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ABSTRACT Utilizing the least squares residuals (LSR) algorithm to detect the faulty satellite, the faulty
satellite with a large characteristic slope will bring a high miss detection risk (MDR) and that with a small
characteristic slope will bring a high false alert risk (FAR). However, the magnitude of characteristic slopes
whether large or small is currently indefinite. In this paper, analyzing the MDR whether exceeding its
allowable value or not, we propose the critical value of characteristic slopes to define the magnitude of
a characteristic slope. The slope with the value larger than the critical one can be defined as a large slope
whereas the slope with a value smaller than the critical one can be defined as a small slope. To reduce the fault
detection risk of the LSR algorithm, including the MDR caused by a large slope faulty satellite and the FAR
caused by a small slope faulty satellite, a modified LSR algorithm based on the critical value of characteristic
slopes is proposed. In the modified algorithm, the most potential faulty satellite is determined via correlation
analysis. Then, a subset fault detection methodology will be used to reduce theMDRwhen the most potential
faulty satellite owns a large slope, whereas a threshold amplification fault detectionmethodologywill be used
to reduce the FAR when the most potential faulty satellite owns a small slope. The performance evaluation
simulations of the modified LSR algorithm show that both the MDR caused by a large slope faulty satellite
and the FAR caused by a small slope faulty satellite could be effectively reduced.

INDEX TERMS GNSS, fault detection, receiver autonomous integrity monitoring (RAIM), least squares
residuals (LSR) algorithm, characteristic slope.

I. INTRODUCTION
Integrity is one of the required navigation performances
for Global Navigation Satellite System (GNSS) aviation
users [1], [2]. Integrity monitoring, which can be provided
both at the system level and at the user level, is used to
protect users against potentially harmful GNSS navigation
malfunctions [3]. The main integrity monitoring approach at
the user level is the receiver autonomous integrity monitoring
(RAIM). Most RAIM algorithms are designed to detect the
faulty satellite based on statistical consistency checks with
redundant measurements [4], [5].

The snapshot algorithm is the most widely used RAIM
algorithm for its small calculation amount and simple oper-
ation. And the least squares residual (LSR) algorithm is one
of the classical snapshot RAIM algorithm, which takes the

The associate editor coordinating the review of this manuscript and
approving it for publication was Masood Ur-Rehman.

sum of squares for pseudorange residuals as the test statistic
to detect satellite fault [6], [7], [28].

The LSR algorithm was initially invalid for multiple faulty
satellites, only efficacious for single faulty satellite detection.
Many algorithms have been designed to detect multiple faulty
satellites [8], [30]. For example, Schroth et al. [9] proposed
the range consensus (RANCO) algorithm, which can detect
multiple faulty satellites through calculating position solution
for each four-satellite subset and comparing this estimate
with the pseudoranges of all the satellites not contributing
to this solution. Yang and Xu [10] used a kind of alter-
native RAIM algorithm based on robust estimation, which
can not only detect multi-failures, but also control the influ-
ences of near failure observation. The RANCO algorithm and
alternative RAIM algorithm are implement in the multiple
faulty domain. A multiple faults detection algorithm was
proposed in the position domain also, the multiple hypothesis
solution separation (MHSS) algorithm, which detect faults
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via protection level calculation under each fault mode [11].
Blanch et al. [8] modified this algorithm to improve the
probability of multiple fault satellites detection.

Except invalid detection for multiple faulty satellites,
the fault detection probability for minor observation bias
using the snapshot LSR algorithm is low. Many researches
have been devoted to improve the fault detection probabil-
ity for minor observation bias through modifying the LSR
algorithm. The modification approaches can be classified
into three categories. The first is to revise the pseudorange
residuals using the accurate receiver clock error, making the
test statistic of the LSR algorithm more sensitive to the minor
observation bias. For example, Xu and Li [12] established
a quadratic function model to predict the receiver error in
current epoch and Angrisano et al. [13] obtained the accurate
receiver clock error from external equipment. The second is
to accumulate test statistics for several epochs. For example,
Wen-Xiang et al. [14] used the accumulated the sum of
squares for pseudorange residuals for multiple epochs as the
test statistic, and Hai et al. [15] further improved the accumu-
lated test statistic by non-coherent processing. The third is to
improve the pseudorange residual calculation methodology.
Yang et al. [16] replaced the usual least squares to total least
squares(TLS), improving minor observation bias detection
probability through resisting the erroneous perturbation in
the transformation and back-substitution of the observation
matrix.

All above LSR algorithm modification approaches can
significantly improve the fault detection probability for minor
observation bias. However, due to the statistical independence
between the position error and the pseudorange residual,
the observation bias reflected by a small pseudorange residual
may bring a large position error and that reflected by a large
pseudorange residual may bring a small position error [17].
The magnitude of the pseudorange residual and the position
error are decided by a geometric characteristic of the faulty
satellite which owns observation bias. Feng et al. [18] has
defined a geometric characteristic related parameter to qual-
itatively describe the size relationship of the position error
and the pseudorange residual, named as the characteristic
slope. The observation bias of a large slope faulty satellite will
bring a large position error and a small pseudorange residual,
whereas that of a small slope faulty satellite will bring a small
position error and a large pseudorange residual.

Because the original intention of RAIM is to alert haz-
ardous misleading information (HMI) [19], the position fault,
i.e. the position with error exceeding the alert limit, should be
more concerned rather than the satellite fault. If the position
fault was caused by a large slope faulty satellite, it would be
in a high miss detection risk (MDR) using the LSR algorithm.
And if the position fault was caused by a small slope faulty
satellite, it would be in a high false alert risk (FAR). The
way just by improving the fault detection probability for
observation bias would be favorable for reducing the MDR
for position fault caused by a large slope faulty satellite,
but unfavorable for increasing the FAR for position fault

caused by a small slope faulty satellite. Some researchers
are devoted to reduce the fault detection risk, especially the
MDR. For example, Madonna et al. [20] proposed NIO-
RAIM algorithm in which the pseudorange residual for each
satellite in the test statistic is weighted to reduce the slope
value. Lee [21] proposed the Critically Weighted Average
Solution (OWAS) algorithm, also weighted the pseudorange
residual. The weights used by Lee are analytically derived in
the position domain. Joerger et al. [22], [23] designed a Non-
Least-Squares (NLS) detector, which canminimize theMDR.
Blanch et al. [8] present an algorithm that simultaneously
allocates the integrity and continuity budget among the failure
modes in MHSS to minimize the MDR. These algorithms are
all effective on MDR reduction, but show poor performance
on FAR reduction.

In this paper, we utilize the property of the critical value of
characteristic slopes to modify the LSR algorithm, making
the LSR test statistic be more consistent with the position
error. At first, we propose a clear boundary, named as the
critical slope, to define magnitude of the slopes for each
satellite-user geometry. A slope larger than the critical slope
defines as the large slope while a slope smaller than the criti-
cal slope defines as the small slope. Then we propose a fault
detection threshold amplification methodology to reduce the
FAR for the small slope faulty satellite and a subset fault
detection methodology to reduce the MDR for the large slope
faulty satellite. Finally, we propose amodified LSR algorithm
based the critical value of characteristic slopes and the two
methodologies to reduce the risk of position fault detection.

II. TECHNICAL BACKGROUND
A. THE LSR ALGORITHM FOR RAIM
According to the pseudorange position principle, the lin-
earized observation equation between the receiver and the
visible satellites is as follows:

Z = HX + ε (1)

where
Z is the pseudorange vector,
H is the linear observation matrix,
X is the 4× 1 state vector and X = [x, y, z,1t]T , with x,

y, and z are the three-dimensional positions of the user in the
local Cartesian coordinate (ENU),
1t is the clock error for GNSS.
ε is the observation error vector. Each element in ε repre-

sents the observation error for a visible satellite. The obser-
vation error of for each visible satellite includes the noise
and the bias. The bias is caused by the satellite fault, only
existing in the pseudorange of faulty satellite. In this paper,
the observation noise is assumed to be independent White
Gaussian Noise (WGN) with mean zero and variance σ 2

0 .
The least squares solution for X in (1) is

X̂ = (HTH)−1HTZ (2)
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The solution error for X , signed as µ, can be expressed as
follows:

µ = X − X̂ = −(HTH)−1HT ε (3)

Setting A = (HTH)−1HT ,

µ = −Aε (4)

The pseudorange residual vector, recorded as ω, is defined
by combining (1) and (2) as follows:

ω = Z− Ẑ = Z−HX̂

= [I −H(HTH)−1HT ](HX + ε)

= [I −H(HTH)−1HT ]ε (5)

Setting S = [I −H(HTH)−1HT ],

ω = Sε (6)

The fault detection using the LSR algorithm is theoretically
a binary hypothesis test, with the test statistic Ts constructed
using the sum of squares for ω as follows:

Ts = ωTω
/
σ 2
0 (7)

where ωTω is usually abbreviated as SSE . The satellite fault
can be detected using this Ts because it can reflect the obser-
vation error.

The Ts obeys the standard χ2 distribution with freedom
degree of K-4 with no faulty satellite, where K represents the
number of all-in-view satellites and The detection threshold
for Ts, signed as TD, obeys the α-quantile of standard χ2

distribution, i.e., P(X > TD) = αX ∼ χ2(K − 4).

B. DEFINITION OF MDR AND FAR FOR LSR ALGORITHM
In practical applications, the users are concerned with the
position fault rather than the satellite fault because the posi-
tion fault directly makes the users in danger. Because Ts
in (7), constructed in measurement domain [18], cannot
visually reflect the position fault, the LSR algorithm would
have high fault detection risk. In detail, Although Ts reflects
the existence of the observational bias for a faulty satellite,
the observational bias may just lead to slightly position error,
far from reaching the level of position fault [32].

There are two indicators to detect the fault: miss detection
risk (MDR) and false alert risk (FAR). In this paper,MDR and
FAR are defined choosing the vertical position error (VPE) as
an example. The MDR is the probability of miss detection
when the |VPE| exceeds the Vertical Alarm Limit (VAL),
whereas the FAR is the probability of false alert when the
|VPE| does not exceed VAL.
Setting Event C as ‘‘Ts ≥ TD’’, and Event D as ‘‘|VPE| ≥

VAL’’, MDR can be expressed as P(C̄D) and FAR can be
expressed as P(CD̄). Here we divide P(C̄D) and P(CD̄)
into three parts according to the number of faulty satel-
lites [19], [24].

P(C̄D) = P(C̄D, 0F)+ P(C̄D, 1F)+ P(C̄D,≥ 2F) (8)

P(CD̄) = P(CD̄, 0F)+ P(CD̄, 1F)+ P(CD̄,≥ 2F) (9)

where
0F represents there exists no faulty satellite,
1F represents there exists only one faulty satellite,
≥ 2F represents there exists two or more faulty satellites.
According to the conditional probability formula,

P(•, iF) = P(• |iF )P(iF) (10)

where • represents C̄D or CD̄, and i = 0, 1,≥ 2.

P(0F) = (1− Psat )K (11)

P(1F) = C1
KPsat (1− Psat )

K−1 (12)

P(≥ 2F) = Ptotal +
K∑
n=2

Cn
K (Psat )

n(1− Psat )K−n (13)

where Psat is the prior probability of satellite fault. P(≥ 2F)
are composed of two parts, respectively the prior probability
of multiple satellite fault caused by the same reason and
independent reasons. Psat is set as 1.0 × 10−5 and Ptotal is
set as 1.3× 10−8 in [24].
Because the random parts of µ and ω are indepen-

dent [24], [25],

P(C̄D |0F ) = P(C̄ |0F ) · P(D |0F ) (14)

P(C̄D |1F ) = P(C̄ |1F ) · P(D |1F ) (15)

P(CD̄ |0F ) = P(C |0F ) · P(D̄ |0F ) (16)

P(CD̄ |1F ) = P(C |1F ) · P(D̄ |1F ) (17)

P(C̄D|0F) and P(CD̄|0F) can be calculated according to
the distributions of VPE and Ts. According to (4), the VPE ,
which is the third component of µ, obeys the distribution:

VPE ∼ N (0, a2vσ
2
0 ) (18)

where
N (µ, σ 2) represents a normal distribution with meanµ and

variance σ 2,
a2v is the sum of squares for all elements in Row 3 of A and

a2v =
K∑
i=1

a23i. Actually, av is the vertical dilution of precision

(VDOP), which is proved in Appendix A.
Then, P(D|0F) and P(D̄|0F) can be calculated as follows:

P(D|0F)= 1−P(|VPE|≤VAL)=1−
∫ VAL

−VAL
g0(x)dx (19)

P(D̄|0F)=P(|VPE|≤VAL)=
∫ VAL

−VAL
g0(x)dx (20)

where g0(x) is the probability density function (PDF) of the
VPE with no faulty satellite, and

g0(x) =
1√

2πa2vσ
2
0

exp

(
−

(x)2

2a2vσ
2
0

)
(21)

According to (6) and (7), Ts obeys the distribution:

Ts ∼ χ2(K − 4) (22)

where χ2(v) represents standard χ2 distribution with the
freedom degree of v, K is the number of visible satellites
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in view. Then, P(C|0F) and P(C̄|0F) can be calculated as
follows:

P(C|0F) = P(Ts ≥ TD) = α (23)

P(C̄|0F) = 1− P(Ts ≥ TD) = 1− α (24)

where α is the quantile for chosen TD.
Finally, P(C̄D|0F) and P(CD̄|0F) can be respectively cal-

culated as:

P(C̄D|0F)=P(C̄|0F)P(D|0F)

= (1−α) · (1−
∫ VAL

−VAL
g0(x)dx)

= (1−α)(1−
∫ VAL

−VAL

1√
2πa2vσ

2
0

exp

(
−

(x)2

2a2vσ
2
0

)
dx)

(25)

P(CD̄|0F)=P(C|0F)P(D̄|0F)

= α

∫ VAL

−VAL
g0(x)dx

= α ·

∫ VAL

−VAL

1√
2πa2vσ

2
0

exp

(
−

(x)2

2a2vσ
2
0

)
dx


(26)

Analyzing (25) and (26), we observed that a large av would
lead to a large P(C̄D|0F) and a small P(CD̄|0F) with fixed
the VAL and σ0 values.
P(C̄D|1F) and P(CD̄|1F) can be also calculated according

to the distributions of VPE and Ts. According to (4), the VPE
obeys the distribution

VPE ∼ N (−a3mξb, a2vσ
2
0 ) (27)

where
m represents the number of the m-th visible faulty satellite,

notated as VSm,
a3m is the element in Row 3 and Column m of A
ξb is the observation bias of the faulty satellite.
Then, P(D|1F) and P(D̄|1F) can be calculated as follows:

P(D|1F) = 1−P(|VPE|≤VAL)=1−
∫ VAL

−VAL
g(x)dx (28)

P(D̄|1F) = P(|VPE| ≤ VAL) =
∫ VAL

−VAL
g(x)dx (29)

where g(x) is the probability density function (PDF) of the
VPE with faulty satellite VSm, and

g(x) =
1√

2πa2vσ
2
0

exp

(
−
(x + a3mξb)2

2a2vσ
2
0

)
(30)

Ts obeys the distribution:

Ts ∼ χ2(K − 4, λ) (31)

whereχ2(v, λ) represents non-centralχ2 distributionwith the
freedom degree of v and the decentralized parameter of λ.

The λ value can be seen in (32), which is specifically
deduced in [26]:

λ =

(
ξb

σ0

)2

smm (32)

Then, P(C|1F) and P(C̄|1F) can be calculated as follows:

P(C|1F) = P(Ts ≥ TD) =
∫
+∞

TD
f (x)dx (33)

P(C̄|1F) = 1− P(Ts ≥ TD) =
∫ TD

0
f (x)dx (34)

where f (x) is the probability density function (PDF) of Ts,
and

f (x) =
1
2
e−(x+λ)/2(

x
λ
)v/4−1/2Iv/2−1(

√
λx) (35)

where Ir (y) = (y/2)r
∞∑
j=0

(y2/4)j

j!0(v+j+1) is the Bessel functions of

the first kind.
Finally, P(C̄D|1F) and P(CD̄|1F) can be respectively cal-

culated as:

P(C̄D|1F)

= P(C̄|1F)P(D|1F)

=

∫ TD

0
f (x1)dx1 · (1−

∫ VAL

−VAL
g(x2)dx2)

=

(∫ TD

0

1
2
e−(x1+λ)/2(

x1
λ
)v/4−1/2Iv/2−1(

√
λx1)dx1

)

·

1−
∫ VAL

−VAL

1√
2πa2vσ

2
0

exp

(
−
(x2 + a3mξb)2

2a2vσ
2
0

)
dx2


(36)

P(CD̄|1F)

= P(C|1F)P(D̄|1F)

=

∫
+∞

TD
f (x1)dx1 ·

∫ VAL

−VAL
g(x2)dx2

=

(∫
+∞

TD

1
2
e−(x1+λ)/2(

x1
λ
)v/4−1/2Iv/2−1(

√
λx1)dx1

)

·

∫ VAL

−VAL

1√
2πa2vσ

2
0

exp

(
−
(x2 + a3mξb)2

2a2vσ
2
0

)
dx2

 (37)

where x1 represents the Ts and x2 represents the VPE .
Analyzing (28)-(30) and (33)-(35), we concluded that a

large |a3m| brings a large P(D|1F) and a small P(D̄|1F) with
the fixed VAL, ξb, σ0 and av values and a large smm brings a
large P(C|1F) and a small P(C̄|1F) with the fixed TD, ξb and
σ0 values.

Because P(C̄D| ≥ 2F) and P(CD̄| ≥ 2F) are more com-
plicated and the LSR algorithm is invalid for multiple faulty
satellites detection, here we no longer give the calculation
expression for P(C̄D| ≥ 2F) and P(CD̄| ≥ 2F).
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C. DEFINITIONS OF MAXIMUM ALLOWABLE VALUE
FOR P(C̄ D |1F)
In RAIM, both miss detection and false alert need to be
avoided because miss detection leads to hazardous mislead-
ing information (HMI) and false alert leads to observation
resource waste [27]. Specifically, miss detection is more
noticed because its resulting HMI may bring immeasurable
losses to users. Therefore, the maximum allowable MDR
should be limited to fully protect the safety of users, which
is named as MDR requirement and signed as MDRreq.

Detecting position fault with LSR algorithm, MDR should
be less than MDRreq for protecting the user away from HMI,
which can be expressed as:(
P(C̄D|0F)P(0F)+ P(C̄D|1F)P(1F)
+P(C̄D| ≥ 2F)P(≥ 2F)

)
≤ MDRreq (38)

The maximum allowable value for P(C̄D|1F), notated as
[P(C̄D|1F)]a, can be derived as follows:

[P(C̄D|1F)]a =

(
MDRreq − P(C̄D|0F)P(0F)
−P(C̄D| ≥ 2F)P(≥ 2F)

)
P(1F)

(39)

where P(C̄D| ≥ 2F) could be set as a maximum value
P(C̄D| ≥ 2F) = 1, because LSR algorithm is invalid for
multiple satellites fault detection.

Substitute (11)-(13) and (25) into (39),

[P(C̄D|1F)]a

=


MDRreq−(1−α) · (1−

∫ VAL

−VAL
g0(x)dx)(1−Psat )K

−(Ptotal+
K∑
n=2

Cn
K (Psat )

n(1−Psat )K−n)


C1
KPsat (1− Psat )

K−1

(40)

then we can observe that [P(C̄D|1F)]a is decided by av and
K with the fixed MDRreq, σ0, α, Psat and Ptotal values, i.e.
[P(C̄D|1F)]a value is related to the geometry.

Fig.1 shows [P(C̄D|1F)]a with different a2v for 8, 9, and
10 all-in-view satellites for LSR algorithm, under the condi-
tion of MDRreq = 2.0 × 10−7, σ0 = 4m, α = 1.0 × 10−6,
Psat = 1.0 × 10−5, and Ptotal = 1.3 × 10−8. [P(C̄D|1F)]a
keeps constant with a2v less than 4 because P(C̄D|0F) is
almost 0. With a2v larger than 4, P(C̄D|0F) significantly
increased. Thus [P(C̄D|1F)]a decreases with a2v addition.
This figure illustrates that LSR algorithm cannot be used to
detect satellite fault with a2v larger than about 5.8 for 8, 9, and
10 all-in-view satellites because [P(C̄D|1F)]a < 0, which
means no matter how low P(C̄D|1F) is, P(C̄D) will be larger
than MDRreq. Moreover, [P(C̄D|1F)]a decreases with all-in-
view satellites addition at a fixed a2v value.
In the following, the MDR and the FAR mentioned below

means the MDR and the FAR with a single faulty satellite
P(D), P(D̄), P(C), P(C̄), P(C̄D) and [P(C̄D)]a respectively
refer to P(D|1F), P(D̄|1F), P(C|1F), P(C̄|1F), P(C̄D|1F)
and [P(C̄D|1F)]a.

FIGURE 1. [P(C̄D|1F )]a for the LSR algorithm.

D. THE CHARACTERISTIC SLOPE AND RELATIONSHIP
BETWEEN MDR/FAR AND SLOPE
Although the position error and the test statistic are indepen-
dent, the quantity relationship between VPE and Ts can be
described with a geometry-related parameter, the characteris-
tic slope. Feng et al. [18] defined the horizontal and vertical
characteristic slopes for each visible satellite according to the
parameters in the matrix A and the matrix S. Because A and
S are both only related with the observation matrix H , which
characterizes the geometry between the users and all-in-view
satellites, the characteristic slopes for each visible satellite are
geometric characteristic parameters. In this paper, we only
discuss the VPE and the vertical characteristic slope. Besides
the vertical characteristic slope is abbreviated as the slope in
the following.

The slope for VSi, notated as Slopei, is defined with the
related elements in the matrix A and S as follows:

Slopei =

√
a23i
sii

(41)

where a3i is the element in Row 3 and Column i of A in (4),
sii is the i− th diagonal element of S in (6).
Analyzing (41), a large Slopei value may be caused by

a large a3i and a small sii while a small Slopei value may
be caused by a small a3i and a large sii. According to (27)
and (31), a3m and smm respectively characterize the VPE
and Ts, both caused by the observation bias for the faulty
satellite VSm. Therefore, the observation bias of large slope
faulty satellite will bring large VPE and small SSE while
that of small slope faulty satellite will bring small VPE and
large SSE .

Here use a concrete example with conditions shown
in Tab.1 to visually analyze the relationship between the
MDR (FAR) and the slope for different visible satellites.

Tab.2 records a3m, smm, and Slopem values for each visible
satellite in this example. PRN 23 and PRN 30 respectively
have the maximum and minimum slope values.

The distributions of VPE and Ts for PRN 23 and PRN
30 with 0m and 40m(10 σ0) observation bias ξb are presented
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TABLE 1. Conditions of example.

TABLE 2. a3m, sm and VSlopem for VSm (m = 1,. . . ,K).

in Fig.2. In Fig.2 (a) and Fig.2 (b), the red dotted lines repre-
sent the VAL and the shadow area represents the probability
of the VPE exceeding the VAL. Because of the large |a3m|
value (a3m = −0.981) of PRN 23, the PDF curve of VPE
with ξb = 40m apparently moves to the left of that with
ξb = 0m. Therefore, VPE may exceeds VAL with ξb = 40m
for PRN23. The shadow area represents the probability of the
VPE exceeding the VAL, i.e., P(D). On the contrary, because
of the small |a3m| value (a3m = 0.126) of PRN 30, the PDF
curve for VPE with ξb = 40m slightly moves to the right of
that for VPE with ξb = 0m, and the probability of the VPE
exceeding the VAL to PRN10 is almost 0.

In Fig.2 (c) and Fig.2 (d), the red dotted lines represent the
TD and the shadow area represents the probability of the Ts
exceeding the TD. Both of the PDF curves of Ts with ξb =
40m for PRN 23 and PRN30 apparently moves to the right of
these with ξb = 0. However, the probability of Ts exceeding
TD for PRN 23 is lower than that for PRN 30, because of the
smm value for PRN 23 (0.375), is smaller than that for PRN
30 (0.726).

Tab.3 records the P(D), P(D̄), P(C), P(C̄), P(C̄D), and
P(CD̄) for PRN 23 and PRN 30 with ξb = 40m.
P(C̄D) of PRN23, owning the large slope, is larger than

[P(C̄D)]a = 0.002, which is calculated according to (40)

FIGURE 2. Distributions of VPE and Ts for PRN 23 and PRN 30 with 40m
observation bias.

with parameters in Tab.1. We observe that the users would be
dangerous because MDR exceeds its max allowable value.
Meanwhile, P(CD̄) of PRN 30 is 0.998, meaning that PRN
30 would have 99.8% probability of false alert if there was
40 m bias in its pseudorange.

According to Fig.2. and Tab.3, we concluded that a large
slope faulty satellite should have a high MDR while a small
slope faulty satellite should have a high FAR.

TABLE 3. MDR and FAR for PRN2 and PRN10.

III. DERIVATION OF THE OPTIMAL SLOPE
In this section, we propose the critical slope for satellite-user
geometry, signed as Slopecri and derived from the analysis of
MDR whether exceeding its allowable value or not, to define
the magnitude of the slopes. Then, the slope larger than
Slopecri can be taken as a large slope whereas the slope
smaller than Slopecri can be taken as a small slope. We still
use the example with conditions shown in Tab.1 to concisely
show the derivation process.

Fig.3 presents lgP(C̄D) and lgP(CD̄) values with observa-
tion bias from 1 m to 1000m for 4 different satellites, PRN13,
PRN19, PRN23 and PRN31. The lg[P(C̄D)]a value is marked
with a green dotted line in the left panel of Fig.3, [P(C̄D)]a =
0.002 in this example. The orders of the lgP(C̄D) and
lgP(CD̄) curves visually illustrate that P(C̄D) increases with
the slope value additionwhileP(CD̄) decreases with the slope
value addition.

As shown in Fig.3, P(C̄D) is larger than [P(C̄D)]a with
observation bias from about 30m to 60m for PRN23. It would
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FIGURE 3. P(C̄D) and P(CD̄) for 4 different faulty satellites.

be unfortunate and dangerous for the user to utilize the LSR
algorithm to detect fault of PRN23 because theMDR exceeds
its allowable value with some specific observation bias val-
ues. The lgP(C̄D) curve for PRN31 is nearly tangent to the
lg[P(C̄D)]a curve. And the lgP(C̄D) curves for PRN13, and
PRN19 are always lower than the lg[P(C̄D)]a value, meaning
it would be safe for the user to detect fault with PRN13 and
PRN19 and no matter how large the observation bias is.
However, the lgP(C̄D) curves of PRN13 and PRN19 are far
from the lg[P(C̄D)]a curve, which means LSR algorithm is
too safe for PRN13 and PRN19, leading to high FAR. As seen
in Fig.3, both lgP(CD̄) curves of PRN13 and PRN29 have
a segment keeping zero, i.e.,P(CD̄) = 1. Especially for
PRN13, P(CD̄) maintains 100% with observation bias from
about 60m to 120m.

The shape of lgP(C̄D) and lgP(CD̄) curves are decided
by the slope value with a fixed geometry. Analyzing the
MDR and the FAR for 4 satellites in Fig.3, the best fault
detection performance of LSR algorithm is to PRN31, for
which lgP(C̄D) curve is nearly tangent to the lg[P(C̄D)]a
curve and almost not have the segment of P(CD̄) = 1.
Let us speculated that there exists a slope which makes the
lgP(C̄D) curve just tangent to the lg[P(C̄D)]a curve. It will
be the critical one among all slope values, minimizing the
FARwith the premise of theMDRnot exceeding its allowable
value. Then the slope larger than the critical one will lead to
the MDR exceeding its allowable value with some specific
observation bias values. The slope smaller than the critical
one could satisfy the MDR not exceeding its allowable value
but it will increase the FAR.

According to (36), the critical slope, is the solution of the
following equation:

max[
∫ TD

0
f (x1)dx1 • (1−

∫ VAL

−VAL
g(x2)dx2)] = [P(C̄D)]a

(42)

where f (x1) and g(x2) should be taken as a function of ξb.
The parameter smm in λ of g(x2) should be replaced by
(a3m

/
Slopecri)

2 according to (41), where Slopecri is the nota-
tion of the critical slope.

The analytical solution of Slopecri should be calculated
with two steps. The first is to find a ξb value which satisfies
d(P(C̄D))

/
dξb = 0, signed as [ξb]max. [ξb]max will be a

function of Slopecri. The second is to solve the equation of
[P(C̄D)]|ξb=[ξb]max

= [P(C̄D)]a. Because f (x1) is very com-
plicated, it is hard to solve the equation d(P(C̄D))

/
dξb = 0.

Therefore, we cannot find the analytical solution of Slopecri.
Though it is hard to get the analytical solution of Slopecri,

the approximate Slopecri can be obtained by numerical solu-
tion process seen in Fig.4, with the fixed VAL, TD, av, σ0, and
a3m values. The initial value of Slopecri is set as Slopemed ,
which is the median of slopes for all-in-view satellites. The
numerical solution starts from the sub-process of counting l,
calculating h(ξb) = [P(C̄D)]a − ϕ(ξb) with the ξb step of 1m
at Slopecri = Slopemed and counting the points satisfying
h(ξb) < 0. Here ϕ(ξb) represents P(C̄D) in (36) with λ =
(a3m

/
Slopecri)2. The sub-process should not be terminated

until h(ξb) < h(ξb − 1), which means the function h(ξb)
reaches the reduction phase. The initial Slopecri is proved to
be larger than the real Slopecri with l > 0. Thereby Slopecri
should be reduced with step of 0.001 until l = 0. On the
contrary, the initial Slopecri is proved to be smaller than the
real Slopecri with l = 0. Thereby Slopecri should be increased
with step of 0.001 until l > 0 and the output Slopecri value
should be Slopecri − 0.001.
Taking example with conditions of Tab.1, TD, av, and σ0

are fixed except for a3m because each visible satellite has its
own a3m value. We calculated Slopecri using each a3m values
recorded in Tab.2, and found that Slopecri keeps constant.
Thus it can be deduced that Slopecri is only decided by VAL,
TD, av, and σ0. Once VAL, TD and σ0 are fixed, Slopecri has
one-to-one correspondence av.
Fig.5 presents the relationship between Slopecri and a2v

with different numbers of all-in-view satellites under the
conditions of VAL = 50m and σ0 = 4m. The Slopecri-a2v
curves are almost straight in the middle section and Slopecri
decreases with a2v addition for a fixed number of all-in-view
satellites, which illustrates the number of high FAR satellites
will be large in the geometry with small VDOP while the
number of high MDR satellites will be large in the geometry
with large VDOP. Safety to the first, the poor geometry with
large VDOP is not conducive to fault detection, because it
would lead to most visible satellites in high MDR. Moreover,
Slopecri decreases with the number of all-in-view satellites
addition at a fixed a2v value. The Slopecri-a2v curve is inter-
rupted when the value of a2v reaches about 5.8 because LSR
cannot be used to detect satellite for a2v larger than 5.8, which
has been proved in Fig.1.

Calculating under the condition of Tab.1, a2v = 3.053
and Slopecri = 1.282. The lgP(C̄D) and lgP(CD̄) curves
with Slopecri is shown with red color in Fig.3. As seen in
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FIGURE 4. Numerical solution process of Slopecri .

FIGURE 5. Slopecri and a2
v .

Tab.2 And Fig.3, the slopes of PRN23 is obviously larger than
Slopecri. The MDR of PRN23 exceeds its allowable value
significantly.Moreover, the smaller the slope than the Slopecri
is, the longer the interval of FAR keeping 100% will be.

Once the Slopecri under a fixed geometry has been com-
puted, the slope larger than the Slopecri can be taken as a
large slope whereas the slope smaller than the Slopecri can be
taken as a small slope. Utilizing the LSR algorithm to detect
a faulty satellite, a large slope faulty satellite will bring high
MDR, exceeding its allowable value with observation bias at
a certain interval, and a small slope faulty satellite will bring
high FAR, may reach 100% with observation bias at a certain
interval.

IV. METHODOLOGIES FOR MDR AND FAR REDUCTION
As mentioned above, the visible satellites can be divided
into the large slope satellites, for which should reduce the
MDR, and the small slope satellites, for which should reduce
the FAR. In this section, we propose two methodologies to
respectively reduce the risk in two situations.

A. A METHODOLOGY OF FAR REDUCTION FOR A SMALL
SLOPE FAULTY SATELLITE
Because P(D̄) in (16) cannot be artificially altered for objec-
tive existence of the VPE , the only way to reduce FAR caused
by a small slope faulty satellite is trying to obtain lower P(C).
The test statistic of LSR algorithm is designed as SSE

/
σ 2
0

because it obeys standard χ2 distribution when there exists no
faulty satellite. Thus, the test threshold can be set according
to standard χ2 distribution.
Here we propose a methodology which amplify the fault

detection threshold and still keep SSE
/
σ 2
0 as the test statistic

to reduce P(C) for a small slope faulty satellite. The ampli-
fication should under the premise of MDR not exceeding its
allowable value. According to (36), the amplification factor
of the fault detection threshold, notated as α, is the solution
of the following equation

max[
∫ αTD

0
f (x1)dx1 • (1−

∫ VAL

−VAL
g(x2)dx2)] = [P

(
C̄D

)
]a

(43)

similar to (42), it is hard to get the analytical solution
of (43). Therefore, α can be numerical solvedwith the process
in Fig.6 and the sub-process of counting l can refer to Fig.4.

Fig.7 presents the relationship between α and
Slope/Slopecri for different av values when 9 all-in-view
satellites with TD = 35.888(α = 10−6), HAL = 50m, and
σ0 = 4m.
α decreases with Slope/Slopecri addition at a fixed av and

increases with av reduction at a fixed Slope/Slopecri value.
The α-Slope/Slopecri curve is only determined by av with
the fixed TD, HAL and σ0. It can be fitted as an exponential
function

α(x) = a(xb − 1)+ 1 (44)

where x presents the value of Slope/Slopecri. Each av corre-
sponds to the fixed a and b values.
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FIGURE 6. Numerical solution process of α.

FIGURE 7. Relationship between α and Slope/Slopecri .

TABLE 4. a and b values for different a2
v and K.

Tab. 4 records the fitted values of a and b for different a2v
and K . a is positive, decreasing with a2v and K addition. b is
negative, and |b| decreases with a2v and K addition.
Fig.8 presents the fitted and the calculated α −

Slope/Slopecri curves for a2v = 3.053 and K = 9. The fitted
α − Slope/Slopecri curve is almost coincides with the calcu-
lated curve. The curve fitting indices are SSE = 0.00233,
R − Square = 1, and RMSE = 0.00532 respectively, which
proves the function of α(x) = 1.159(x−1.937 − 1) + 1 has a
very good fit for the α − Slope/Slopecri curve.
Calculating with the process in Fig.6 under the condition

of Tab.1, α value for PRN13 is 9.716. Then, Fig.9 presents the
MDR and the FAR for PRN13 with fault detection thresholds
of αTD and TD. As seen in Fig.9 (a), the lgP(C̄D) curve for
αTD is higher than that for TD, but tangent to the lg[P(C̄D)]a,
which meansMDR for PRN13 is just not exceeding its allow-
able value for all observation bias values with fault detection
thresholds of αTD. In Fig.9 (b), the lgP(CD̄) curve for αTD is

FIGURE 8. Fitted α values for a2
v = 3.053 and K = 9.

FIGURE 9. MDR and FAR with αTD and TD.

lower than that for TD with observation bias less than about
100m, which means FAR for PRN13 is reduced with fault
detection threshold amplified from TD to αTD. Especially,
the FAR decreases in magnitude with observation bias less
than about 80m.

B. A METHODOLOGY OF MDR REDUCTION FOR A LARGE
SLOPE FAULTY SATELLITE
Similar to the first situation, the only way to reduce the
MDR caused by a large slope faulty satellite is to reduce
the P(C̄). However, it is not feasible to reduce P(C̄) by only
diminishing the fault detection threshold of LSR algorithm,
because it would increase the probability of false alert for the
no faulty satellite. Here we propose a subset fault detection
methodology to reduce P(C̄) for a large slope faulty satellite.

We set each 6-satellites as a subset for all-in-view satellites
and calculate SSE

/
σ 2
0 values for each subset. As seen in (32),

(34), and (35), the P(C̄) is decided by the smm value. Each 6-
satellites subset has its own geometry and the smm value for
the faulty satellite in each subset is different. The satellite
which owns small smm value among all-in-view satellites
may own large smm value among the 6-satellites in a subset.
The test statistic to detect the large slope faulty satellite is
the SSE

/
σ 2
0 value of the subset in which the smm value

for the faulty satellite is the maximum among all 6-satellites
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subsets. And the fault detection threshold TD should satisfies
P(X > TD) = α, X ∼ χ2(2).
Tab.5 records the smm value of each satellite in the cho-

sen subset for detecting fault on PRN23. The smm value of
PRN23 is 0.367, ranked third in the subset geometry, while
the smm value of PRN23 in Tab.2 is the minimum among all-
in-view satellites.

TABLE 5. smm values for the chosen subset.

The fault detection performance to PRN23 and PRN
30 using the chosen subset fault detection mythology is
respectively presented in Fig. 10 and Fig.11. Fig. 10 (a) shows
the P(C) difference between utilizing the chosen subset and
the complete set to detect fault of PRN23, where P(C)s and
P(C)c respectively represent the P(C) values for the chosen
subset and the complete set. Besides P(C)s is larger than
P(C)c. The maximum P(C)s − P(C)c is 0.1664 with obser-
vation bias of 36m. Therefore, P(C) is increased using the
subset fault detection methodology, i.e., P(C) is decreased.
In Fig. 10 (b), the P(C̄D) value for subset fault detection
methodology is lower than that for complete-set fault detec-
tion methodology with observation bias more than about
30m. However, the subset fault detection methodology does
not reduce the MDR below its allowable value for all obser-
vation bias values. In Fig. 10 (c), the P(C̄D) value for
subset fault detection methodology is higher than that for
complete-set fault detection methodology with observation
bias less than about 50m. Therefore, we observed that the
decrease of MDR is at some cost of the FAR addition. The
subset fault detectionmethodology utilized for the large slope
faulty satellite is not excellent because its MDR cannot be
artificially controlled.

As seen in Fig.11(a), the P(C) value for the chosen subset
is higher than that for the complete set. And in Fig.11(b),
the lgP(C̄D) curve for subset fault detection methodology
is lower than the lg[P(C̄D)]a curve, but not tangent to the
lg[P(C̄D)]a curve.

Analyzing Fig. 10 and Fig.11, the subset fault detection
methodology can reduce MDR. However, it is not an enough
reduction for PRN23. The P(C̄D) value is still higher than
P(CD̄)a for a certain observation bias interval. Meanwhile,
it is an excessive reduction for PRN30 for the lgP(C̄D) curve
is not tangent to the lg[P(C̄D)]a curve.
Unlike using threshold amplification fault detection

methodology for the small slope faulty satellite, the
lg[P(C̄D)] curve cannot be limited to just tangent to the
lg[P(C̄D)]a curve using the subset fault detection methodol-
ogy for the large slope faulty satellite. However, the subset
fault detection methodology is really effective on reducing
MDR, which is useful to detect a position fault caused by a
large slope faulty satellite.

V. A MODIFIED ALGORITHM BASED ON THE
CRITICAL SLOPE
Based on the critical slope and two methodologies in the
previous sections, we propose a modified LSR algorithm to
reduce the fault detection risk of LSR algorithm.

A. SEARCH THE MOST POTENTIALLY FAULTY SATELLITE
The faulty satellite in all-in-view satellites is initially
unknown in practical application, thus we cannot decide
using which methodology before fault detection. Here we
use the correlation analysis between the pseudorange residual
vector and the observation error for each visible satellite to
search the most potentially faulty satellite.

The correlation analysis was proposed in [28], defining
a correlation coefficient, signed as d iωε, to measure the cor-
relation between the pseudorange residual vector and the
observation error of VSi. The solution of d iωε is presented in
Appendix B, translated from the original Chinesemanuscript.

According to the property of d iωε, a large d iωε means a
strong correlation. And the correlation between the pseudo-
range residual vector and the observation error of the faulty
satellite may be the strongest among all-in-view satellite if
there was only one faulty satellite. In other words, the satellite
with maximum d iωε value is most likely to be the faulty
satellite. Therefore, VSi with the maximum d iωε value is the
most potentially faulty satellite.

B. A MODIFIED LSR ALGORITHM AND ITS PROCESS
The modified LSR algorithm is proposed by comparing the
slope of the most potentially faulty satellite with the critical
slope. If the slope of the most potentially faulty satellite
is larger than the critical slope, the subset fault detection
methodology would be used; otherwise the threshold ampli-
fication methodology should be used and the amplification
factor α would be calculated using the fitted function seen
in (44).

The process of the modified LSR algorithm is shown in
Fig.12, divided into 3 steps.
step 1: search the most potentially faulty satellite.
step 2: select the fault detection methodology by compar-

ing the slope of the most potentially faulty satellite with the
critical slope.
step 3: Detect the position fault via SSE calculation.
Considering the large calculation amount, the numerical

solution processes of Slopecri and α are evaded in the mod-
ified LSR algorithm. They should be offline completed to
ensure that the satellite fault can be real-time detected at a
receiver.

Because the Slopecri value and the α-Slope/Slopecri curve
are both one to one corresponded to a2v at a fixed all-in-view
satellites number, they can be offline numerical solved for
each possible value of a2v for different numbers of all-in-view
satellites and saved in the receiver.

The numerical solve processes of Slopecri and α for a
Slope/Slopecri can be seen in Fig.4 and Fig.6 respectively.
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FIGURE 10. Fault detection performance comparison for PRN23 using subset and complete set fault detection methodology. (a) P(C). (b) MDR.
(c) FAR.

FIGURE 11. Fault detection performance comparison for PRN30 using subset and complete set fault detection methodology. (a) P(C). (b)
MDR. (c) FAR.

Because the α-Slope/Slopecri curve can be fitted by the func-
tion shown in (44), only the parameters of a and b for the
fitted function need to be saved for each a2v value.

C. MATHEMATICAL SIMULATION FOR PERFORMANCE
TESTING OF THE MODIFIED LSR ALGORITHM
The performance of modified LSR algorithm might be pulled
down by the correlation analysis between the pseudorange
residual vector and the observation error, for the most poten-
tially faulty satellite, signed as VSM , not necessarily being the
real faulty satellite, signed as VSF . For example, if the real
faulty satellite owned a large slope and the most potentially
faulty satellite owned a small slope, the faulty would more
likely to be miss detected because the fault detection thresh-
old is amplified and the identified faulty satellite would not
be the real one even if the fault is detected. On the contrary,
if the real faulty satellite owned a small slope and the most

potentially faulty satellite owned a large slope, the faulty
would more likely to be false alerted because the subset fault
detection is used and the identified faulty satellite would not
be the real one.

Therefore, a simulation experiment is designed to ver-
ify the performance of the modified LSR algorithm on
the conditions shown in Tab.1. In this simulation, PRN 2,
PRN19, PRN23 and PRN30 are set as the faulty satellite
respectively with observation bias from 1 σ0 to 30 σ0. 106

times of fault detection are implemented for each observa-
tion bias value and the observation noise for each visible
satellite is the randomly generated WGN with mean 0m and
standard deviation 4m at each time. Three kinds of algo-
rithms are used to detect fault, the first two kinds are the
LSR algorithm and the modified LSR algorithm. The third
kind algorithm is the modified LSR algorithm under the
assumption that the most potentially faulty satellite is the
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FIGURE 12. A modified LSR algorithm process.

real faulty satellite, abbreviated as the ideal-modified LSR
algorithm.

Fig.13 present the probability of that the most potentially
faulty satellite and the real faulty satellite are the same,
signed as P(VSM = VSF ), for different observation bias
values. P(VSM = VSF ) for each faulty satellite is differ-
ent. The curves for the 4 faulty satellites can be sorted as
PRN30, PRN19, PRN2 and PRN23 from high to low. Obvi-
ously, the faulty satellite with large smm value owns high
P(VSM = VSF ). And P(VSM = VSF ) can reach 100%
with observation bias larger than 40m,i.e., 20σ0. Because
P(VSM = VSF ) of PRN 23 is minimum, the performance
of modified LSR algorithm for PRN23 is most affected by
the correlation analysis among the four satellites, which is
analyzed in Fig.14.

FIGURE 13. P(VSM = VSF ) for 4 faulty satellites.

Fig.14 (a) presents the P(C) difference between the real
and ideal modified LSR algorithms. Obviously, P(C) is
decreased because the misjudgment to the real faulty satellite
using the correlation analysis. The maximum P(C) difference
is about 0.015 with ξb = 9σ0 (36m). Fig.14 (b) describes
the MDR for the three different LSR algorithms. Because of
the decrease of P(C), the MDR of the real modified LSR

FIGURE 14. Fault detection performance of a modified LSR algorithm for
PRN 23.

algorithm is slightly larger than that of the ideal modified
LSR algorithm. However, it is still smaller than that of the
LSR algorithm. Fig.14 illustrates that the modified LSR algo-
rithm has better fault detection performance than the LSR
algorithm even if the misjudgment to the real faulty satellite
using the correlation analysis really increases the fault detec-
tion risk.

Fig.15 shows the probability of fault detection P(C), and
the probability of fault identification P(VSf = PRN23 |C )
for PRN23 using the modified LSR algorithm, where VSf
presents the faulty satellite which is finally confirmed. The
P(C) of P(VSf = PRN23 |C ) curves are almost coinci-
dent. The largest difference between P(C) and P(VSf =
PRN23 |C ) is 1.03 × 10−4 with observation bias of 40m,
i.e., 10 σ0. Therefore, the misjudgment to the real faulty
satellite using the correlation analysis slightly decreases the
probability of fault identification.

FIGURE 15. Probability comparison for fault detection and fault
Identification for PRN23 using the modified LSR algorithm.

D. MATHEMATICAL SIMULATION FOR PERFORMANCE
DISPLAYING OF THE MODIFIED LSR ALGORITHM
The performance of the modified LSR algorithm is visually
displayed via mathematical simulation, compared with the
LSR algorithm. The simulation conditions can be seen in
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Tab.6 and the observation noise is randomly generated WGN
for each simulation epoch. Under these conditions, a2v =
1.307, [P(C̄D)]a = 1.825 × 10−3, Slopecri = 1.392, and
the α − Slope/Slopecri fitted function is α(x) = 1.233
(x−1.998 − 1)+ 1.

TABLE 6. Simulation conditions.

Tab.7 records the slope and α values of each visible
satellite. The α value is calculated with the fitted α −

Slope/Slopecri function. Comparing with Slopecri = 1.392,
PRN2 is the only one large slope satellite. And PRN10 owns
the minimum slope. Then, we respectively choose PRN2 and
PRN10 as the faulty satellite in simulation.

TABLE 7. Slope for each visible satellite.

Fig.16 and Fig.17 respectively show the simulation results
setting PRN 2 and PRN 10 as the faulty satellite. The sub-
figure(a) presents the VPE values and sub-figures(b) and (c)
present the values of ratio between the test statistic and its
threshold, notated as Ts

/
TD.

As seen in Fig.16, the times of VPE exceeding VAL is
35 after injecting 18 σ0 (72m) observation bias on PRN2,
i.e., the probability of VPE exceeding VAL is 14.00%. The
miss detection probability of the modified LSR algorithm is
14.4% lower than that of LSR algorithm, 30.0%, for 72 and
105 times of miss detection respectively. Therefore, theMDR
for the two LSR algorithms are 0.020 and 0.042 respectively.
Although the MDR for the two algorithms exceeds the max
allowable value 1.825 × 10−3, the MDR for modified LSR
algorithm is just half of that for LSR algorithm.

As seen in Fig.17 (a), there is no significant change on
VPE after injecting 18 σ 0(72m) observation bias on PRN10.

FIGURE 16. VPE and Ts/TD for PRN2.

FIGURE 17. VPE and Ts/TD for PRN10.

However, the Ts
/
TD value is larger than 5 in 95% confidence

and the fault detection probability of LSR algorithm reaches
100% as the seen in Fig.17 (c), which means the position fault
will be 100% false alerted with faulty satellite PRN10 owning
18σ0 observation bias. The Ts

/
TD values of modified LSR

algorithm after observation bias injection keeps less than
0.1 seen in Fig.17 (b), which means the false alert can be
avoided using modified LSR algorithm. The reason for the
severely jitter of the Ts

/
TD curve during the 0 observa-

tion bias period in Fig.17 (b) is that the most potentially
faulty satellite judged using correlation analysis is different
at each simulation epoch and the TD is changed according
to the correlation analysis result. If PRN2 was judged as
the most potentially faulty satellite, the TD value would not
be amplified. And if the other satellites was judged as the
most potentially faulty satellite, the TD value would not be
amplified according to its slope value. Therefore, the Ts

/
TD

curve is significantly jittered during the 0 observation bias
period using the modified LSR algorithm.

Fig.16 and Fig.17 visually explains the advantage of the
modified LSR algorithm, keeping the trends of VPE and
Ts
/
TD change caused by the observation bias of the faulty

satellite consistent. Because the observation bias of a large
slope faulty satellite brings large VPE change, the Ts

/
TD
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value is amplified in the modified LSR algorithm. Because
the observation bias of a small slope faulty satellite brings
smallVPE change, the Ts

/
TD value is diminished in themod-

ified LSR algorithm. In short, the Ts
/
TD value of modified

LSR algorithm can reflect the VPE caused by faulty satellite
more accurately than that of LSR algorithm.

VI. CONCLUSION
In this paper, we propose a critical slope for each satellite-
user geometry. It is the largest one which satisfies the miss
detection risk not exceeding its allowable value in a fixed
geometry when using the LSR algorithm to detect faulty
satellite. The faulty satellite with slope larger than the critical
onewill lead to a highMDR, exceeding its allowable value for
the observation bias in a certain interval. Whereas the faulty
satellite with slope smaller than the critical one will lead to a
high FAR, may reaching 100% for the observation bias in a
certain interval.

Utilizing the property of the critical slope, a modified
LSR algorithm is proposed to reduce the fault detection
risk, including the MDR and the FAR. We search the most
potentially faulty satellite via correlation analysis between
the pseudorange residual vector and the observation error
for each visible satellite and then calculate its slope value.
Comparing with the critical slope, the subset fault detection
methodology would be used when the slope larger than the
critical slope while the threshold amplification fault detection
methodology would be used when the slope smaller than the
critical slope.

The modified algorithm has been used to detect position
fault, showing that both the MDR caused by a large slope
faulty satellite and the FAR caused by a small slope faulty
could be reduced. Especially, the FAR for position fault
caused by a small slope faulty satellite is the minimum that
makes the MDR not exceeding the allowable value.

APPENDIX
A. DERIVATION OF av = VDOP
As seen in (4), A = (HTH)−1HT , thus AAT = (HTH)−1.

Because a2v =
K∑
i=1

a23i is the sum of squares for all elements

in Row 3 of A in (4), a2v is the element of Row 3 and Column
3 in matrixAAT . Therefore, a2v is equal to the element of Row
3 and Column 3 in matrix (HTH)−1, i.e., av = VDOP.

B. CORRELATION COEFFICIENT BETWEEN THE
RESUIDUAL VECTOR AND THE OBSERVATION ERRO
The correlation coefficient between the residual vector and
the observation error for VSi is defined as follows

d iωε =

∣∣∣∣∣ K∑j=1 (sij − s̄i)(ωj − ω̄)
∣∣∣∣∣√

K∑
j=1

(sij − s̄i)2
K∑
j=1

(ωj − ω̄)2
(45)

In (45), s̄i =
K∑
j=1

sij

/
K , ω̄ =

K∑
j=1
ωj

/
K . ωj and sij are

shown in (6). d iωε has the following properties:

1) d iωε ≤ 1;
2) The larger the value of d iωε, the stronger the correlation

between εi and ω, which means the effect from εi to ω
is more significant;

3) d iωε = 0 indicates that εi and ω are irrelevant, which
means that the observation bias for VSi cannot be
detected with ω.

According to the properties of d iωε, it can be surmised
that d iωε of the faulty satellite may be the maximum among
all of the visible satellites because its observation error can
obviously affect the value of ω.
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