IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 8, 2019, accepted April 29, 2019, date of publication May 16, 2019, date of current version May 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917259

A Lightweight LFSR-Based Strong Physical
Unclonable Function Design on FPGA

SHEN HOU “'2, YANG GUO!, AND SHAOQING LI

!'School of Computer, National University of Defense Technology, Changsha 410073, China
2Department of Basic Courses, Information Engineering University, Luoyang 471003, China

Corresponding author: Shen Hou (houshen@outlook.my)

This work was supported by the National Natural Science Foundation of China under Grant 61832018.

ABSTRACT Physical unclonable function (PUF), a reliable physical security primitive, can be implemented
in FPGAs and ASICs. Strong PUF is an important PUF classification that provides a large ‘““‘Challenge-
Response” pairs (CRP) space for device authentication. However, most of the traditional strong PUF
designs represented by the arbiter PUF are difficult to implement on FPGA. We propose a new lightweight
strong PUF design that can dynamically reconfigure while maintaining high entropy and large CRP space.
We implement the PUF on a 28-nm FPGA. The experimental results show that the uniformity of the PUF is
49.8%, the uniqueness is 49.9%, which is close to the ideal value, and the hardware overhead is very small.
This design is easy to implement and suitable for device authentication on FPGA.

INDEX TERMS Hardware security, physical unclonable functions (PUFs), linear feedback shift register,

FPGA, lightweight.

I. INTRODUCTION
Field-programmable gate array (FPGAs) have a wide range
of applications in embedded system development due to their
flexible configurability and relatively low design cost relative
to ASICs. In recent years, big data, artificial intelligence,
and cloud technologies have developed rapidly [1]. In these
application scenarios, CPUs are highly flexible but lack com-
puting power. Accelerators are computationally efficient but
not flexible enough. In order to strike a balance between
flexibility and efficiency, hardware accelerators plus CPU
architectures are becoming more popular. As a hardware
reconfigurable architecture, FPGA has powerful computing
power and sufficient flexibility. As a kind of accelerator that
has been paid more and more attention in the field of deep
learning, FPGA has become a new research and application
hotspot. Microsoft uses FPGAs to replace traditional CPUs in
data centers [2]. Tencent Cloud directly provides FPGA cloud
servers, reducing the high cost of developers to purchase
equipment [3]. The iPhone has a FPGA chips inside, made
by Lattice Semiconductor, according to Chipworks [4].
Widely used of FPGAs brings new security challenges,
such as overbuilding, tampering, cloning and reverse engi-
neering [5]. The bitstream that the user uses to configure

The associate editor coordinating the review of this manuscript and
approving it for publication was Aniello Castiglione.

the FPGA 1is read and decrypted by these attacks, result-
ing in leakage of circuit structure, sensitive information,
and configuration parameters. FPGA vendors offer design-
ers a spectrum of security solutions to protect intellectual
property (IP) and sensitive data, such as encrypting bit-
streams, protecting key memories, and bitstreams authenti-
cating. The keys for encryption and authentication algorithms
are typically stored in NVM (Non-volatile Memory, typically
using mature memory technologies such as EEPROM, Flash,
battery-backed SRAM, and fuses, etc.). These methods do
not guarantee the security of keys and sensitive information.
Keys are easily obtained from NVM through physical inva-
sive attacks. At the same time, for some FPGA applications,
the hardware resources are limited, and integrating security
modules in them will increase hardware overhead, which
may cause some problems. Therefore, the development of
new lightweight hardware security primitives as a root of
trust (RoT), providing security services such as key gener-
ation and authentication for FPGA applications has become
a very attractive research field.

In the manufacturing process of digital circuits, due to
some uncontrollable reasons, the parameters such as the size,
threshold voltage, and gate oxide thickness of each device
cannot be exactly the same, and there will be slight and ran-
dom deviations, that is, process deviations. These deviations
do not affect the functionality of the device, nor do they

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

64778

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7525-2825

S. Hou et al.: Lightweight LFSR-Based Strong PUF Design on FPGA

IEEE Access

affect the correctness of the circuit. However, these random
deviations can be extracted by special design methods to
make a unique “fingerprint” of the circuit, so as to accu-
rately identify each circuit and prevent the circuit and chip
from being over-manufactured or tampered. This physical
system is called the physical unclonable function (PUF).
As an emerging hardware security primitive, PUF is very
sensitive to physical tampering and has inherent physical
disorder. It has unparalleled advantages and broad application
prospects in the fields of cryptography and hardware security.

PUF only generates a corresponding response when a
challenge is given. This working mechanism is called the
“Challenge-Response” mechanism, and all the “Challenge-
Response” pairs of one PUF is called its CRP space. It is also
because of this ‘““Challenge-Response” security mechanism
that keys and private information can be generated in real
time without being stored in easy accessing local memories,
further reducing the chance of the key being exposed to the
adversaries.

According to the relationship between the number of CRPs
and the size of physical entities, PUF can be divided into
two types: Weak PUF and Strong PUF [6], [7]. PUFs with
limited number of CRPs, known as Weak PUFs, are com-
monly used for key generation in cryptographic functions.
Alternatively, Strong PUFs have exponential number of CRPs
and are suitable for authentication [8]. Both types of PUF
need high uniqueness and reliability to secure their properties.
Meanwhile, a well-designed PUF should has small hard-
ware overhead and be easily implemented. Linear feedback
shift register (LFSR), as a circuit that can generate pseudo
random number sequence, is widely used in key generation
and communication fields. It is a high performance, simple
and configurable sequential circuit which can provide an
excellent random number sequence output with low hardware
overhead.

In this paper, we employed LFSR to a FPGA-based Weak
PUF design to make a lightweight and easily implemented
“Strong” PUF. We introduce related works on PUFs and
LFSR at first. Then we describe our design and imple-
mentation of a lightweight LFSR-based PUF on 28nm
FPGA devices, and followed by the experimental data and
conclusion.

Il. RELATED RESEARCHES

A. PHYSICAL UNCLONABLE FUNCTION

In 2002, Pappu proposed the concept of physical unclonable
function [9], and proposed a PUF based on optical sys-
tem. Thereafter, various kinds of PUFs have been proposed.
According to the implementation of the PUF, these PUFs
can be classified into three types: non-electronic PUF, analog
PUF, and digital PUF.

Non-electronic PUF mainly includes optical PUF [9],
paper PUF [10], CD PUF [11], etc. This type of PUF utilizes
the uniqueness of the different media under the influence of
random factors in the manufacturing process to perform anti-
counterfeiting verification on specific media.

VOLUME 7, 2019

Analog PUF mainly includes voltage threshold (VT)
PUF [12], LC PUF [13], coating PUF [14], etc. The entities
of these PUFs can be integrated into IC devices to measure
the amount of electrons that can be used as a response signal
in an analog manner, then convert it to digital form to produce
the final PUF response.

The digital PUF directly performs response measurements
in a digital manner without the need for analog to digital
conversion. Compared with the first two types of PUF, this
type of PUF is designed to conform to the standard IC design
and manufacturing process and can be integrated into IC
devices as a whole, so it has the widest research and appli-
cation prospects. The digital PUF can be further divided into
memory-based PUF and delay-based PUF.

There are many types of memory-based PUFs. Fig. 1 is
a simple memory-based PUF structure. The memory-based
PUF is usually Weak PUF, and it is hardly implemented on
FPGA device because many modern FPGA chips initialize
memory units at power-up.

Memory-Based PUF System

N i e e R e B Vv
m |(m (wm (w (w (. b
B [(m] (wm [(m] (m] (= PoWer-_Uj
B [(m] (w [(wm] [(m] (=
Challenge, . e . ..
—p (] [(m] [(w] (] [w] [0
B (B (@ [(m (=] (=
B [(m [(m [(m] [(wm][w N
m (m] (] [(m] (=] (= Mismatch
Y Y ;
Random States 0 or 1
A Memory Cell
Response

FIGURE 1. A simple memory-based PUF.

Delay-based PUF mainly includes RO (ring oscillator)
PUF[15], [16], arbiter-based PUF [17]. Suh and Devadas pro-
posed RO PUF in [16]. RO is a simple circuit that can oscillate
at a specific frequency, which becomes unpredictable due to
process variations in the manufacturing process. This type of
PUF can generate a logic 0 or a logic 1 by comparing the
oscillation frequencies of two identical RO circuits. Fig. 2 is a
simple RO-based PUF. The design and layout of the two ROs
must be identical to ensure that the difference in oscillation
frequency depends only on process variations.

FIGURE 2. The structure of RO PUF.

64779

IEEE Access

S. Hou et al.: Lightweight LFSR-Based Strong PUF Design on FPGA

r~—==1 r-—=—-71I

r-—==1 r=--—="i
Oorl

+—»{D Q>

latch
(arbiter)

>

A 4

X(0) X(1) X(n-1) X(n)
FIGURE 3. Architecture of arbiter PUF.

Lim et al. proposed arbiter-based PUF [17]. A simple
arbiter PUF contains a multi-level multiplexer chain, the basic
structure of which is shown in Fig. 3. The same input is
connected to the upper and lower paths, and the way each
path is connected is determined by the control signals of the
two multiplexers in each stage. Under the same challenge,
although the layout of the two paths is completely identical,
the process deviation results in a slight difference in the
time delay of two paths. The latch behind the chain acts as
an arbiter to announce which path is faster, then outputting
logic 0 or logic 1.

B. REALIZING STRONG PUF FROM WEAK PUF

As a classic digital Strong PUF design, arbiter PUF has all
the features of a Strong PUF, but its shortcomings are equally
prominent. First, the area overhead is in general small, and
increase logarithmically. But it is difficult to implement in
FPGA. Second, the delay difference depends on the inverter
chain and line delay. The poor stability and reliability make
it difficult to ensure that the whole PUF circuit is not affected
by voltage and temperature fluctuations. Third, from the
perspective of some realized arbiter PUF, although the CRPs
space is large enough, its response uniqueness is not so good,
far lower than the ideal value. Fourth, the path delay is com-
posed by a linear superposition of multiple inverter delays on
the path, which makes it easily to be modeled and vulnerable
to machine learning attacks.

In general, the stability and response uniqueness of Weak
PUF is better than the existing Strong PUF design [7], [18].
Realizing Strong PUF with stable and mature Weak PUF
becomes a feasible design method. This method usually uses
reliable Weak PUF as an entropy source in the front-end and
a structure similar to a random number generator in the back-
end. This structure can provide logical obfuscation to increase
randomness and expand CRPs space. Notably, the entire cir-
cuit must be sophisticated designed to maintain unclonability.
Several types of obfuscation logic have been proposed, such
as AES [19], neural network [20], etc. However, the hardware
overhead of these logics is still too large. As a mostly used
pseudo-random number generation circuit, LFSR has good
randomness and simple logic structure, which is suitable for
designing low-overhead Strong PUF.

C. THE CONCEPT OF LFSR
LFSR is usually composed of two parts: a shift register and a
feedback function. The shift register is a sequence of bits, and

64780

f(S1,S2,-Sn-1,50)

qT‘T‘ . qTﬁT‘
FIGURE 4. Basic structure of LFSR.

if it is » bits in length, it is called an n-bit shift register. The
basic structure of the feedback shift register is shown in Fig. 4.
f(S1, Sy, ..., Sn_y, S;) is a feedback function.

The initial value of the LFSR is called seed, and we can
change the output sequence of the register by changing the
value of the seed. The output value of the register is com-
pletely determined by its current state (or previous state).
A good feedback function selection which is called the maxi-
mum length polynomial can generate an output sequence with
good randomness and a long repetition period. The rules for
selecting feedback polynomial which is given in [21], [22]
are as follows:

1) The “1” in the polynomial does not correspond to a tap

it corresponds to the input to the first bit.

2) The powers of the terms represent the tapped bits,
counting from the left. The first and last bits are always
connected as an input and output tap respectively.

3) The LFSR will only be maximum-length if the number
of taps is even; just 2 or 4 taps can suffice even for
extremely long sequences.

4) The set of taps taken all together, not pairwise
(i.e. as pairs of elements) must be relatively prime.
In other words, there must be no common divisor to
all taps.

Ill. PROPOSED PUF DESIGN

This section gives a Strong PUF designing method using a
relatively mature and reliable Weak PUF. We first discuss
the Weak PUF design that provides unclonability. In order to
simulate on the FPGA, we select a low-overhead Weak PUF
for FPGA and improve it so that it can be implemented on
the latest 28nm FPGA chip. Then, the feasibility of LFSR as
obfuscation logic is discussed. Finally, the combination of the
two parts and the realization of some peripheral functions are
confirmed.

A. ARCHITECTURE

The LFSR-based Strong PUF (L-PUF) structure proposed in
this paper is shown in Fig. 5. The output response of the
front-end Weak PUF provides a unique feedback polynomial
for the LFSR, making the LFSR structure of each device
different. By providing the same seed as the input challenge
for different LFSRs, the L-PUF will generate device’s unique
output as response after running a fixed number of cycles.
Next, we will discuss the specific implementation methods

VOLUME 7, 2019

S. Hou et al.: Lightweight LFSR-Based Strong PUF Design on FPGA

IEEE Access

Challenges

o

m Bit Extractor Perlph'eral
Logic

FIGURE 5. The architecture of LFSR-based strong PUF.

Responses

of the Weak PUF and LFSR parts, and how to combine the
two parts.

B. THE WEAK PUF DESIGN ON FPGA

The most classic Weak PUF is the memory-based PUF as
SRAM PUF [23]. However, since the design verification of
this paper is performed on the FPGA platform, most FPGA
development board initializes the memory on the SoC at
startup, so the on-chip memory cannot be used as Weak PUF.
Recently, some PUF designs dedicated to FPGA chips have
been proposed based on the study of FPGA underlying archi-
tecture. Anderson claimed to implement the PUF structure on
the FPGA for the first time [24]. Anderson’s design refers to
the basic idea of the delay-based PUF, and takes advantage of
the internal structure of basic cells of the Xilinx FPGA chip
called SLICE. It uses the LUTs that can be configured as a
shift register and the cascaded multiplexers in the carry logic
to build a competing two-way delay path, and uses a flip-flop
to output a logic 0 or logic 1 response. These components
all can be put in one SLICE. So, the area overhead is very
small, and a minimum of 2 SLICEs can implement a 1-bit
PUF response.

=
=

LUT

ol
5]

CLB ! LUT

SLICE [}

5]
5]

LUT

1
5]

SLICE LUT

_——— e ——— — — — —— —
1
5]

~

=
=

v v/ v/ v v v v v
T 5] 1 T
T 5] 51 T

CARRY4

e o o— —

FIGURE 6. The underlying architecture of Xilinx 7 series FPGA.

Fig. 6 depicts the underlying architecture of Xilinx latest
7 series 28nm FPGA chip. The basic constituent logic unit

VOLUME 7, 2019

is called CLB (configurable logic block), arranged in a
two-dimensional array on the chip, and can be connected
through a programmable interconnect matrix. A CLB mainly
consists of two SLICEs. Each SLICE mainly consists of four
6-input LUTSs, one carry chain (CARRY4 in the dotted line),
and eight storage elements (flip-flops). The 6-input LUT can
implement any 6-variable logic function, while CARRY4 is
used to implement fast arithmetic operations. Each LUT
is connected to a corresponding multiplexer in the carryer,
and the output of the LUT provides a selection signal for
the multiplexer. Four multiplexers are cascaded, the output
of the lower multiplexer is one of the inputs of the upper
multiplexer, and the other input is obtained outside of SLICE.
There are two types of SLICE: the LUT in SLICEM can be
configured as shift register logic (SRL) or general logic as
needed, while the LUT in SLICEL can only be configured
as general logic. These two SLICEs are usually arranged in
columns by column.

_

glitch? |

|
——

LUTs A, Binshift [|
register mode

— CLK [
OUT, |
—> IN I v
010101.. | p PRE b L,
LUT A | response bit
I
I CLK—P>
—{ CLK I FF initialized
to logic 0
0UTg I
—> IN | |
101010... | I
LUT B [[
I

FIGURE 7. A bit Weak PUF response logic in Anderson’s design.

In Anderson’s design, a bit PUF response logic is shown
in Fig. 7. Two LUTSs, A and B, in SLICEM are configured in
SRL mode. The contents of the register are initialized as:

1) LUT A: 0101010101010101 (0x5555)

2) LUT B: 1010101010101010 (0OxAAAA)

The two SRLs are controlled by the same clock. Therefore,
the path delay from the input of LUT A to N2 should theo-
retically be equal to the path delay from the input of LUT
B to N1. However, due to process derivation, the two path
delays will not be exactly the same. Assuming that the lower
path B is faster than upper path A, then on the rising edge of
the second cycle, the N1 value first changes to logic 0, while
N2 continues to be logic 0. But if path A path is faster, then
on the rising edge of the second cycle, N2 is already equal to
N1 before N1 turns to logic 0, which makes N2 value having
a glitch. Connect N2 to the PRE port of an asynchronous
preset flip-flop, initialize the flip-flop state to 0, and output

64781

IEEE Access

S. Hou et al.: Lightweight LFSR-Based Strong PUF Design on FPGA

Q feedback to input D. If N2 has a glitch, the flip-flop state
will be set to 1. Otherwise, its value is always 0.

However, due to the earlier completion of the design, its
implementation and analysis were performed on Xilinx’s
previous generation FPGA chip Virtex-5. Xilinx’s new gen-
eration 7 series FPGA chips (including Virtex-7, Kintex-7,
Artix-7, and the Zyng-7000 series used in this article) are
different from the 5 series and other previous products. In the
original design, when LUT A and LUT B were configured as
shift registers, the input ports of MUX A and MUX B could be
directly connected to independent logic 0. Therefore, the path
formed by LUT A and MUX A can be placed in the same
SLICE. However, for the 7 series chips, the input ports of
MUX A and MUX B are controlled by the multiplexer in the
blue box in Fig. 8. When LUT A and LUT B are configured
as SRL, the two inputs of the multiplexer, O5 and AX,
cannot always be logic 0 anyway, so the design cannot be
implemented on new FPGA chips.

SLICEM — SLICEL —
— Lot | : — LuT : ’
= FF = FF
[— —
= Y- Fml"y-
| | p— |
— | | — |
= Lt — Lur
— | | — I
— Lur |]| = LUT I
3" | IslER | [
STICEM —— STICEL —
= LT | | BFE] = wur |
=17 E| | 3 |
p— | p— |
— vuut | | | — LUT |
= | = |
= FF = FF
= L || | — wur | BEE
= 14 1@l | 3 | [
BN Eps |]
T = TA-

0.

=gt

— |

i@ 0

P N

lé#h : ICYINIT
Bt I

FIGURE 8. Anderson’s design cannot be implemented on 7 series FPGA.

In order to solve this problem, we improve the original
design. A path consists of a LUT configured as an SRL in
a SLICEM, and a corresponding position multiplexer in the
adjacent SLICEL. Any one of the 8 flip-flops in SLICEL is
used as the output response bit. At the same time, we need
to adjust the relative distance between the two paths A and
B to improve the randomness of the PUF (short distance will
cause the glitch too narrow to be filtered out). The experi-
mental results show that when path A and B are separated by
5 or 6 LUTs, the results meet our requirements. Therefore,
the final design is shown in Fig. 9. Four adjacent SLICEs
can provide 1-bit PUF response, and the hardware overhead is
still small. Our designs can be synthesized, placed and routed
automatically without manual intervention.

For LFSR, if the initial value of the register chain is the
same, different feedback functions, different tap numbers and
positions will generate different shift output sequences. This
is the basic idea of our design. We place the tap position at the
output of each register and perform a logical AND operation
with the response bit of the Weak PUF output to implement
different tap position arrangement. For the front-end Weak
PUF whose output response is m bits, its n-th output response
is puf[n], where 0 < n < m, if an L-PUF instance’s
puf[n] = 0, the corresponding XOR logic in the LFSR does
not work, that is, this position has no tap. Otherwise, if the
puf[n] = 1, the position has a tap (logic in the dotted box 1
in Fig. 10). If the uniqueness of the Weak PUF is ideal

64782

FIGURE 9. 1-bit Weak PUF design on 28nm Xilinx FPGA.

enough, we use different seeds as a challenge to ensure the
unclonability (identical circuit) and uniqueness (the response
generated by the same challenge is different) of the entire
L-PUF.

C. FURTHER DISCUSSION

According to the LFSR feedback polynomial selection rule
mentioned above, no matter how large the register chain is,
the number of taps reaches 4 or more to meet the randomness
requirement. So, the Weak PUF and the LFSR register chain
do not have to correspond one-to-one, and the scale of the
Weak PUF can be further reduced (the number of 1 in the
output response is not less than 4). The randomness require-
ment for the Weak PUF response can be reduced, and it is not
necessary to pursue the ideal value too much. The scale of the
Weak PUF needs to be determined according to the specific
application environment, and the number of output response
bits can be roughly referred to (1).

Response bits x Uniformity > 4 1)

Uniformity is a parameter that characterizes the random-
ness of PUF output response. For a 16-bit Strong PUF appli-
cation, assuming that the uniformity of the front-end Weak
PUF is 50%, the response bits of the front-end Weak PUF may
be not less than 8. The XOR logic can be evenly distributed
to the register chain of the LFSR as in Fig. 11, so that the
hardware overhead of L-PUF can be further reduced. We call
this improved structure the RL-PUF.

D. PERIPHERAL CIRCUIT
However, there are two problems we need to consider. First,
the value of the LFSR in any state cannot be all Os, otherwise

VOLUME 7, 2019

S. Hou et al.: Lightweight LFSR-Based Strong PUF Design on FPGA

IEEE Access

puf[1]

puf[2]

puf[3]

puf[5]
puf[6]

—_——_—— —= = —

\
Ipuﬂ7] ::@ QI
—

A
=]
M
U7
\4
=]
M
™

puf[4] —'w_

v v v \ 4 o
AL AN A S
\JV 4 \JV 3 \JV 2 \JV 1 l V\‘{l

y
.

—

v | Y}
D »{]
\J

L | T\

response[7] response[6]

FIGURE 10. 8-bit L-PUF circuit.

response[5] response[4]

b 4 |)4 | }
»D »D »
"\

response[3] response[2]

A

¥
i ¥

response[1] response[0]

puf[0]

pufl1]

puff2] ﬂ__

puf[4] m—) S
puf[5] —— D

pufl6] —;@_

puf[7]

FIGURE 11. 16-bit RL-PUF circuit.

the LFSR will not be able to jump to other states. Second, for
this type LFSR we used, when the feedback output is 0, the
system will become a normal shifter. Therefore, the leading
zero of the seed sequences will cause the output of all L-PUFs
to be the same, thus losing the PUF function. For the first
problem, we can detect the state of the LFSR in real time
through the peripheral logic in the dashed boxes 2, 3 in
Fig. 10. If the all-zero state is found, the feedback value is
changed and the all-zero state is jumped out. For the second
problem, there are two solutions: Option A, adding the lead-
ing O detection and counting control logic, if the challenge
loaded to the L-PUF has n bits leading 0, the L-PUF is
controlled to output after n clock cycles. Option B, only the
counting control logic is added. For an m-bit L-PUF, it is
controlled to output after m-1 clock cycles. For most IoT
devices, hardware overhead has a higher priority than latency
overhead, and option B is clearly a better choice.

IV. IMPLEMENTATION AND RESULT EVALUATION
A. FPGA IMPLEMENTATION

In this paper, we implement L-PUF and RL-PUF on an Alinx
development board (Zyng-7000 XC7Z020 FPGA). Xilinx
offers a complete and powerful physical constraint method

VOLUME 7, 2019

puf[3] —:@_

e - B - BN - B - B - I - R -

for multi-level physical location constraints on designs done
with VHDL or Verilog. We can precisely place the L-PUF
structure by using macros and setting labels. Considering
that the process deviation between devices is greater than
that between different regions on the same device, if our
design is good enough in different regions of a chip, it is
certainly has no problem on different devices. Therefore,
we implement several PUF instances on the same board to
evaluate uniqueness and reliability.

We divide the FPGA side of the Zyng-7000 chip into 16
regions, implementing a 64-bit L-PUF and a 64-bit RL-PUF
on each region. We use the RLOC_RANGE attribute in the
Vivado 2017.1 development environment to constraint all the
implementations. Then, each PUF is packaged as an IP core
and connected on the AXI bus inside the Zyng-7000 chip
so that we can write the challenge and read the response
by the UART interface on the ARM side of the chip. The
experimental data is recording and processing on a PC using
Python.

B. HARDWARE OVERHEAD
A 64-bit L-PUF design uses 210 of the 53200 LUTs as
logic on the Zynq-7000 XC7Z020 FPGA (0.4%), 128 of

64783

IEEE Access

S. Hou et al.: Lightweight LFSR-Based Strong PUF Design on FPGA

TABLE 1. Hardware utilization.

PUF type 64-bit L-PUF

Logic function 64-bit Weak PUF LFSR and other logic Total
SLICE LUTs 130 80 210
LUTs as 128 0 128
Memory

LUTs as Logic 2 80 82
SLICE 256 60 316
LUT FF Pairs 0 33 33
PUF type 64-bit RL-PUF

Logic function 32-bit Weak PUF LFSR and other logic Total
SLICE LUTs 65 64 129
LUTs as 64 0 64
Memory

LUTs as Logic 1 64 65
SLICE 128 52 180
LUT FF Pairs 0 23 23

the 17400 LUTs as memory (0.8%), and 316 of the
13,300 SLICEs (2.4%). The three results for a 64-bit RL-PUF
are 129 (0.24%), 64 (0.37%), and 180 (1.4%). The exper-
imental results show that the Strong PUF design in this
paper has a small hardware overhead and is very lightweight.
Detailed data are shown in Table 1.

C. PERFORMANCE ANALYSIS

1) UNIFORMITY

Uniformity characterizes the distribution of 0 and 1 in the
PUF response. As the main reference for PUF performance,
the value of uniformity reflects the randomness of the PUF
response. The better the randomness, the higher the security
of the PUF. The ideal value for uniformity is 50%, meaning
that the probability of 0 and 1 in the PUF response should be
identical.

We separately calculate the uniformity of the front-end
Weak PUF and the overall L-PUF output response. A total
of 1024 bits responses are generated by 16 64-bit PUFs.
When the relative distance between the two paths is 5 LUTs,
the number of 1s is 396, and the uniformity is 38.7%, which
is close to the ideal value. Moreover, since our design does
not require high requirements for Weak PUF uniformity, this
value already ensures a good feedback function choice for
the LFSR.

The same four 64-bit challenges are loaded to the 16
L-PUFs, and each L-PUF records the output of the first
100 clock cycles. According to our design, all responses after
the 63rd clock cycles are taken, and we get 4 x 64 x 16 x
38 = 155648 bits responses. The number of 1s is 77488,
and the uniformity of L-PUF is 49.8%. The number of 1s
in the RL-PUF output response is 77522, and the uniformity
is 49.8%.

2) UNIQUENESS

A good PUF design should have good uniqueness. When
different PUF instances are implemented on different devices,
different instances will produce different responses for the
same challenge. Uniqueness measures inter-chip variation

64784

by evaluating how will design can differentiate d different
devices. It can be calculated using the inter-chip Hamming
distance (HD) as shown in (2). R; and R; represent the n-bit
responses generated from two chips i and j using the same
challenge C.

, 2 d-Ix—~d HD (Ri, R))
Uniqueness = mzi=l Zj=i+l — x 100
(@)

Ideally, when a PUF circuit is implemented on different
devices it should produce an average inter-chip HD close to
50% when supplied with the same challenge, implying that
half the response bits are different between the two devices
even though the same challenge has been used.

We test 16 L-PUF responses for each of the four chal-
lenges, and each PUF record the responses of the first
100 clock cycles. There are a total of 480 HD values for
the 16 groups of responses per cycle. The response of the
63th clock cycle is counted. The maximum inter-chip HD is
43, the minimum is 22, and the average is 32.16, which is
close to the ideal value of 32. That is, the uniqueness value of
the L-PUF is 50.25%. We test all the LR-PUF instances under
same conditions, and the uniqueness value is 49.66%. The
probability histogram of the inter-chip HD is shown in Fig. 12
and Fig. 13.

0.45

0.4

03
e
25
.
0.05 ‘
0 u
N

Density
o o
= = o
G)

O /\\ D 8 S P /\\ m\\ AN <\\ N @\Q%\
(PN >] N > >)
\\\\\\"f\"f\“/\\“\‘\\‘*‘\\\b
Hamming Distance

FIGURE 12. Inter-chip hamming distance of L-PUF.

3) RELIABILITY

Ideally, a PUF design, regardless of its implementation on
any device, should have a fully reproducible output response.
That is, its response to the same challenge should be exactly
the same at any time. However, due to environmental fac-
tors such as temperature and supply voltage fluctuations,
there is noise in the output response of the PUF. Therefore,
the reliability of the PUF response can be represented by the
ratio of the noise bits in the output response. For a device,
reliability can be evaluated by its average intra-chip HD as

VOLUME 7, 2019

S. Hou et al.: Lightweight LFSR-Based Strong PUF Design on FPGA

IEEE Access

0.4

0.35

0.3
0.25
5
0.1
0.05
0 [.
O N

\\\5\\;\\ \\\%%\x \\Qﬂ\ & %\\ <\v?’ o u:\«\ %\\W(f's?\kQ\\k\
IR FI SRR

Hamming Distance

Density
o
iy o
N

@

FIGURE 13. Inter-chip hamming distance of RL-PUF.

defined in (3).

L m(RK,)
HDintra = ; Zt:l f x 100 (3)

We obtain a total of n-bit responses for the s group. For
each response, R; is measured under normal operating con-
ditions, and R} is measured at different supply voltages and
temperatures. R ; is the 7-th sample of R;. The reliability is
equal to 100— HDmtm

For L-PUF designs that use Weak PUF to construct
Strong PUFs, the process deviation of the front-end Weak
PUF is used as the entropy source of the whole sys-
tem, and the back-end obfuscation logic is usually a sta-
ble and mature structure. Therefore, the reliability of the
L-PUF mainly depends on the reliability of the front-
end Weak PUF. Anderson computed the HD between the
responses of 36 128-bit PUF that designed on Xilinx
Virtex-5 FPGA board at high and low temperature. The
result shows that 72% of the responses changed by 5 or
fewer bits and no response experienced more than 10 bit
flips [24]. The average number of bit flips is 2.38 and the
HDjyirq 1s 3.7%. So, the reliability of this Weak PUF design
15 96.3%.

But in this design the use of LFSR as obfuscation logic
will cause reliability problem. The LFSR logic will amplify
the unreliability of Weak PUF. So, we must use reconstruc-
tion method to ensure that the responses are all regenerated.
We should use some Weak PUF design with good stabil-
ity [19] or some lightweight error correction scheme [25].
Moreover, instead of the error correction mechanism, we can
also choose the error tolerance mechanism according to the
application scenario. With a delicate error-tolerant mech-
anism we can avoid using expensive overhead error cor-
rection circuit. These tasks are left as future work of this
study.

VOLUME 7, 2019

4) MULTI-FUNCTIONALITY

We calculate the average inter-chip HD distribution of
the L-PUF and RL-PUF from the 63rd clock cycle to the
100th clock cycle. The results show that the distribution of the
average HD is slightly different, and the deviation is small.
The average HD, the mean and standard deviation for two
PUFs are tabulated in TABLE 2. That result shows that the
uniqueness of the PUF design is stable over time. The average
inter-chip HD fluctuating with clock cycle is shown in Fig.14.

TABLE 2. Average inter-chip HD results from clock cycle 63 to 100.

Average HD Min Max u c
L-PUF 3132 32.78 31.97 0.148
LR-PUF 30.6 32.72 31.95 0.246

Average hamming distance

30.5
63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Clock cycle

FIGURE 14. The distribution of average inter-chip HD of all the PUFs from
clock cycle 63 to 100.

Since the outputs of L-PUF and RL-PUF are different at
each clock cycle, we can equivalent one PUF to multiple
PUFs by outputting the response after the same period. This
feature is suitable for applications that require multiple PUFs
to improve system security, and can further reduce area over-
head. Moreover, it further enhances the unclonability of PUF
since cloning the CRPs spaces for all the possible periods is
considered impractical.

5) COMPARISON WITH RELATED WORK

A comparison of L-PUF and LR-PUF with other PUF designs
is listed in TABLE 3. The L-PUF and LR-PUF designs
achieve better hardware overhead on FPGA than previous
Strong PUF designs and nearly have the same uniqueness.
Particularly, with the changeable output period both the two
PUFs can offer numerous configuration options, which can
exponentially increase the CRPs number.

V. SECURITY ANALYSIS
As a security sensitive device, PUF faces a variety of security
threats. One of the most powerful threat in this category

64785

IEEE Access

S. Hou et al.: Lightweight LFSR-Based Strong PUF Design on FPGA

TABLE 3. Comparison with conventional Strong PUF design.

Feedforward
Design Arbiter PUF[26] Arbiter PUF[18] Arbiter

PUF[17]
Response(bit) 64 64 -
Uniqueness 23% 9.42% 38%
Reliability 99.20% - 90.20%
Hardware TSMC 180nm Artix-7 TSMC 180nm
Overhead 1212umx1212um 129x64 SLICEs -
PUF type FF-APUF[27] L-PUF LR-PUF
Response(bit) 64 64 64
Uniqueness 40% 50.25%, 49.66%
Reliability 97.10% 96.3%" 96.3%"
Hardware Artix-7 Artix-7 Artix-7
Overhead 44x64 SLICEs 210 SLICEs 129 SLICEs

is modeling attack, where the attacker builds a software
model of the PUF and intentionally collects a large set
of CRPs to train the model. According to the well-trained
model they can accurately predict responses of unknown
challenges. The modeling attack on Strong PUF was pro-
posed by Rithrmair et al. in 2010. They attacked some classic
Strong PUF designs, such as RO, arbiter PUF and various
improved designs, using machine learning algorithms such
as Logistic Regression and Support Vector Machine. The
CRP prediction accuracy of the arbiter PUF is as high as
99% [28]. With the development of hardware level and attack
algorithms, the time and accuracy of modeling is getting
higher and higher. Although our design has good performance
and small overhead, the resilience to modeling attack should
be further discussed.

A. SECURITY OF L-PUF

The modeling attacks is mainly used to compromise Strong
PUF. A practical Strong PUF design should have a large
CRP space. As we mentioned, attackers can predict unknown
responses by a well-trained PUF model. According to the
attacking principle, for designing a modeling attack resistant
Strong PUF, the randomness of CRP space must be increased
and the correlation between CRPs must be reduced. It often
complicates the PUF design and results in a significantly
increased hardware overhead. It’s necessary to strike a bal-
ance between security and overhead.

As a widely used PRNG, LFSR does have security prob-
lems. It is really not safe to use it directly as CSPRNG
(cryptographically secure PRNG). The random sequences
generating by LFSR are not cryptographically secure. The
construction of an LFSR of length n-bits can be easily
deduced by observing the 2 xN consecutive bits of its
sequence using the Berlekamp-Massey algorithm [29]. Due
to its inherent linearity, LFSR-based ciphers are vulnerable to
several form of attacking methods, such as machine learning
algorithms. However, LFSR is widely used in stream ciphers,
because it is simple, fast, and easy to implement for both
software and hardware. So, different security enhancement
on our design must be considered according to the actual
application scenario.

64786

B. SOME ENHANCEMENT METHODS

There are some methods to increase the linear complexity and
randomness of LFSR. We discuss three mostly used of them
as follows.

1) COMBINATION OF LFSRS
In this method, the output of several LFSRs is combined by a
Boolean function f to produce secure and random responses.
The function f has to satisfy certain criteria. For low hardware
overhead, f can be XOR logic. Fig. 15 illustrates the general
construction of this method.

Challenge

Response

FIGURE 15. The combination of LFSRs.

2) OUTPUT FILTER

Only a single LFSR also can produce secure response by fil-
tering the output. A Boolean function can be used to generate
response by filtering and combining the contents of the LFSR.

3) LFSR-BASED LIGHTWEIGHT CIPHER

For better security and attack resistant, the LFSR in our
design can be replaced with some LFSR-based lightweight
cipher, like Trivium [30], etc. This method may increase the
area overhead, but it can greatly improve the cryptographical
security and attack resilience of the design.

VI. CONCLUSION

This paper improves the place and route method of a PUF
that utilizes FPGA logic cell structure, then combines it with
the classic LFSR architecture to propose a new Strong PUF
that can be dynamically reconfigured. The PUF has a simple
structure and can be conveniently implemented in FPGA,
and has a greatly improved performance compared with a
traditional Strong PUF. It needs extra error correction circuit
or error tolerance scheme to ensure the reliability of front-end
Weak PUF, but the high reliability of well-designed Weak
PUF will make this overhead as small as possible. Moreover,
compared to other design, its area overhead is still very
small. This feature is very suitable for applications that are
sensitive to hardware overhead. We implement it on a 28nm
FPGA evaluation board. Experimental results show that the
PUF design is satisfactory in uniformity, uniqueness, and
reliability. We analyze the security of the design, and propose
some enhancement method to improve the modeling attack
resistance. In future, we will use more FPGA devices to build

VOLUME 7, 2019

S. Hou et al.: Lightweight LFSR-Based Strong PUF Design on FPGA

IEEE Access

alarger test set and increase the reliability of evaluation. Also,
it is necessary to quantitatively evaluate the resistance of the
design to modeling attack.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. G. Schmidt, G. Weisz, and M. French, “Evaluating rapid application
development with Python for heterogeneous processor-based FPGAs,” in
Proc. IEEE 25th Annu. Int. Symp. Field-Program. Custom Comput. Mach.
(FCCM), Apr. 2017, pp. 121-124.

A. Putnam, “Large-scale reconfigurable computing in a microsoft data-
center,” in Proc. IEEE Hot Chips 26 Symp. (HCS), Cupertino, CA, USA,
Aug. 2014, pp. 1-38.

Tencent Cloud. Accessed: Mar. 8, 2019. [Online]. Available: https://intl.
cloud.tencent.com/

Apple iPhone 7 Teardown. Accessed: May 21, 2019. [Online]. Available:
https://www.techinsights.com/blog/apple-iphone-7-teardown

S. McNeil, “Solving today’s design security concerns,” Xilinx, San Jose,
CA, USA, White Paper WP365 (v1.2), 2012, p. 14.

J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their use for IP protection,” in Cryptographic Hardware and
Embedded Systems, vol. 4727, P. Paillier and 1. Verbauwhede, Eds. Berlin,
Germany: Springer, 2007, pp. 63-80.

Y. Gao, D. C. Ranasinghe, S. F. Al-Sarawi, O. Kavehei, and D. Abbott,
“Emerging physical unclonable functions with nanotechnology,” IEEE
Access, vol. 4, pp. 61-80, 2016.

J. Zhang, X. Tan, X. Wang, A. Yan, and Z. Qin, “T2FA: Transparent two-
factor authentication,” IEEE Access, vol. 6, pp. 32677-32686, 2018.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, pp. 2026-2030, Sep. 2002.

P. Bulens, F.-X. Standaert, and J.-J. Quisquater, ‘““How to strongly link data
and its medium: The paper case,” IET Inf. Secur., vol. 4,no. 3, pp. 125-136,
2010.

G. Hammouri, A. Dana, and B. Sunar, “CDs have fingerprints too,”
in Cryptographic Hardware and Embedded Systems—CHES. Berlin,
Germany: Springer, 2009, pp. 348-362.

K. Lofstrom, W. R. Daasch, and D. Taylor, “IC identification circuit using
device mismatch,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, San Francisco, CA, USA, Feb. 2000, pp. 372-373.

J. Guajardo et al., “‘Anti-counterfeiting, key distribution, and key storage in
an ambient world via physical unclonable functions,” Inf. Syst. Frontiers,
vol. 11, no. 1, pp. 19-41, Mar. 2009.

P. Tuyls, G.-J. Schrijen, B. §k0ric’, J. van Geloven, N. Verhaegh, and
R. Wolters, “Read-proof hardware from protective coatings,” in Cryp-
tographic Hardware and Embedded Systems, vol. 4249, L. Goubin and
M. Matsui, Eds. Berlin, Germany: Springer, 2006, pp. 369-383.

C.-E. Yin, G. Qu, and Q. Zhou, “Design and implementation of a group-
based RO PUE” in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Grenoble, France, 2013, pp. 416-421.

G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proc. 44th ACM/IEEE Annu.
Design Autom. Conf., Jun. 2007, pp. 9-14.

D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas,
“Extracting secret keys from integrated circuits,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 13, no. 10, pp. 1200-1205, Oct. 2005.

Y. Hori, H. Kang, T. Katashita, A. Satoh, S. Kawamura, and K. Kobara,
“Evaluation of physical unclonable functions for 28-nm process field-
programmable gate arrays,” J. Inf. Process., vol. 22, no. 2, pp. 344-356,
2014,

M. Bhargava and K. Mai, “An efficient reliable PUF-based cryptographic
key generator in 65 nm CMOS,” in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), 2014, pp. 1-6.

L. Santiago et al., “Realizing strong PUF from weak PUF via neural
computing,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Nan-
otechnol. Syst. (DFT), Cambridge, MA, USA, Oct. 2017, pp. 1-6.

M. Goresky and A. M. Klapper, “Fibonacci and Galois representations
of feedback-with-carry shift registers,” IEEE Trans. Inf. Theory, vol. 48,
no. 11, pp. 2826-2836, Nov. 2002.

P. L’Ecuyer, “Tables of linear congruential generators of different sizes
and good lattice structure,” Math. Comput., vol. 68, no. 225, pp. 249-261,
Jan. 1999.

VOLUME 7, 2019

(23]

(24]

[25]

[26]

(27]

(28]

(29]

[30]

W. Liu, Z. Lu, H. Liu, R. Min, Z. Zeng, and Z. Liu, “A novel security
key generation method for SRAM PUF based on Fourier analysis,” IEEE
Access, vol. 6, pp. 49576-49587, 2018.

J. H. Anderson, “A PUF design for secure FPGA-based embedded sys-
tems,” in Proc. 15th Asia South Pacific Design Autom. Conf. (ASP-DAC),
Taipei, Taiwan, Jan. 2010, pp. 1-6.

Z. He, M. Wan, J. Deng, C. Bai, and K. Dai, “A reliable strong PUF
based on switched-capacitor circuit,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 26, no. 6, pp. 1073—1083, Jun. 2018.

J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas,
“A technique to build a secret key in integrated circuits for identification
and authentication applications,” in Proc. Symp. VLSI Circuits. Dig. Tech.
Papers, Honolulu, HI, USA, Jun. 2004, pp. 176-179.

C. Gu, Y. Cui, N. Hanley, and M. O’Neill, “Novel lightweight FF-APUF
design for FPGA,” in Proc. 29th IEEE Int. Syst.-Chip Conf. (SOCC),
Seattle, WA, USA, Sep. 2016, pp. 75-80.

U. Riihrmair, F. Sehnke, J. Solter, G. Dror, S. Devadas, and J. Schmidhuber,
“Modeling attacks on physical unclonable functions,” in Proc. 17th ACM
Conf. Comput. Commun. Secur. (CCS), Chicago, IL, USA, 2010, p. 237.
B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source
Code in C, 2nd ed. Hoboken, NJ, USA: Wiley, 1995.

N. Mentens, J. Genoe, B. Preneel, and 1. Verbauwhede,
implementation of Trivium,” in Proc. SASC, 2008, p. 8.

“A low-cost

SHEN HOU received the B.E. degree in micro-
electronics from Nanjing University, Jiangsu,
China, in 2005, and the M.S. degree in microelec-
tronics from the National University of Defense
Technology, Hunan, China, in 2008, where he is
currently pursuing the Ph.D. degree in microelec-
tronics. His main research interests include micro-
processor design, hardware security, embedded
systems, and the IoT application.

YANG GUO received the Ph.D. degree from
the National University of Defense Technology,
Hunan, China, in 1999. He is currently a Professor
with the National University of Defense Technol-
ogy, where he leads the Digital Signal Processor
Group and is the Director of the Integrated Cir-
cuits. He has authored or coauthored more than
50 publications on journals and conference pro-
ceedings. His primary research interests include
low power VLSI circuits, microprocessor design

®

and verification, and electronic design automation (EDA) techniques for
VLSI circuits.

SHAOQING LI received the B.S. and the M.S.
degrees in computer application from the National
University of Defense Technology, where he has
been with the School of Computer, since 1984.
From 1995 to 2001, he was an Associate Professor.
He has been a Professor, since 2002. His research
interests include microprocessor design, test, and
security.

64787

	INTRODUCTION
	RELATED RESEARCHES
	PHYSICAL UNCLONABLE FUNCTION
	REALIZING STRONG PUF FROM WEAK PUF
	THE CONCEPT OF LFSR

	PROPOSED PUF DESIGN
	ARCHITECTURE
	THE WEAK PUF DESIGN ON FPGA
	FURTHER DISCUSSION
	PERIPHERAL CIRCUIT

	IMPLEMENTATION AND RESULT EVALUATION
	FPGA IMPLEMENTATION
	HARDWARE OVERHEAD
	PERFORMANCE ANALYSIS
	UNIFORMITY
	UNIQUENESS
	RELIABILITY
	MULTI-FUNCTIONALITY
	COMPARISON WITH RELATED WORK

	SECURITY ANALYSIS
	SECURITY OF L-PUF
	SOME ENHANCEMENT METHODS
	COMBINATION OF LFSRS
	OUTPUT FILTER
	LFSR-BASED LIGHTWEIGHT CIPHER

	CONCLUSION
	REFERENCES
	Biographies
	SHEN HOU
	YANG GUO
	SHAOQING LI

