
Received March 14, 2019, accepted May 13, 2019, date of publication May 16, 2019, date of current version May 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917330

Dissection on Java Organs in GitHub Repositories
SHANGWEN WANG , XIAOGUANG MAO, AND XIN YI
1College of Computer Science, National University of Defense Technology, Changsha 410073, China
2Hunan Key Laboratory of Software Engineering for Complex Systems, Changsha 410073, China

Corresponding author: Xiaoguang Mao (xgmao@nudt.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61672529.

ABSTRACT Organ transplantation has brought convenience for software reuse and evolution since it was
proposed. However, studies about mature, high-quality organs are still insufficient. It is still unclear about
the detailed characteristics of organs in the open-source environment. In this paper, we look deep into
organs obtained from software evolution processes of the ten large-scale Java repositories hosted on GitHub,
aiming at providing practical information for utilizing organs in the open-source environment.We found that:
1) commits use add as a keyword in their comments possess the most organs, occupying 38% of the total
amount, but commits with the keyword fix possess the highest locating accuracy (about 57%); 2) developers
prefer to add new classes when they bring new functionalities to the projects in that the proportion of
class level organs is 40%, more than statement level organs’ and function level organs’ (35% and 25%,
respectively); 3) nearly 70% of the total amount are cross-file organs with the median of the number of files
each organ spans reaching three and the average of this value being around four; 4) a small number (0.55%)
of organs are multi-commit; 5) more than 40% of code reuse in the open-source software can be finished
by organ transplantation. Based on our findings, we highlight implications for future studies and design the
mode of using organs to conduct code reuse.

INDEX TERMS Organ transplantation, code reuse, GitHub repository, commits, software evolution, code
clone.

I. INTRODUCTION
Software reuse, which refers to creating software systems
utilizing existing software rather than building them from
scratch [1], [2], brings great convenience for software devel-
opment and maintenance. Components, which are consid-
ered as the basic unit in software [3], have been studied
well during the years and provided endorsement for reuse
technologies [4]–[6] such as extending the functionality of
a specific system using existing code.

For achieving the same goal, Harman et al. [7] transplanted
code from other systems and named these code Organ, refer-
ring to all code associated with the feature of interest. New
ideas have been brought to reuse since then: organs may
provide greater convenience than components since they are
more flexible according to the definitions. If one programmer
is interested with just an if conditional branch to guaran-
tee the condition whereas the whole class is reused, it is
then nothing to do with convenience and concision. Later
on, Harman’s study was extended by creating a tool named
CodeCarbonCopy (CCC) [8] and transplanting call graph

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongwang Zhao.

and layout features [9]. Despite the satisfying results they
got, their practices in this area are restricted to a small-scale
and specific experimental context: donors of the experiments
in [7] and [8] are all pre-prepared applications, leading to
a small number of organs (5 and 7, respectively). Organ
transplantation based on large-scale dataset was not involved
in their experiments.

In our previous study [10], we made the first attempt to
extract and transplant organs from open-source communi-
ties, aiming at remedying the problem of lacking of organs.
We firstly proposed the idea that mining organs from the
evolution process of open-source projects by concentrating
on the contents of commits. We then put forward a strategy
for transplantation and made some manual experiments in
which satisfactory results were achieved. The main lack of
this study was that we did not study organs comprehensively:
we only considered potential organs in adding commits (i.e.,
commits with add as a keyword) and we also ignored some
special cases like cross-file organs in this study, making the
results not so convincing.

Suppose that a researcher is now searching for practical
organs in a project, what if the target organ is not located

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

62561

https://orcid.org/0000-0003-1469-2063


S. Wang et al.: Dissection on Java Organs in GitHub Repositories

in adding commits? Also, suppose that another researcher
is now designing an automated organ extraction tool, is it
suitable to only concentrate on one commit and ignore the
correlation between several commits? These two scenarios
have not been solved by our previous study [10] and they
indicate that the understanding of more in-depth character-
istics of organs is of great importance for activities about
organ research. That is exactly the motivation for us to con-
duct an empirical study about the characteristics of organs.
Different from our previous study [10] which can be con-
sidered as a preliminary exploration of the feasibility of
organ transplantation based on open-source environment, this
study concentrates more on the anatomy of the characteristics
of organs in open-source environment, aiming at providing
theoretical basis for future study. To this end, we selected
ten large-scale Java projects with the most stars in GitHub
repository and analyzed the distributions, situations, and
contents of 23,871 organs from 80,409 commits. Based on
our quantitative and qualitative analysis, we aim to provide
precise information for organs in open-source environment
and guide future research about automated organ extracting
and transplanting based on this repository with fine-grained
statistics by studying considering the following five aspects,
which are all novelty in this study.
• The amount of organs under each category based on
keyword classification and each category’s locating
accuracy, which is an indicator pointing out the effi-
ciency of locating at practical organs;

• The contents of the organs and the corresponding preva-
lence of each category;

• The average number of modified files when adding a
new organ and the situations of multi-commit organs;

• The importance of organ transplantation in code reuse;
This study not only provides implications for future

researches on organ transplantation based on GitHub reposi-
tory for code reuse but also lists the fatal technical challenges
obtained, in particular, the cross-file organs and the multi-
commit organs.
To sum up, the main contributions of this paper are:
• A finer-grained and medicine-referenced definition for
Organ;

• The anatomy of commits with potential organs accord-
ing to the keywords they contain, including whether they
really have an organ and the features of the contents of
organs if they have;

• The analysis of the main difficult circumstances for
automated organ transplantation;

• The detailed analysis of code reuse that can be finished
by organ transplantation in open-source software;

The remainder of this paper is organized as follows:
Section II introduces the background of our study, presenting
detailed analysis about components and organs and proposing
a more detailed definition for Organ compared with the one
introduced in the study [7]. Section III describes the moti-
vation of our study. Section IV presents the study design of
our study, including our research questions and our dataset.

Section V presents the answers to the research questions with
results and analysis. Section VI discusses the implications
of our findings and the threats to validity and Section VII
introduces the related work. At last, Section VIII presents the
conclusion of this paper and our future work.

II. BACKGROUND
The term ‘‘Software Reuse’’ was first coined in 1968 [11], [12]
with the purpose of reducing the time and effort required to
building software systems and it has been studied for over half
century. During this period, it was considered as potentially
a powerful means of improving the practice of software
engineering [13]–[15] and its convenience for software devel-
opment continued to be widely acknowledged [16]. Compo-
nent, considered as the main building blocks for software
architectures [3], plays a basic role in the development of
reuse techniques, leading to the establishment of the sub-
discipline named Component-Based Software Engineering
(CBSE) [17]. Several definitions of components have been
provided in the literature. We use the definition given by [18]
for analysis: in the context of reuse, software components are
clearly identifiable artefacts that describe and/or perform
specific functions and have clear interfaces. The author took
functions and classes as examples and argued these two types
of code are classical components.1

According to the definition given above, a component has
to contain a clear interface to ensure that it can be intercon-
nected well with other components. That is the main reason
for why components underlining high relationship between
several classes, which can also be observed through other
definitions about components [19]. As a concept that is also
linked to functionality, Organ introduced byHarman et al. [7],
however, emphasizes the integrity on functionality, i.e., an
organ can be in various forms like several statements as long
as it achieves a specific functionality independently. As for
the modus of achieving functionality, although components
have clearly specified functionality which they perform or
describe, they may also be descriptions of functionality with-
out performing themselves since some components may be
design documents. As comparison, all organs refer to the
programming statements created for achieving functionality
and thus are related with code. Another aspect of difference
between component and organ is the location.While the iden-
tifiable requirement in component definition asks it contained
in a file rather than being spread over many locations, it is
not uncommon that codes located at several different places
fulfill a functionality together. Organ provides the possibility
to utilize the code with any form at any place which cannot
be guaranteed by traditional component.

However, Harman’s definition misses an important thing:
the number of functionalities an organ contains is not limited.
Suppose that one organ has several features of interest, then
we will have no idea about focusing on which one when we
reuse it. Aiming at providing finer-grained information for

1In this paper, we use the term ‘‘function’’ to refer to the class method.

62562 VOLUME 7, 2019



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

FIGURE 1. The comment of our example.

FIGURE 2. The added code of our example.

software reuse, we give organ a more precise definition in
this paper: an organ is a collection of code for a specific
functionality. Different from Harman’s definition, this one
clears the corresponding relationship between one organ and
one functionality. In medicine, an organ is a collection of
tissues with a specific functionality [20] which means an
organ achieves a specific functionality, showing that the cor-
responding relationship in our definition is reasonable.

Within the scope of program, organ transplantation is
to identify and extract an organ and then transform it to be
compatible with the name space and context of its target site
in the host [7].

III. MOTIVATING EXAMPLE
This section motivates our study using a real-world example
from one project in our dataset which we will introduce in the
next section.

We show a commit submitted in the year of 2018 of the
project named elasticsearch in Fig. 1 and themodified code of
this commit is shown in Fig. 2. In the comment, the developer
says that this change adds a new method which can check if
a given operation has been processed into the class named
LocalCheckpointTracker. To do this, a function named con-
tains is added into this class. This observation coincides per-
fectly with our definition of Organ: we can consider the code
added in the commit as an organ and it achieves the special
function mentioned in its comment. This case indicates that
abundant organs can be mined through the evolution process
of open-source software. We investigate commits and check
whether some real functionalities which could be considered
as organs can be provided. We then collect these commits and
conduct in-depth analysis, aiming to solve the problem of lack
of detailed analysis about the characteristics of organs from

TABLE 1. Information of projects in our dataset.

open-source environment. Our short-term object by conduct-
ing this study is to understand where and how organs appear
in the commits while our long-term object in the future is to
extract, store, and transplant high-quality organs.

Open-source communities have involved many program-
mers in development [21], making hosted projects have a
large number of commits. Due to the time limitation and
lack of mature automated techniques, it is unpractical to
analyze all the commits. Thus, we follow the keyword-based
classificationmethod in our previous work [10] whichwe talk
about in the next, greatly simplifying our work. This drops
out totally 19299 commits in our study, about 24% of the
total amount of commits in our dataset. In that our long-term
object is to extract organs fast and accurately, studying the
characteristics of these commits is of no sense.

IV. STUDY DESIGN
In this section, we present the study design of this paper,
which concludes three parts: the selection of our dataset,
the research questions in our study, and our methodology.

A. DATASET SELECTION
In order to make our conclusion general, we choose ten of
the most representative projects sorted by Most stars. For
each project, Table 1 shows its number of stars, version
under investigate, number of commits, and URL. We use the
number of stars as a proxy for popularity because it reveals the
number of people manifest interest to the project [22]. As for
the content enrichment, eight of them possess more than 1k
commits in their repository with the most one exceeding 40k
and the least one reaching 0.4k, indicating that there is a lot
of information in our dataset. GitHub community provides
another index indicator named Most forks which is also able
to demonstrate the richness of the project content. According
to this list, nine of our selected projects are in the top thirteen
while the bottom one (jadx) is 44th in that it only possesses
two branches, leading to its less forks.

Projects in our dataset are all about real-world applications
and systems (i.e., possess own users) besides java-design-
patterns and interviews where the former teaches people

VOLUME 7, 2019 62563



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

tested, proven development paradigms and the latter pro-
vides people with the knowledge they need to get excellent
performance in interviews. The information in these two
projects are quite practical, being the possible reason for their
popularities. Although they have no real-world functional-
ities, their codes are about algorithms and data structures
from which practical organs can be extracted, for example,
interviews introduces some basic graph algorithms likeDepth
First Search (DFS) and Breadth First Search (BFS). Due to
the possible existence of organs, we still include these two
projects in our dataset.

Note that the limit date for us collecting the data is 16th,
October, 2018. All the changes that follow this date are
beyond our study.

B. RESEARCH QUESTIONS
In order to characterize and understand organs in GitHub
repository, we define the following five research questions.
Our research questions mainly focus on two aspects, i.e., the
characteristics of organs in open-source environment and the
importance of organ transplantation in code reuse.

RQ1: Commits with which keyword possess the most
organs and commits with which keyword possess the highest
locating accuracy?

The location problem is the basis of utilizing organs in the
repository in that one should know about where to extract
practical organs before he or she starts. Commits are divided
into multiple categories according to the keywords they con-
tain. In this question, we aim at finding out which category of
commit possesses the most practical organs as well as which
category of commit possesses the highest locating accuracy
since efficiency is also significant when finding out practical
organs.

RQ2: What are the types of code organization forms of
organs and which type is the most popular one?

Organs are more free in the forms than components accord-
ing to our previous analysis in Section II. We aim to divide
the organs into several types with common characteristics
during this empirical study and understand the preferences of
programmers on choosing which type of organ when needing
to add new code into the projects. To answer this question,
we classify and count from the level of statements, functions,
and classes. The answer is instructive for extending function-
alities for one’s own program written in Java language since
it is learned from real-world projects.

RQ3: What are the distribution status of the difficult situ-
ations for automated organ transplantation?

During our empirical study, we found there are mainly
two difficult situations for applying automated organ trans-
plantation methodology in the future research. One is named
cross-file organ which refers to code added into several files,
the other is called multi-commit organ which refers to code
occurs in several commits achieve a specific functionality
together. We calculate the statistics about the distribution
status of these two situations aiming at providing guidance
for understanding organ maintenance in large-scale projects

and making preparation for automated transplantation in the
future.

RQ4:What percentage of the code reuse in open-source
software can be finished by organ transplantation?

This question aims to emphasize the importance of organ
transplantation in code reuse. We utilize a widely-used clone
detection tool to detect code clone pairs in our database
and identify how many organs occurred during the software
evolution process are in these clone pairs.

C. METHODOLOGY
For the commits we analyzed in RQ1-3, we developed a
script to automatically get each commit in the version control
system by searching keywords such as ‘‘fix’’ and ‘‘add’’,
utilizing the GitHub API.2 Note that the problems brought
by grammatical variations (e.g., add, adds, and adding) are
resolved by this method. This process was done by the first
author and checked by the third author, both of whom are
postgraduates being familiar with Java programming lan-
guage.

For RQ4, we used a tool named SourcererCC [55] to detect
the code clone pairs in these software since 1) it achieves
scalability to large repositories [55]; and 2) it is widely used
in recent studies [56], [57]. We used the organs we got from
the previous research questions to conduct the analysis and
consider a code reuse occurring in code clone if the organ
identified by us is included in the clone pairs.

V. RESULTS AND ANALYSIS
In this section, we present the results and the answers to our
five research questions.

A. DISTRIBUTION SITUATION OF ORGANS UNDER
KEYWORD-BASED CLASSIFICATION (RQ1)
We first introduce the keyword-based classification briefly.
A project in GitHub repository is incompletely functional
at its inception and many of its features are added by engi-
neers during the evolution process. Due to the explosion of
information in the open-source communities, software devel-
opers use some methods to manage their projects, such as
writing comments when they submit a commit. They would
like to record their intention to change the code in their
comments, for example, comments would be ‘‘fix a certain
error’’ when a bug is repaired. Thus, commits can be divided
into different categories according to the keywords in their
comments. To obtain potential organs from commits, our
previous study [10] firstly classified commits into eight cate-
gories including seven categories with keywords and another
category named other which means no keyword is found
in the comments of its commits. This intuition coincides
perfectly with our definition of Organ as we have introduced
in Section II: the code added in one commit is an organ and
it achieves the functionality corresponding to its comment.

2https://developer.github.com

62564 VOLUME 7, 2019



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

TABLE 2. Distribution situations of organs.

In our study, we only consider five categories of keywords
which are add, fix,3 modify/change, create, and update, since
our target is investigating the organs in the commits and only
commits with these keywords may provide practical informa-
tion: add may be used for adding new functionalities to the
project, fix may contain the correct code for a specific func-
tionality, modify or change may make necessary adjustment
to the original files, create may indicate new files are added
into the project, and update may replace the old resource by
a neoteric one. The other keywords, delete and merge, have
no help with finding organs added by programmers in that
delete indicates some original files or statements are deleted
and merge indicates a developer decides to merge a pull
request. Due to time and human resources limitation, we do
not investigate commits without keywords in this study.

We count the number of occurrences of each keyword
under each project and demonstrate the results on Table 2.
During the process, we find two kinds of special instances.
One is like the example we show in Fig. 3: there are multiple
keywords existing in one comment. In our example, the key-
words add and change are all included in the comment. Under
this circumstance, we consider this commit may contain
multiple organs and count it into every keyword category it
mentions in that the added content can be divided into several
parts and each part achieves a functionality corresponding to
a keyword in the comment. For the validity, content, and form
of each potential organ (RQ1-3), we performmanual analysis

3In the previous study [10], authors classified ‘‘fix’’ and ‘‘correct’’ into
one category, but in our study, we have barely seen ‘‘correct’’.

FIGURE 3. A case of multiple keywords in a comment.

by extracting corresponding part for each functionality. The
other is as the case shown in Fig. 4: there are some commits
with same content submitted for several times. In Fig. 4,
the developer named wenshao submitted two commits with
same comment continuously and only one was adopted.
We decide to count only once for corresponding category in
this redundancy situation.

It is well-known to the public that not all the commits
deal with code, some may add some materials for the project,
some may adjust configuration of the system, and some may
add instruction for the users, etc. That is to say, not all the
commits are able to provide organs. If one category has
very rare organs in its commits, it will be time-consuming
to transplant organs from that category. Thus, what we need
to understand is the ratio of organs contained under commits
of each category. For judging whether a commit can provide
organ, we first define the conception of practical commit: if
code with functionality can be mined from it, then this commit
is practical commit. We calculate the number of occurrence
of practical commit under each category of each project and

VOLUME 7, 2019 62565



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

FIGURE 4. A case of redundancy commit.

FIGURE 5. A case of adding license.

the data is illustrated on Table 2. Then, the organ occupancy
of each type of keyword is calculated by the amount of its
organs divided by the amount of the total organs.
There are various reasonsmaking a commit unpractical and

we summarize the four most common situations during our
empirical analysis. The first is adding license into the pro-
gramwhich is a means for programmers to defend their copy-
rights. The second is adding annotation into README.md
file, a documentation which gives users or people of interest
instruction for the system in GitHub community. By doing
so, developers can provide clear guidelines for their prod-
ucts. The third is updating the configuration information
in pom.xml file which describes project dependencies and
configuration files. The last one is correcting typos in the
program. Although this work is with code, it only fixes the
spelling of a certain word and thus is not practical. There are
many other complicated situations, for example, a commit
can just change the modifiers of some variables which makes
it unpractical although dealing with code, but as long as
we stick to the criterion, we can make a correct judgment.
We illustrate four examples corresponding to the four situa-
tions we have analyzed from Fig. 5 to Fig. 8.

We then define an important indicator named locating
accuracy, which points out the efficiency of locating at
practical organs under each category, meeting the target of
our research. For a category of keyword-based classifica-
tion, its locating accuracy is calculated by the amount of its
practical commit divided by the amount of its total commit.

FIGURE 6. A case of adding annotation.

FIGURE 7. A case of updating configuration information.

FIGURE 8. A case of fixing typos.

We calculate the locating accuracy of each category and
reveal this data on Table 2.

Note that on Table 2, there are many fractional numbers
like A/B where A represents the number of practical com-
mit under this category in this project and B represents the
number of total commit under this category in this project,
e.g., the first data ‘‘179/649’’ in the column ‘‘add’’ means
the number of commits using add as a keyword in the
comments reaches 649while the number of practical commits
among them is 179, in the project java-design-patterns. Total
amount of organs denotes the number of organs we find
out under these five categories from the project and total
amount of commits denotes the number of commits in the
repository of this project, correspondingly. The row named
in total represents the overall situation of each category in
these ten projects and then organ occupancy which refers to
the proportion of organs of each category is calculated.We list
locating accuracy of each category in the last row.

We meet a special case, guava, which is labeled by ‘‘∗’’,
during this statistical work. The thing is that most of its
commits are recorded with words like ‘‘created by someone’’
to record which developers submit these commits, leading to
the large number of create occurring in the comments. In fact,
the total amount of commits with create in their comments
is 4657, only a little less than the total number of commits
of this project, 4782. In order to make our conclusion more
general, we decided to eliminate these useless information
and only recorded the information where create is used for

62566 VOLUME 7, 2019



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

other functionalities rather than recording the developers.
As a result, there are 110 commits using create as a keyword
in which seven of them are practical commits, providing true
organs.

Results reveal a lot of practical information. For organ
occupancy, commits containing add and fix as keywords pos-
sess the most organs with their proportions reaching 38% and
35%, respectively.Modify and create are the least abundant in
contents since they have least organs with both their propor-
tions only surpassing 2%. For locating accuracy, while add
and fix are still two of the highest, fix is the most accurate one
this time. The accuracies of these two kinds are 56% for fix
and 50% for add. Update shows an accuracy of 49%, only
a little lower than add. This time, modify and create are still
two of the lowest in accuracy with both of their values around
40%. The possible reason for this phenomenon is that modify
usually associates with configuration files and create usually
associates with issue templates in the.md files, causing them
to beweakly associatedwith organs. According to the average
value of locating accuracy, we find some outliers in project
interviews: the locating accuracy of fix in this project is
9/39 and that of update’s is 2/45, both are much lower than
normal. We look deep into the reasons for these results and
find that in this project, commits with fix often deal with typos
and update are usually related with.md files, leading to their
low locating accuracies.

Here we see the differences between our study and the
previous one [10]. In our database for Java, add and fix pos-
sess large proportion of organs, while in their mixed database
which contains several languages, these two keywords appear
even less often than update.

RQ1: Commits with which keyword possess the
most organs and commits with which keyword pos-
sess the highestlocating accuracy?
Findings: Commits with add as a keyword in their

comments possess the most organs, reaching 9,122 in
our dataset and occupying 38.21% of the total amount of
organs. Commits with fix as a keyword in their comments
possess the highest locating accuracy, reaching 56.89%.
Implications: When needing to get more Java organs

from GitHub repository, locate commits whose com-
ments include add as keywords; when needing to find
out organs quickly, use fix as a keyword to conduct the
search.

B. THE TYPES OF JAVA ORGANS AND THEIR
POPULARITIES (RQ2)
In this section, we aim to understand which type of organs is
added by the developers most when they need to bring new
functionalities for the projects.

We first introduce three types of organs we find during
this empirical study: Statement Level Organ (SLO), Func-
tion Level Organ (FLO), and Class Level Organ (CLO).
SLO refers to organs which consist of several statements

FIGURE 9. A case of SLO.

FIGURE 10. A case of CLO.

including some assignments without logical relationship and
some conditional branches or loop blocks with great logical
relationship. This species is unique to organ compared with
component since it is a more flexible and finer-grained mode.
A case of this type of organ is illustrated in Fig. 9 where
four lines of statements are added to enable the host project
to update download requirements. FLO means that program-
mers write new functions when they add code just like the
example we have shown in Section III. Correspondingly,
CLO means developers write whole new classes during
the maintenance process and a case of this type is shown
in Fig. 10 where a class named UserController is added.
Due to the particularity of Java files (a file is a class), this
type usually represents adding new files into the projects.
There are some extreme situations when developers adding
a new package to achieve a specific functionality and we also
divide them into CLO since files make up packages. Note
that the study [10] distinguishes statements with or without
inner logical relationship, however, in our study, the added
code belongs to SLO as long as they do not form a function.
Another special condition in their study is modifying values
or types of some variables, as a comparison, this situation
is not considered as an organ in this study since it does not
meet our criterion in RQ1. These three types of organs are
gradually abstracted from SLO to CLO: statements are the
basis of programs, functions are consisted of statements, and
a class is composed of statements and functions.

VOLUME 7, 2019 62567



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

We calculate the numbers of occurrences of each type of
organ in each project and illustrate the results on Table 3. Note
that we adopt the principle of abstract level priority when
counting. For examples, if a developer adds a new function
in a commit while several statements are also added out of
this function, then this commit is divided into FLO; when
statements, functions, and classes are all added, it belongs to
CLO.

From the results, SLO is the most popular one among three
projects (i.e., incubator-dubbo, jadx, and fastjson), the same
as FLO (RxJava, guava, and zxing). CLO exceeds them in
the left four projects. In total, CLO reaches about 40%, SLO
possesses around 35%, and FLO occupies approximately
25%, indicating that the difference is not big. To some extent,
CLO’s success is related to elasticsearch, the project which
contains more than half of the organs in our dataset. Since
this project is large and complex in structure, developers
prefer to add new classes and do not break the original logical
relationship when achieving new functionalities. CLO wins a
huge lead in this project and this leads to its victory in the total
amount, which we will discuss next in Section V. Besides,
CLO still possess the most organs in other three projects,
showing that the conclusion is still convincing.

RQ2: What are the types of code organization
forms of organs and which type is the most popular
one?
Findings: The organs can be divided into three types

based on their contents. Although the differences are
small, Class Level Organ is the most popular one among
Java projects, followed by Statement Level Organ and
Function Level Organ. They account for 40%, 35%, and
25% of the total, respectively.
Implications: It is better to add new classes to achieve

fresh-wanted functionalities in large and complicated
software and systems in order not to break the original
complex program logic.

C. THE DIFFICULT SITUATIONS FOR AUTOMATED ORGAN
TRANSPLANTATION (RQ3)
A methodology for extracting and transplanting organs
from open-source community has been proposed in [10].
It includes six steps such as code extraction, check, and
selection, which considers comprehensively for the general
situations. The authors announce that they will make this
process automated in their future research, but we find there
are mainly two difficult situations for applying this potential
automatic technique during this empirical study. One is that
developers may not add new code into only one file, in con-
trast, they may modify several places in several files when
bringing new functionality for the system. In this condition,
we must find out suitable locations for all the modifications,
making this process difficult to achieve. We name this sit-
uation cross-file organ. The other is that developers may

TABLE 3. Distribution situations of three types of organs.

repeat modifications for a specific functionality which means
several commits achieve a functionality together. If we only
extract code from one of these commits, we may not obtain a
complete organ. This situation is called multi-commit organ.
In this research question, we aim to investigate the distri-

bution status of these two difficult situations, hoping that the
statistics may bring idea for resolving these difficulties in the
future researches.

1) CROSS-FILE ORGAN
We count the number of cross-file organs of each project
with the precise number of files they cover and illustrate the
statistics on Table 4. We consider the organs which cross
more than 3 files as one category since the number of files
covered by these organs is up to 42 (in elasticsearch). This
process, although time-consuming, is easy to operate, since
there is always an indication of how many files are modified
at the top of the code in each commit in GitHub. During
our observation, we find there is a common feature in our
dataset: since our projects are all large-scale, there are always
folders named test in their file systems to provide test suite
for checking functionalities. Thus, lots of developers add
corresponding test cases when they bring new features into
the systems, being a major reason for many organs crossing
more than one file. Due to the fact that the functionality of our
target organ is correspondent with its comment, we classify
this phenomenon into two situations. If the comment writes
that this commit is aimed at adding test cases for checking
some functionalities, we count the original number of files it
covers since all the code is in accordance with the intention
mentioned in the comment. On the contrary, if the comment
says that this commit adds new functionalities into the sys-
tem, we use the original number minus number of testing files
it covers as the final result since the testing code is not related
to the functionality mentioned by the comment.

62568 VOLUME 7, 2019



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

TABLE 4. Distribution situations of cross-file organs.

On Table 4, P denotes names of the projects, N1 denotes
number of files, and N2 denotes number of organs in each
case. For example, the first number 176 means there are
176 organs whose code only occupy one file in project
java-design-patterns. From the results, non-cross-file organ
(organs which only occur in one file) only possesses 30%
of the total amount which means that most of the organs in
our dataset are cross-file organs. The fifth project, guava,
possesses the lowest rate of non-cross-file organ with just
9.62% of its organs are non-cross-file, much lower than the
average value. That is caused by the fact that in its file
system, there are two paths to store the exact same files:
/android/guava/src and /guava/src. Although the intention of
developers to do this is not clear, they do modify the files
with same names under these two paths simultaneously in one
commit in most cases.

In order to observe the data in amore detailedway, we draw
the boxplot of the overall situation (the column called In total
on Table 4) as shown in Fig. 11.

From the result, the median of the number of files modified
by each commit is 3 and the average of this value is near 4
(4.07). According to the upper quartile, the figure shows that
most organs (75%) modifies no more than 6 files. In fact, this
percentage is 78.04% (18630/23871). The maximum number
is up to 42 and those points with their values on N1 exceed
13 are considered as outliers, indicating that the number of
modified files is limited to a range where the maximum is
around 10 and the median is about 3.

From the analysis above, we reach the conclusion that:
1) most of the organs (around 70%) are cross-file organs;
2) the number of files modified by per organ is restricted to
a certain range. The lessons we learn are that: 1) we do need
to develop techniques for transplantation of cross-file organs

FIGURE 11. Boxplot on N1 of overall situation.

in that they occupy a large part; 2) if we can figure out the
association of some files, it is feasible to develop an auto-
mated transplantation technique for cross-file organs since
these changes only occur in limited files.

2) MULTI-COMMIT ORGAN
Some organs, which are called multi-commit organs, are not
added into the software at one time but have been modified
several times in the process of evolution. In this subsection,
we aim to investigate the distribution of multi-commit organ
in each project.

RQ3: What are the distribution status of the diffi-
cult situations for automated organ transplantation?
Findings: There are mainly two situations bringing

difficulties for automated organ transplantation. One is
named cross-file organ which possesses nearly 70% of
the total amount. For the number of files spanned by each
organ, the median is 3 and the average is about 4. The
other is multi-commit organ. The total number of this
type of organ found by our methods is 132 in our dataset,
which may be less than its actual number.
Implications: If we want to take advantage of the large

amount of organ information in the GitHub repository,
we must handle the cross-file organs and multi-commit
organs. Fortunately, the number of files the organs cross
is restricted in a specific interval and we have achieved
some success in identifying the multi-commit organs.
However, this aspect requires more in-depth research.

The main challenge of the counting process is identifica-
tion of themulti-commit organwhich is solved by us utilizing
two ways. One is matching noun-keywords in the comments.
The intuition is that modified objects are recorded in com-
ments in most commits and thus we can use the match to see
whether several commits are deal with the same thing. It turns
out that this method works. For example, in project java-
design-patterns, a commit created on 27th, May, adds a new
class named HayesVisitorwith its comment writing ‘‘Adding
HayesVisitor’’. Then, on 14th, June, another commit adds
modifiers to the class named HayesVisitor with its comment
saying ‘‘Updating HayesVisitor’’. This multi-commit organ

VOLUME 7, 2019 62569



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

TABLE 5. Distribution situations of multi-commit organs.

is successfully identified by our method since both of the two
comments contain the same noun-keywordHayesVisitor. The
other is utilizing the Issue Tracking System (ITS) in GitHub
which is studied in detail in [23]. In GitHub, users can not
only read the code of the project but also put forward their
questions and these questions are stored in the column named
Issues. When developers submit a commit, one of their habits
is to record the problem number they solved in the com-
ment. For example, in guava, a commit submitted on 28th,
March, adds a conditional branch in the class named Local-
Cache.java with its comment saying ‘‘Fix #3081’’. Around
one month later, on 25th, April, another commit announcing
that ‘‘Re-fix #3081’’ adds some extra statements into the
conditional branch mentioned above. If we want to extract
this organ completely, we must consider the contents of these
two commits, making this organ a multi-commit one. This
organ is recognized by our method since both the comments
mention the same issue.

We list the number of multi-commit organs we find out
in each project on Table 5. Note that in this table, McO
denotes multi-commit organ. On the whole, there are 132
multi-commit organs in our dataset, occupying 0.55% of the
total amount of organs. The third project, elasticsearch,
contains only 26 multi-commit organs although it possesses
themost organs. That is probably becausemost of its commits
only fix the issues mentioned in their comments for one time
according to our observation. As to the reason of the total
number ofmulti-commit organs is so small, it may be because
the two methods we use are not able to completely cover all
the situations.
Multi-commit organs do exist and they may be more

numerous than they seem. In addition to the two methods we
mentioned, it takes more in-depth research to find them all.

D. THE IMPORTANCE OF ORGAN
TRANSPLANTATION (RQ4)
In this section, we aim to investigate the importance of organ
transplantation in code reuse. Concretely, we analyze the
percentage of the code reuse that can be finished by organ
transplantation.

Code clone refers to copying one code fragment from
one place and pasting it to other places with or without
modifications [58] and is a critical form of code reuse [59].

Thus, to finish our target, we first use a popular code clone
detection tool, SourcererCC, to detect clones in our subject
projects. We consider these clones as code reuse instances
in our database. Then, we use the organs we receive from
the previous research questions to conduct the analysis.
If a clone pair contains an identified organ, it means the
added code during the evolution process is copied from one
place and transplanted to another place in the project, and
thus this clone pair is considered as an instance of code
reuse that can be finished by organ transplantation. Please
note that by using this methodology to analyze, we do not
mean that copying code or rewriting snippets is a tech-
nique of organ transplantation and actually, it is a critical
form of code reuse. Instead, since the code it reuses is an
organ, it can be finished by organ transplantation, indicat-
ing the importance of studying the organ transplantation
technique.

SourcererCC provides two dimensions of clone detection
(i.e., file-level and block-level) which is consistent with our
study: CLOs mean code in a whole file and correspond to
file-level clone; and SLOs and FLOs mean code in a specific
block and correspond to block-level clone. In our experiment,
we detect clones from both two dimensions. We set the simi-
larity threshold to 80% and receive a list of clone pairs where
the similarity of the two code fragment in a clone pair exceeds
the threshold. We then manually check if the organ identified
in RQ1-3 is in the pair. The percentage is calculated by the
number of the clone pairs which contain the organs divided
by the total number of clone pairs. The experimental results
are shown on Table 6.

RQ4: What percentage of the code reuse in
open-source software can be finished by organ trans-
plantation?
Findings: Overall, over 40% of code reuse in these

projects can be finished by organ transplantation,
although the value varies between different projects and
different dimensions.
Implications: Organ transplantation plays an impor-

tant role in software evolution process and it is of great
value to study the characteristics of organs.

On Table 6, the column #CR denotes the number of clone
pairs detected by SourcererCC in this project and the column
#OT denotes the number of organs identified by our previous
analysis occur in these code clone pairs. Generally speaking,
SourcererCC detects more clone pairs in the file-level than
block-level (7715 vs 559). There are four projects in which
SourcererCC detects no code clone in the block-level (java-
design-patterns, guava, zxing, and jadx) and thus we cannot
calculate the percentage under that condition. Note that the
value of #OTmay exceed the number of organs in the project,
for example, the value of #OT in RxJava in file-level is
477, more than the number of CLO in this project which is
298. This is because that an organ may occur in many clone

62570 VOLUME 7, 2019



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

TABLE 6. Distribution situations of code reuse that can be finished by
organ transplantation.

pairs and the statistical data will increase each time of its
occurrence.

Totally, over 40% of code reuse in our database can be
finished by organ transplantation. This number varies greatly
between different projects and different dimensions from less
than 10% to over 80%. For file-level dimension, the per-
centages in elasticsearch and spring-boot both exceed 80%
while the percentage in guava is only 4.3%. For block-level
dimension, the percentage in fastjson reaches 100% although
there is only one clone pair, as a comparison, the percentage
in interviews is only 7.3%.

VI. DISCUSSION
In this section, we discuss the implications from our study,
the threats to validity in our study, and the mode of code reuse
based on organ repository.

A. IMPLICATIONS
We design the research questions from two aspects as we
have introduced in Section IV (the characteristics of organs in
open-source environment and the importance of organ trans-
plantation in code reuse).We gain lots of findings through our
study.

For the characteristics, our study indicates that there are
large amount of practical organs existing in commits with
keywords like add, fix, update, and etc. Each kind of these
commits possess quite high locating accuracy with the low-
est reaching around 40%. These findings prove the feasi-
bility for future research about automated extracting organs
from open-source software using keyword-based classifica-
tion method and then transplanting the organs. Nevertheless,
difficulties still exist as our study shows that most organs do
not occur in a single file and some organs are shaped during
several evolution times. These results call for more in-depth
studies about this direction. Moreover, there are three types
of code forms for organs in open-source environment, among
which CLO is the most popular although the difference is not
that significant.

For the importance, our results reveal that around 40% of
code reuse occurs in the evolution process of open-source
software can be finished by organ transplantation. Thus, code
reuse can be much more convenient if there is a mature organ
transplantation tool, meaning that organ transplantation is an
important studying point.

Many implications for researchers and practitioners can be
concluded from these findings. First, organ transplantation
possesses bright future since a certain number of traditional
code reuse can be replaced by this more convenient way.
Second, there is a trade-off when extracting organs massively.
If the target is to extract organs as many as possible, then
all the keywords studied in this paper should be considered.
However, if the target is to extract organs under a certain
performance, it is suitable to consider three keywords (add,
fix, and update) since our study shows that most of the organs
can be found here. Third, considering the potential correlation
between several commits is a practical way for ensuring the
integrity of the content of organs. Utilizing ITS can play a role
but more methods need to be discovered during the practice.
Forth, it is of great importance to identify the places where
organs should be reused since our study shows that the code
in an organ may be collected from different parts of a project.
Fifth, the extracted organs are easy to reserved since a large
part of them are CLO which means they are self-contained.
Practitioners can reserve the extracted organs and utilize them
whenever it is needed.

B. THREATS TO VALIDITY
The main threats to the validity of our results belong to the
internal and external validity threat categories.

Internal validity threats correspond to the analyzing pro-
cess in our study. In our experiment, we analyzed the contents
in the commits manually, which was a huge project includ-
ing totally 61,841 commits. It is difficult to guarantee that
no statistical error occurs during this process. The dataset
in our study is unbalanced as shown in Table 1 since the
third and fourth projects in our dataset, elasticsearch and
spring-boot, contain much more commits than other projects.
Elasticsearch possesses 15,701 organs, more than half of the
total amount. Thus, the statistics obtained from this project

VOLUME 7, 2019 62571



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

have a great impact on the final conclusions. For example,
when calculating the proportions of different kinds of organs,
in the other nine projects, CLO is much less than SLO, not
even as much as FLO, but CLO’s huge lead in this project
makes it exceed SLO in total. Another example is that when
calculating organ occupancies of different kinds of commits,
fix is nearly one thousand more than add in the other nine
projects but it is eventually reversed due to its lack of quantity
in this project. It seems that classification that wins on this
project can always exceed others in total, which brings threats
to the internal validity. We also notice that there are five
projects in which SourcererCC detects no code clone in the
block-level in Table 6. Thus, the result of RQ4 is seriously
depend on the detection performance of SourcererCC, which
is another threat to the validity.

External validity threats correspond to the contents we ana-
lyze. Although our dataset includes ten of the most popular
Java projects in GitHub, it is still only a small part compared
to 60,674 projects in total in GitHub. Thus, it may not rep-
resent well the situations of organs in the real world. In this
study, we only concentrate on the commits with the keywords
we have mentioned, however, some developers may prefer
to describe the name of completed features directly with-
out any keyword, which means there exists potential organs
being overlooked by our study approach. In fact, we analyze
61,841 commits in total which means 23.09% (18568/80409)
of the commits are neglected. This may bring threats for our
conclusion being generalized and it is definitely the reason
for calling for more in-depth studies in this direction. More-
over, all the projects are collected from GitHub, which is
the most famous open-source community, and the projects
are restricted to Java language. Because of these, projects
hosted on other communities such as Bitbucket and GitLab
or in different programming languages may exhibit different
evolution characteristics of organs.

C. MODE OF CODE REUSE BASED ON ORGAN
REPOSITORY
Our idea is from the medical facts which are written in [24]
where the author states that organs in biology are so pre-
cious that patients are waiting in line for organ sources.
Our organ, which is a program-wide concept, on the con-
trary, is easy to obtain after the mature of automated
organ extraction techniques. More convenience will be pro-
vided if we establish an organ repository to preserve the
information and utilize it when it is needed. In the next,
we describe the benefits for code reuse using conceived organ
repository.

We illustrate the mode of utilizing organ repository for
code reuse in Fig. 12. First is establishing an organ repository.
Except for the added organs, we have to record the initialized
global variables shaping the execution environment which are
called veins in [7] and we also need to annotate each organ,
indicating that it is a long-term process. Currently, in non-
cross-file organs, we can use slicing techniques [25], [26] for
finding veins and combine themwith added organs, but things

FIGURE 12. Code reuse utilizing organ repository.

in cross-file organs are more complicated and thus are left to
future work. After we build a mature organ repository, it will
contain a large number of organs, making this repository full
of features for reuse. When we want to transplant an organ
into a host to achieve a specific functionality, the things we
only need to do are putting this organ into an implantation
point, renaming some of the variables, and testing. Finding
the implantation point is quite simple since our organs have
integrities in functionality: for SLOs and FLOs, everywhere
is feasible as long as it is not inside a specific function;
for CLOs, we just need to create a new file. After this,
we need to search for bindings from the host’s variables to
the organ’s parameters. If some of the variables in the organ
play the same role with some of the variables in the host but
they are in different names, we rename and normalize them
by implementing the Genetic Programming (GP) mentioned
in [7]. The last step is testing to ensure the organ brings the
new feature for the system while not breaking its original
functions. The testing must be comprehensive, thus, test suite
not only needs to verify the appearance of new features, but
also has to ensure the original functionalities do not disappear
to guarantee the over-fitting problem in program repair [27]
will not appear here. After passing all the tests, a successful
transplantation is achieved.

Our proposed idea is much simpler than that shown
in papers [7] and [9] for automated organ transplantation.
Although finding bindings for variables and making corre-
sponding adjustment and testing are unavoidable, our method
does omit some unnecessary troubles. One is automatically
identifying the features from a system where they use slic-
ing and dependence analysis techniques [26], [28], [29] to
achieve. If the organ repository is established and each organ
is with comments introducing its functionality, we can use a
keyword search to solve this question in a more time-saving
manner. The other is that they spend a lot of efforts on extract-
ing the organ and a reasonable vein (the statements which
build the program environment for the organ) as they even
take this part as a vital phase of the main method. As com-
parison, these can be treated as pre-work if the repository is
built and we can initialize some of the variables in the organs
in advance.

62572 VOLUME 7, 2019



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

Although studies have shown that copying code is treated
as a bad smell [37], our previous study [10] proves that organs
extracted from the evolution process of open-source software
possess high quality. Besides, we can make unit tests for the
extracted organs to guarantee that they are of high quality.
Thus, organ transplantation is a direction worth pursuing.

VII. RELATED WORKS
A. REUSE IN OPEN-SOURCE SOFTWARE
Reuse in open-source environment has been studied since the
rise of the open-source movement. Kim et al. [30] proposed
a comprehensive procedure including 4 steps and 11 activ-
ities for guiding how to reuse open-source software (OSS);
Aggarwal et al. [1] proposed a metric for evaluating the
independence of a software component which can in turn
access the degree of its reusability and this work was rein-
forced by [31] by synthesizing various software metrics that
cover a number of related reusability aspects; there are also
some researchers [32], [33] working on building tag hierar-
chies for better organizing and managing the huge amount
information in the open-source communities. Recently, code
recommendation based on OSS has achieved great success.
Li et al. [34] created a reasonable software term database and
recommended existing code to developers for reuse. A tool
named Code Conjure [35] was developed with the goal of
implementing automatic recommendations so that program-
mers do not have to spend energy. Code clone, which refers
to reusing some code fragments by copying with or without
minor modifications, has been classified into four types based
on both the textual and functional similarities [36]. A previous
study [37] shows that code clone is harmful in software main-
tenance and evolution, thus many approaches have been pro-
posed to detect the clones, such as ConQAT [38], NiCad [39],
and CCFinder [59]. However, these tools face significant
scalability challenges for general clone detection [55]. Thus,
we select SourcererCC as our experimental tool due to its
scalability to large repositories.

B. CODE TRANSPLANTATION
Code transplantation was once used for Automated Pro-
gram Repair (APR). Some tools such as GenProg [40] and
RSRepair [41] transplanted code to other places in the same
system for eliminating bugs. A tool named CodePhage [42]
aimed at automatically transferring correct code from donor
applications into recipient applications but it was designed
for only transferring checks between applications that pro-
cess the same inputs. On top of RSRepair, SCRepair [43]
proposed reusability metrics of similar code fragments and
the transferring process was guided by the reusability val-
ues. Recently, ssFix [44] leveraged code from a database
that is syntax-related to the context of a bug to produce
patches and its patch generation process which includes three
steps (i.e., candidate translation, component matching, and
modification) is very similar to organ transplantation process
in [7]. Petke et al. [45] firstly transplanted code from different

versions of the same system for improving performance.
After Harman first introduced the conception of organ and
brought new functionalities for the host by transplanting
code between completely different systems in [7], this field
began to causewidespread concern. Soon, an extensive exper-
iment about Kate [9] was conducted by the same authors
utilizing the same tool, mu_Scalpel. Amidon et al. [61]
designed a tool named program fracture and recombination
for automatically combining code from multiple applica-
tions. Another tool named CCC (CodeCarbonCopy) [8] used
static analysis to prune undesirable functionality and it suc-
ceeded for seven of eight transfers. However, their studies
are suffered from lack of high-quality organs. To solve this
problem, our previous study [10] firstly proposed to extract
organs from open-source software. We designed a pipeline
to extract and transplant organs from GitHub repository
and manually achieved some satisfying results although the
assumption is very simple. We do not consider the com-
prehensive situations of potential organs (they only con-
sider organs from adding commits) and the difficult situa-
tions referred in this study (i.e., cross-file organs and multi-
commit organs). Thus, this study is more in-depth and pro-
vides cognition in theoretical for organ transplantation in the
future.

C. ANALYSIS ON JAVA PROJECTS
Projects written in Java have been studied a lot since Java is
themost popular programming language in GitHub according
to its number of repositories. Bouckaert et al. [46] reviewed
aspects of project management and historical development
decisions ofWEKA, a popular Java open-source project serv-
ing as a machine learning benchmark. The authors of [47]
performed an in-depth, focused, and large-scale analysis of
logging code constructs of Java projects, aiming at providing
important information to the software developers. An aggre-
gated repository of statically analyzed and cross-linked open-
source Java projects, SourcererDB [48], was built to facil-
itate the sharing of extracted data and to encourage reuse
and repeatability of experiments. Several empirical studies
also focused on patches of bugs for providing guidance for
program repair. iBugs [49] contained 390 Java bugs anno-
tated with size and syntactic properties to support techniques
and tools related to software bugs. Motwani et al. [50]
used eleven abstract parameters to annotate each bug in
Defects4J [51], a widely-used dataset containing 395 real
bugs from six open-source Java projects. Another anatomy of
this dataset [52] investigated comprehensive characteristics
such as patch size and spreading, repair actions, and patterns
by utilizing a thematic analysis-based approach. Recently,
a study [53] analyzed patches from seven Java open-source
projects from expression level and provided new opportu-
nities for APR techniques and another one [54] deepened
the understanding of repeated bug fixes that change multiple
program entities. The study [60] concentrates on the poten-
tial bias from evaluation process in APR by conducting an

VOLUME 7, 2019 62573



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

in-depth investigation about Mockito project.4 To the best
of our knowledge, our analyses is the first to concentrate on
organs obtained from the evolution process in Java projects.

D. REUSABILITY MEASURES
Since software reuse can bring great convenience for soft-
ware development, researchers have developed several met-
rics for assessing the reusability of software assets during
the years. Among these studies, four aspects associated with
reusability are widely used, i.e., structural quality, adaptabil-
ity, external quality, and availability. Nair and Selvamani [62]
examined the reusability of a certain class based on the
values of three metrics defined in the Chidamber suite [63].
Sharma et al. [64] utilized Artificial Neural Networks (AAN)
to estimate the reusability of software components. They
proposed four factors and several metrics affecting compo-
nent reusability, namely: customizability, interface complex-
ity, understandability, and portability. Washizak et al. [65]
suggested a metric-suite capturing the reusability of com-
ponents, decomposed to understandability, adaptability, and
portability. Ampatzoglou et al. [66] introduced a reusability
index (REI) as a synthesis of various software metrics that
cover a number of related reusability aspects.

VIII. CONCLUSION AND FUTURE WORK
Research fields related to organ transplantation based on
large-scale dataset require more in-depth studies. To fill
this gap, this paper analyzed details of Java organs in ten
large-scale projects in GitHub repositories. We first gave a
finer-grained definition to Organ: an organ is all code asso-
ciated with a specific functionality.We found that commits
with add as a keyword possess the most organs (38%), while
commits with fix as a keyword possess the highest locating
accuracy (57%). Class Level Organs occupy 40% of the total
amount which indicates that developers prefer to add a new
class when bringing new functionalities. Most organs cover
no more than six files and a small part of the organs (0.55%)
are edited for several times. Over 40% of code reuse in
these projects can be finished by organ transplantation, which
illustrates the importance of organ in software evolution.

Our findings have important implications for those inter-
ested in transplanting organs from GitHub repository: we
investigate accurate location information and code organiza-
tion forms of organs; we find that most organs cross more
than one file and we suggest concentrating on several (one
to six) logical related files when extracting organs; we iden-
tify 0.55% of the total amount are multi-commit organs by
usingmatching noun-keywords in the comments and utilizing
ITS mechanism; we identify the code clones in OSSs that
are achieved by organ transplantation; and we also describe
what organs can bring us in the future study through reusing
perspective at last. This study is to help researchers to take
better and informed strategies for organ transplantation based
on GitHub repository.

4https://site.mockito.org/

In the future, we aim to fulfill the automated organ
extraction methodology based on the findings in this study
and conduct organ transplantation in an open-source environ-
ment. Especially, we are going to check if the findings in this
paper are suitable for other projects since our collected data
is unbalanced (see Section VI.B).

ACKNOWLEDGEMENT
The authors wish to thank the developers of SourcererCC for
their kind help during the experiments.

REFERENCES
[1] K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, ‘‘Software reuse

metrics for object-oriented systems,’’ in Proc. 3rd ACIS Int’l Conf. Softw.
Eng. Res., Manage. Appl., Aug. 2005, pp. 48–54.

[2] B. Jalender, A. Govardhan, and P. Premchand, ‘‘Breaking the boundaries
for software component reuse technology,’’ Int. J. Comput. Appl., vol. 13,
no. 6, pp. 37–41, Jan. 2011.

[3] S. Kebir, A. D. Seriai, S. Chardigny, and A. Chaoui, ‘‘Quality-centric
approach for software component identification from object-oriented
code,’’ in Proc. IEEE/IFIP Conf. Eur. Softw. Archit., Aug. 2012,
pp. 181–190.

[4] S. Haefliger, G. V. Krogh, and S. Spaeth, ‘‘Code reuse in open source
software,’’ Manage. Sci., vol. 54, no. 1, pp. 180–193, Jan. 2008.

[5] S. K. Mishra, D. S. Kushwaha, and A. K. Misra, ‘‘Creating reusable
software component from object-oriented legacy system through reverse
engineering,’’ J. Object Technol., vol. 8, no. 5, pp. 133–152, Jul. 2009.

[6] A. Michail, ‘‘Data mining library reuse patterns using generalized associ-
ation rules,’’ in Proc. 22nd Int. Conf. Softw. Eng., Jun. 2000, pp. 167–176.

[7] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, ‘‘Automated
software transplantation,’’ in Proc. Int. Symp. Softw. Test. Anal., Jul. 2015,
pp. 257–269.

[8] S. Sidiroglou-Douskos, E. Lahtinen, A. Eden, F. Long, and M. Rinard,
‘‘CodeCarbonCopy,’’ in Proc. 11th Meeting Found. Softw. Eng., Sep. 2017,
pp. 95–105.

[9] A. Marginean, E. T. Barr, M. Harman, and Y. Jia, ‘‘Automated transplanta-
tion of call graph and layout features into Kate,’’ in Proc. Int. Symp. Search
Based Softw. Eng., Jul. 2015, pp. 262–268.

[10] S. Wang, X. Mao, and Y. Yu, ‘‘An initial step towards organ transplantation
based onGitHub repository,’’ IEEE Access, vol. 6, pp. 59268–59281, 2018.

[11] D. M. Mcilroy, ‘‘Mass-produced software components,’’ in Proc. 1st Int.
Conf. Softw. Eng., Oct. 1968, pp. 88–98.

[12] C. W. Krueger, ‘‘Software reuse,’’ J. ACM Comput. Surv., vol. 24, no. 2,
pp. 131–183, Jun. 1992.

[13] B. W. Boehm, ‘‘Improving software productivity,’’ Computer, vol. 20,
no. 9, pp. 43–57, Sep. 1987.

[14] F. Brooks, ‘‘No silver bullet essence and accidents of software engineer-
ing,’’ Computer, vol. 20, no. 4, pp. 10–19, Apr. 1987.

[15] T. A. Standish, ‘‘An essay on software reuse,’’ IEEE Trans. Softw. Eng.,
vol. 10, no. 5, pp. 494–497, Sep. 1984.

[16] T. Biggerstaff and C. Richter, ‘‘Reusability framework, assessment, and
directions,’’ IEEE Softw., vol. 4, no. 2, pp. 41–49, Mar. 1987.

[17] I. Gorton et al., ‘‘Component-based software engineering,’’ in Proc. Int.
Symp. Compon.-Based Softw. Eng., May 2001, p. 5.

[18] J. Sametinger, Software Engineering With Reusable Components. Springer
Science & Business Media, 1997.

[19] J. D. McGregor, J. Doble, and A. Keddy, ‘‘A pattern for reuse: Let architec-
tural reuse guide component reuse,’’ Object Mag., vol. 6, no. 2, pp. 38–47,
Apr. 1996.

[20] E. Widmaier, H. Raff, and K. Strang, Vander’s Human Physiology: The
Mechanisms of Body Function, 12th ed. 2014.

[21] B. Y. B. Raymond, ‘‘The Cathedral & the Bazaar: Musings on linux
and open source by an accidental revolutionary,’’ Inf. Technol. Libraries,
vol. 19, no. 2, p. 105, 2000.

[22] H. Borges, A. Hora, and M. T. Valente, ‘‘Understanding the factors that
impact the popularity of GitHub repositories,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), Oct. 2016, pp. 334–344.

[23] Q. Fan, Y. Yu, G. Yin, T. Wang, and H. Wang, ‘‘Where is the road for
issue reports classification based on text mining?’’ in Proc. ACM/IEEE
Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Nov. 2017, pp. 121–130.

62574 VOLUME 7, 2019



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

[24] C. Wile, ‘‘Organ donation in Canada is up, but still not meeting the
demand,’’ CANNT J. J. ACITN, vol. 20, no. 3, p. 12, 2010.

[25] H. Agrawal and J. R. Horgan, ‘‘Dynamic program slicing,’’ in Proc.
ACM SIGPLAN Conf. Program. Lang. Design Implement., Jun. 1990,
pp. 246–256.

[26] R. J. Hall, ‘‘Automatic extraction of executable program subsets by simul-
taneous dynamic program slicing,’’ Automated Softw. Eng., vol. 2, no. 1,
pp. 33–53, Mar. 1995.

[27] E. K. Smith, E. T. Barr, C. L. Goues, and Y. Brun, ‘‘Is the cure worse than
the disease? Overfitting in automated program repair,’’ in Proc. 10th Joint
Meeting Found. Softw. Eng., Sep. 2015, pp. 532–543.

[28] M. Harman, N. Gold, R. Hierons, and D. Binkley, ‘‘Code extraction algo-
rithms which unify slicing and concept assignment,’’ in Proc. 9th Work.
Conf. Reverse Eng., Nov. 2002, pp. 11–20.

[29] F. Lanubile and G. Visaggio, ‘‘Extracting reusable functions by flow
graph based program slicing,’’ IEEE Trans. Softw. Eng., vol. 23, no. 4,
pp. 246–259, Apr. 1997.

[30] J. B. Kim and S. Y. Rhew, ‘‘Reuse procedure for open-source software,’’
in Parallel Computational Fluid Dynamics, 2007, pp. 155–164.

[31] A. Ampatzoglou, S. Bibi, A. Chatzigeorgiou, P. Avgeriou, and I. Stamelos,
‘‘Reusability index: A measure for assessing software assets reusability,’’
in Proc. Int. Conf. Softw. Reuse, Apr. 2018, pp. 43–58.

[32] S. Wang, D. Lo, and L. Jiang, ‘‘Inferring semantically related software
terms and their taxonomy by leveraging collaborative tagging,’’ in Proc.
28th IEEE Int. Conf. Softw. Maintenance (ICSM), Sep. 2012, pp. 604–607.

[33] S. Wang, T. Wang, X. Mao, G. Yin, and Y. Yu, ‘‘A hybrid approach for
tag hierarchy construction,’’ in Proc. Int. Conf. Softw. Reuse, Apr. 2018,
pp. 59–75.

[34] Z. Li, G. Yin, T. Wang, Y. Zhang, Y. Yu, and H. Wang, ‘‘Correlation-based
software search by leveraging software term database,’’ Frontiers Comput.
Sci., vol. 12, no. 5, pp. 923–938, May 2018.

[35] O. Hummel, W. Janjic, and C. Atkinson, ‘‘Code conjurer: Pulling reusable
software out of thin air,’’ IEEE Softw., vol. 25, no. 5, pp. 45–52, Oct. 2008.

[36] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, ‘‘Comparison
and evaluation of clone detection tools,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 9, pp. 577–591, Sep. 2007.

[37] E. Juergens, F. Deissenboeck, B. Hummel, and S.Wagner, ‘‘Do code clones
matter?’’ inProc. IEEE 31st Int. Conf. Softw. Eng.,May 2009, pp. 485–495.

[38] E. Juergens, F. Deissenboeck, and B. Hummel, ‘‘CloneDetective—Awork-
bench for clone detection research,’’ in Proc. 31st Int. Conf. Softw. Eng.,
May 2009, pp. 603–606.

[39] C. K. Roy and J. R. Cordy, ‘‘NICAD: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code normaliza-
tion,’’ in Proc. 16th IEEE Int. Conf. Program Comprehension, Jun. 2008,
pp. 172–181.

[40] W. Weimer, T. Nguyen, G. C. Le, and S. Forrest, ‘‘Automatically finding
patches using genetic programming,’’ in Proc. 31st Int. Conf. Softw. Eng.,
May 2009, pp. 364–374.

[41] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, ‘‘The strength of random
search on automated program repair,’’ in Proc. 36th Int. Conf. Softw. Eng.,
May 2014, pp. 254–265.

[42] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, ‘‘Automatic
error elimination by horizontal code transfer across multiple applications,’’
in Proc. 36th ACM SIGPLAN Conf. Program. Lang. Design Implement.,
Jun. 2015, pp. 43–54.

[43] T. Ji, L. Chen, X. Mao, and X. Yi, ‘‘Automated program repair by using
similar code containing fix ingredients,’’ in Proc. IEEE 40th Annu. Com-
put. Softw. Appl. Conf., Jun. 2016, pp. 197–202.

[44] X. Qi and S. P. Reiss, ‘‘Leveraging syntax-related code for automated
program repair,’’ in Proc. 32nd IEEE/ACM Int. Conf. Automated Softw.
Eng., Nov. 2017, pp. 660–670.

[45] J. Petke et al., ‘‘Using genetic improvement and code transplants to spe-
cialise a C++ program to a problem class,’’ in Genetic Programming.
Berlin, Germany: Springer, 2014, pp. 137–149.

[46] R. R. Bouckaert et al., ‘‘WEKA—Experiences with a java open-source
project,’’ J. Mach. Learn. Res., vol. 11, no. 5, pp. 2533–2541, Sep. 2010.

[47] L. Sangeeta, N. Sardana, and A. Sureka, ‘‘Logging analysis and prediction
in open source java project,’’ inOptimizing Contemporary Application and
Processes in Open Source Software, 2018.

[48] J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and C. Lopes, ‘‘Sourcer-
erdb: An aggregated repository of statically analyzed and cross-linked open
source java projects,’’ in Proc. 6th IEEE Int. Work. Conf. Mining Softw.
Repositories, May 2009, pp. 183–186.

[49] V. Dallmeier and T. Zimmermann, ‘‘Extraction of bug localization bench-
marks from history,’’ inProc. IEEE/ACM Int. Conf. Automated Softw. Eng.,
Nov. 2007, pp. 433–436.

[50] M. Motwani, S. Sankaranarayanan, R. Just, and Y. Brun, ‘‘Do automated
program repair techniques repair hard and important bugs?’’ Empirical
Softw. Eng., vol. 23, no. 5, pp. 2901–2947, Oct. 2018.

[51] R. Just, D. Jalali, andM. D. Ernst, ‘‘Defects4J: A database of existing faults
to enable controlled testing studies for Java programs,’’ in Proc. Int. Symp.
Softw. Test. Anal., Jul. 2014, pp. 437–440.

[52] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and M. D. A. Maia,
‘‘Dissection of a bug dataset: Anatomy of 395 patches from Defects4J,’’ in
Proc. IEEE 25th Int. Conf. Softw. Anal., Evol. Reengineering, Mar. 2018,
pp. 130–140.

[53] K. Liu, D. Kim, A. Koyuncu, L. Li, T. F. Bissyandé, and Y. L. Traon,
‘‘A closer look at real-world patches,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Sep. 2018, pp. 275–286.

[54] Y. Wang, N. Meng, and H. Zhong, ‘‘An empirical study of multi-entity
changes in real bug fixes,’’ in Proc. IEEE Int. Conf. Softw. Maintenance
Evol. (ICSME), Sep. 2018, pp. 287–298.

[55] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
‘‘SourcererCC: Scaling code clone detection to big-code,’’ in Proc.
IEEE/ACM 38th Int. Conf. Softw. Eng. (ICSE), May 2016, pp. 1157–1168.

[56] R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, and J. D. Morgenthaler,
‘‘Automatic clone recommendation for refactoring based on the present
and the past,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME),
Sep. 2018, pp. 115–126.

[57] D. Yang, P. Martins, V. Saini, and C. Lopes, ‘‘Stack overflow in Github:
Any snippets there?’’ in Proc. IEEE/ACM 14th Int. Conf. Mining Softw.
Repositories (MSR), May 2017, pp. 280–290.

[58] M. Mondai, C. K. Roy, and K. A. Schneider, ‘‘Micro-clones in evolv-
ing software,’’ in Proc. IEEE 25th Int. Conf. Softw. Anal., Evol. Reeng.,
Mar. 2018, pp. 50–60.

[59] T. Kamiya, S. Kusumoto, and K. Inoue, ‘‘CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,’’
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, Jul. 2008.

[60] S. Wang, M. Wen, X. Mao, and D. Yang, ‘‘Attention please: Consider
Mockito when evaluating newly proposed automated program repair tech-
niques,’’ in Proc. Eval. Assessment Softw. Eng., Apr. 2019, pp. 260–266.

[61] P. Amidon, E. Davis, S. Sidiroglou-Douskos, and M. Rinard, ‘‘Program
fracture and recombination for efficient automatic code reuse,’’ in Proc.
IEEE High Perform. Extreme Comput. Conf. (HPEC), Sep. 2015, pp. 1–6.

[62] T. R. Nair and R. Selvarani, ‘‘Estimation of software reusability: An
engineering approach,’’ ACM Softw. Eng. Notes, vol. 35, no. 1, pp. 1–6,
2010.

[63] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994.

[64] A. Sharma, P. S. Grover, and R. Kumar, ‘‘Reusability assessment for
software components,’’ ACM Softw. Eng. Notes, vol. 34, no. 2, pp. 1–6,
Mar. 2009.

[65] H. Washizaki, H. Yamamoto, and Y. Fukazawa, ‘‘A metrics suite for
measuring reusability of software components,’’ in Proc. 5th Int. Workshop
Enterprise Netw. Comput. Healthcare Ind., Sep. 2003, pp. 211–223.

[66] A. Ampatzoglou, S. Bibi, A. Chatzigeorgiou, P. Avgeriou, and I. Stamelos,
‘‘Reusability index: A measure for assessing software assets reusability,’’
in Proc. Int. Conf. Softw. Reuse, Apr. 2018, pp. 43–58.

SHANGWEN WANG received the master’s
degree from the College of Computer Sci-
ence, National University of Defense Technol-
ogy, China. His research interests include software
reuse, software maintenance, and mining software
repository. His research findings have been pub-
lished on IEEE ACCESS and ICSR.

VOLUME 7, 2019 62575



S. Wang et al.: Dissection on Java Organs in GitHub Repositories

XIAOGUANG MAO received the B.S., M.A., and
Ph.D. degrees from the National University of
Defense Technology. He is a Professor, a Ph.D.
Supervisor, a Distinguished Member of the China
Computer Federation (CCF), and a member of
the Software Engineering Professional Commit-
tees of CCF. He is a Professor in software engi-
neering with the National University of Defense
Technology.

XIN YI received the B.S. and M.A. degrees from
the National University of Defense Technology,
China, where he is currently pursuing the Ph.D.
degree with the College of Computer Science. His
research interests include software maintenance
and evolution, numerical analysis, and automated
program repair. His research findings have been
published on POPL, ICSME, and APSEC.

62576 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND
	MOTIVATING EXAMPLE
	STUDY DESIGN
	DATASET SELECTION
	RESEARCH QUESTIONS
	METHODOLOGY

	RESULTS AND ANALYSIS
	DISTRIBUTION SITUATION OF ORGANS UNDER KEYWORD-BASED CLASSIFICATION (RQ1)
	THE TYPES OF JAVA ORGANS AND THEIR POPULARITIES (RQ2)
	THE DIFFICULT SITUATIONS FOR AUTOMATED ORGAN TRANSPLANTATION (RQ3)
	CROSS-FILE ORGAN
	MULTI-COMMIT ORGAN

	THE IMPORTANCE OF ORGAN TRANSPLANTATION (RQ4)

	DISCUSSION
	IMPLICATIONS
	THREATS TO VALIDITY
	MODE OF CODE REUSE BASED ON ORGAN REPOSITORY

	RELATED WORKS
	REUSE IN OPEN-SOURCE SOFTWARE
	CODE TRANSPLANTATION
	ANALYSIS ON JAVA PROJECTS
	REUSABILITY MEASURES

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	SHANGWEN WANG
	XIAOGUANG MAO
	XIN YI


