. The
storage cost comparison between the proposed scheme and
Hao’s scheme is shown in Fig. 7-d. It is obvious that the
storage overhead at the data owner’s side in the proposed
scheme is less than that of Hao’s scheme. This is due to the
storage overhead of Hao’s scheme that grows with increasing
file sizes at a rate higher than that of the proposed scheme.
For a 1 GB file, the storage cost for the proposed scheme and
Hao’s scheme is 21.3 MB and 48MB, respectively (*55.6%
reduction in the storage cost), see Table 5.

VOLUME 7, 2019

In Mingxu Yi’s scheme, the authors implemented their
probabilistic scheme on different file sizes ranging from
1 MB to 15 MB with an increment of 5 MB and fixed block
size 8 KB. By comparing our deterministic results on these
different file sizes with their probabilistic results, we found
that the proof-generation and verification time of Mingxu Yi’s
scheme is much higher than that of the proposed scheme as
shown in Fig. 8. Moreover, in their deterministic scheme,
in order to verify the integrity of the file, the CSP should
send all the file blocks of each file copy again to the verifier,
which will lead to a high communication cost that will grow
as the file size increase. Therefore, our proposed scheme
is proved to be more efficient in terms of computation and
communication costs.

As for Yong Yu’s scheme, it costs the CSP 22.36 ms and the
data owner 219.54 ms to generate and verify a proof respec-
tively for a 40 MB file size when challenging 460 blocks
i.e. 4.6 % of the file [11]. Whereas in our proposed scheme
it costs the CSP 249 ms and the data owner 9.5 ms when
challenging all the file blocks i.e. 100 % of the file size.
As shown above, the proof generation phase in our scheme
takes more time than in Yong Yu’s scheme since in our
scheme we challenge all the file blocks not just a set of
random blocks. This extra computation overhead should not
cause problems to the CSP due to its high-power capabilities.
On the other hand, our proposed scheme is better in terms of
the verification cost which is an important feature, due to the
data owner’s limited resources i.e. there will be no burden on
the data owner side.

VIl. CONCLUSION

Public cloud storage is a cloud service that allows individuals
and organizations to store and manage data remotely without
being restricted to the capacity of their local storage devices.
Public cloud storage is widely used by many crucial sectors,

65649

IEEE Access

W. . Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

including many of the top governmental agencies. These
sectors require a 100% data integrity and possession guar-
antee of their outsourced data. In this paper, we proposed a
deterministic private verification data integrity check scheme
that efficiently provides such integrity and possession guar-
antees. The proposed scheme employs a modified RSA-based
cryptographic accumulator to verify the integrity of the out-
sourced data, which limits the computational and storage
overhead for both the CSP and the data owner to acceptable
levels. Using our scheme, the data owner must store only the
accumulator value (for verification purposes) and the TRT.
To provide the minimal storage required at the data owner’s
side, fog nodes [42] can be employed such that the data owner
uploads the TRT to a fog server which is in closer proximity
to the data owners. Due to the added TRT feature, our scheme
also supports dynamic data operations (insert, update and/or
delete data). However, the scheme’s main advantage is that it
minimizes the burden and cost of the verification process on
the data owner’s side, enabling verification to be performed
even on low-power devices and that is because the verification
operation in our scheme is independent of the number of
blocks being verified. In terms of security and performance,
our scheme was able to prevent tag forgery, data deletion,
replacement, data leakage attacks and detect replay attacks
and shown to be efficient, practical and feasible in real-life
applications. As future work, we think it is worth exploring
further optimizations in our implementation to not just detect
but prevent replay attacks completely.

REFERENCES

[1]1 Y. Zhang, R. Deng, X. Liu, and D. Zheng, “Outsourcing service fair
payment based on blockchain and its applications in cloud computing,”
IEEE Trans. Serv. Comput., to be published.

[2] F. Zafar et al., “A survey of cloud computing data integrity schemes:
Design challenges, taxonomy and future trends,” Comput. Secur., vol. 65,
pp. 29-49, Mar. 2017.

[3] L. Taylor, “Which agencies are leading the way into the cloud?” IEEE
Cloud Comput., vol. 1, no. 4, pp. 78-82, Nov. 2014.

[4] M. Dekker, ““Critical cloud computing-A CIIP perspective on cloud com-
puting services,” Eur. Netw. Inf. Secur. Agency (ENISA), Heraklion,
Greece, White Paper, 2012.

[5] 1. Miller. (2017). Critical Data is More Secure in Cloud-Based Data Cen-
ters. [Online]. Available: http://www.avidsolutionsinc.com/why-critical-
data-is-more-secure-in-the-cloud

[6] (2017). Amazon Web Services (AWS). [Online]. Available: https://aws.
amazon.com/

[7]1 (2017). NetApp.
index.aspx

[8] NetApp. (2012). Agencies Built on NetApp Go Further, Faster. [Online].
Available: http://www.netapp.com/us/media/agencies-built-on-netapp-go-
further.pdf

[9] P. S. Kumar, “New probabilistic efficient and secure protocols for data
storage security in cloud computing,” Ph.D. dissertation, Dept. Comput.
Sci., Pondicherry Univ., Puducherry, India, 2014

[10] E. Tremel, “Real-world performance of cryptographic accumulators,”
M.S. thesis, Dept. Comput. Sci., Brown Univ., Providence, RI, USA, 2013.

[11] Y. Yuet al., “Cloud data integrity checking with an identity-based auditing
mechanism from RSA,” Future Gener. Comput. Syst., vol. 62, pp. 85-91,
Sep. 2016.

[12] H. Yan, J. Li, J. Han, and Y. Zhang, “A novel efficient remote data
possession checking protocol in cloud storage,” IEEE Trans. Inf. Forensics
Security, vol. 12, no. 1, pp. 78-88, Jan. 2017.

[13] R.Saxenaand S. Dey, “Cloud audit: A data integrity verification approach
for cloud computing,” Procedia Comput. Sci., vol. 89, pp. 142-151, 2016.

[Online]. Available: http://www.netapp.com/us/

65650

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]
(371

(38]

G. Caronni and M. Waldvogel, “Establishing trust in distributed storage
providers,” in Proc. 3rd Int. Conf. Peer-to-Peer Comput. (P2P2003).,
Sep. 2003, pp. 128-133.

Y. Deswarte, J.-J. Quisquater, and A. Saidane, ‘“‘Remote integrity check-
ing,” in Integrity and Internal Control in Information Systems VI. Berlin,
Germany: Springer, 2004, pp. 1-11.

D.L.G.Filhoand P. S. L. M. Barreto, ““Demonstrating data possession and
uncheatable data transfer,” JACR Cryptol. ePrint Arch., vol. 2006, 2006.
F. Sebe, J. Domingo-Ferrer, A. Martinez-balleste, Y. Deswarte, and
J. Quisquater, “Efficient remote data possession checking in critical infor-
mation infrastructures,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 8,
pp. 1034-1038, Aug. 2008.

A. F. Barsoum and M. A. Hasan, “Provable possession and replication
of data over cloud servers,” Univ. Waterloo, Waterloo, ON, Canada,
Tech. Rep. 2010/32, 2010.

Z. Hao, S. Zhong, and N. Yu, “A privacy-preserving remote data integrity
checking protocol with data dynamics and public verifiability,” IEEE
Trans. Knowl. Data Eng., vol. 23, no. 9, pp. 1432-1437, Sep. 2011.

M. Yi, J. Wei, and L. Song, “Efficient integrity verification of replicated
data in cloud computing system,” Comput. Secur., vol. 65, pp. 202-212,
Mar. 2017.

X. Yi, M. Kaosar, M. Golam, R. Paulet, and E. Bertino, “Single-database
private information retrieval from fully homomorphic encryption,” IEEE
Trans. Knowl. Data Eng., vol. 25, no. 5, pp. 1125-1134, May 2013.

J. Benaloh and M. de Mare, “One-way accumulators: A decentralized
alternative to digital signatures,” in Proc. Adv. Cryptol.-EUROCRYPT
Workshop Theory Appl. Cryptograph. Techn. Berlin, Germany: Springer,
1994, pp. 274-285.

D. Derler, C. Hanser, and D. Slamanig, “Revisiting cryptographic accu-
mulators, additional properties and relations to other primitives,” in Proc.
Topics Cryptol.-CT-RSA Cryptographers Track RSA Conf., San Francisco,
CA, USA: Springer, Mar. 2015, pp. 127-144.

A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL, USA: CRC Press, 1996.

C. Papamanthou, R. Tamassia, and N. Triandopoulos, “‘Authenticated
hash tables based on cryptographic accumulators,” Algorithmica, vol. 74,
pp. 664-712, Feb. 2016.

J. Camenisch and A. Lysyanskaya, ‘“Dynamic accumulators and appli-
cation to efficient revocation of anonymous credentials,” in Proc. Annu.
Cryptol.-CRYPTO Annu. Int. Cryptol. Conf. Santa Barbara, California,
USA: Springer, Aug. 2002, pp. 61-76.

M. T. Goodrich, R. Tamassia, and J. Hasié, “An efficient dynamic and
distributed cryptographic accumulator,” in Proc. Inf. Secur. Int. Conf. Inf.
Secur. (ISC). Sao Paulo, Brazil: Springer, Sep./Oct. 2002, pp. 372-388.

T. Sander, “Efficient accumulators without trapdoor extended abstract,” in
Proc. Inf. Commun. Secur. Int. Conf. Inf. Commun. Secur. (ICICS). Sydney,
NSW, Australia: Springer, Nov. 1999, pp. 252-262.

A. F. Barsoum and M. A. Hasan, “‘Provable multicopy dynamic data pos-
session in cloud computing systems,” IEEE Trans. Inf. Forensics Security,
vol. 10, no. 3, pp. 485-497, Mar. 2015.

G. Ateniese et al., “‘Provable data possession at untrusted stores,” in Proc.
14th ACM Conf. Comput. Commun. Secur., Alexandria, VA, USA, 2007,
pp. 598-609.

R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, vol. 18.
Cambridge, U.K.: Cambridge Univ. Press, 2010.

N. Bari¢ and B. Pfitzmann, “Collision-free accumulators and fail-stop
signature schemes without trees,” in Proc. Adv. Cryptol.-EUROCRYPT
Int. Conf. Theory Appl. Cryptograph. Techn. Konstanz, Germany: Springer,
May 1997, pp. 480-494.

V. Shoup, A Computational Introduction to Number Theory and Algebra.
Cambridge, U.K.: Cambridge Univ. Press, 2009.

K. D. Bowers, A. Juels, and A. Oprea, “‘Proofs of retrievability: Theory and
implementation,” in Proc. ACM Workshop Cloud Comput. Secur., 2009,
pp. 43-54.

Y. Zhang, R. H. Deng, X. Liu, and D. Zheng, “Blockchain based efficient
and robust fair payment for outsourcing services in cloud computing,” Inf.
Sci., vol. 462, pp. 262-277, Jun. 2018.

T. Schreider, The Manager’s Guide to Cybersecurity Law: Essentials for
Today’s Business. Brookfield, CT, USA: Rothstein, 2017.

T. Granlund, Gnu MP 6.0 Multiple Precision Arithmetic Library. London,
U.K.: Samurai Media Limited, 2015.

W. Dai, Crypto++ Library 5.6.0. Crypto++ Community, 2009. [Online].
Available: https://www.cryptopp.com/

VOLUME 7, 2019

=

. Khedr et al.: Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage

IEEE Access

[39]

[40]

[41]

[42]

J. Daemen and V. Rijmen, The Design of Rijndael: AES-The Advanced
Encryption Standard. Berlin, Germany: Springer, 2013.

M. J. Dworkin, “SHA-3 standard: Permutation-based hash and extendable-
output functions,” Federal Inf. Process. Stds., Gaithersburg, MD, USA,
Tech. Rep. (NIST FIPS)-202, 2015.

R. J. Larsen and M. L. Marx, An Introduction to Mathematical Statistics
and Its Applications, vol. 2. Englewood Cliffs, NJ, USA: Prentice-Hall,
1986.

M. R. Anawar, S. Wang, M. A. Zia, A. K. Jadoon, U. Akram, and S. Raza,
“Fog computing: An overview of big [oT data analytics,” Wireless Com-
mun. Mobile Comput., vol. 2018, May 2018, Art. no. 7157192.

WALID 1. KHEDR received the Ph.D. degree
in computer science from Ain Shams University,
in 2009. He is currently an Associate Professor in
information technology with the Faculty of Com-
puters and Informatics, Zagazig University. His
current research interests include network security
protocols, key management protocols, cloud secu-
rity, and the Internet of Things security.

VOLUME 7, 2019

HEBA M. KHATER received the B.Sc. degree
from the Faculty of Computers and Informatics,
Department of Information Technology, Zagazig
University, Egypt. Her interests include cloud
computing, cryptography, computer networking,
and network security.

EHAB R. MOHAMED received the B.Sc., M.Sc.,
and Ph.D. degrees in communication from the
Faculty of Engineering, Zagazig University, where
he is currently an Associate Professor with the
Information Technology Department, Faculty of
Computers and Informatics. His current research
interests include optimization, computational
intelligence, computer networks, image process-
ing, and cloud computing.

65651

	INTRODUCTION
	RELATED WORK
	ORGANIZATION OF THE PAPER

	PRELIMINARIES
	THE RSA ONE-WAY ACCUMULATOR
	CHARACTERISTICS OF CLOUD DATA INTEGRITY SCHEMES
	OVERVIEW OF THE PROPOSED CAPDP SCHEME
	TAG RECORD TABLE
	SECURITY REQUIREMENTS

	PROPOSED SCHEME
	BASIC CAPDP SCHEME
	SETUP PHASE
	PROOF GENERATION-VERIFICATION PHASE (PGV)

	DATA DYNAMICS SUPPORT
	INSERT OPERATION
	DELETE OPERATION
	UPDATE OPERATION

	DISCUSSION
	BLOCK-LESS VERIFICATION (C1)
	UNRESTRICTED CHALLENGE FREQUENCY (C2)
	SOUNDNESS (C3)
	STATELESS VERIFICATION (C4)
	ROBUSTNESS (C5)
	DATA RECOVERY (C6)
	DYNAMIC DATA HANDLING (C7)
	PUBLIC AUDITABILITY (C8)
	PRIVACY-PRESERVING (C9)
	FAIRNESS (C10)

	SECURITY ANALYSIS
	PERFORMANCE ANALYSIS
	COMPUTATION COST
	STORAGE COST
	COMMUNICATION COST
	PROTOTYPE IMPLEMENTATION

	CONCLUSION
	REFERENCES
	Biographies
	WALID I. KHEDR
	HEBA M. KHATER
	EHAB R. MOHAMED

