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ABSTRACT With the proliferation of cloud platforms, users are inclined to outsource their encrypted data
to cloud platforms. However, the existing encryption schemes only provide users with limited query types
over encrypted data. Meanwhile, if users encrypt their data by deterministic encryption, their encrypted
data will be easily subject to the frequency attack. Besides, users’ data privacy is likely to be disclosed
to the cloud server when their encrypted data is updated on cloud platforms. To address these problems,
in this paper, we propose an effective encrypted query scheme over outsourcing data on cloud platforms.
In our scheme, users’ data is encrypted based on all possible queries to meet users’ diverse query demands.
Furthermore, a double AES encryption method is adopted to cope with the frequency attack existing in
deterministic encryption. To protect users’ privacy when their data is updated, a neighbor rows exchange
method is designed in our scheme. The theoretical analysis and comparative experiments demonstrate the
effectiveness of our scheme.

INDEX TERMS Cloud platform, encrypted data, possible queries encryption, double AES encryption,
neighbor rows exchange.

I. INTRODUCTION
In the last decade, rapid development of cloud technology
including cloud storage and cloud computing has been made
over the world. More and more users tend to outsource their
data to cloud platforms [2], [9], [34], [37], [38]. There are two
motivations behind this phenomenon: One is that cloud plat-
forms have sufficient resources to store enormous users’ data
and provide further services (e.g., cloud computing), which
can greatly decrease the storage and computing burdens on
users’ side. The other is that cloud platforms provide the
accessing interfaces for users, which allow users to access
their data conveniently. However, in practice, cloud servers
are not always trustworthy [1], [22], [32], [36]. If users
directly submit their data to cloud platforms, the sensitive
information in their data will be exposed to cloud servers,
which results in the leakage of users’ privacy. In this case,
users will be reluctant or reject to outsource their data to cloud
platforms.

To avoid the above situation, users usually encrypt their
data before outsourcing it to cloud platforms. Since users’

The associate editor coordinating the review of this manuscript and
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secret keys are private, cloud servers are unable to decrypt
users’ encrypted data, which protects users’ privacy. Com-
mon encryption techniques adopted by users include deter-
ministic encryption [4], [5], order-preserving encryption [6],
[7] and homomorphic encryption [11], [26]. Concretely,
deterministic encryption has deterministic algorithm which
can always generate the same ciphertext for the same mes-
sage. Based on this algorithm, users can realize equality
check on encrypted data. Order-preserving encryption is
another useful encryption technique, where ciphertexts can
preserve the size order of plaintexts. This means that users
can realize more complex operations on encrypted data
by order-preserving encryption (e.g., range query). Besides,
homomorphic encryption allows users to aggregate their
encrypted data on cloud platforms. In this encryption tech-
nique, the decrypted calculation results on ciphertexts are
same as the working directly on the raw data. Although
users’ privacy is protected under these encryption techniques,
another important challenge for users is how to effectively
query their encrypted data.

Most previous works on encrypted data query focus on user
privacy protection but ignore the query efficiency. Several
works [3], [12], [15], [31], [33] consider the query efficiency
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but only focus on single query type (e.g., range query). Unlike
them, an early schemewas proposed in [16] to support various
SQL queries over encrypted data by performing approximate
filtering at the server and performing final query processing at
the client. It is further extended to handle aggregation queries
in [17], [18]. However, to realize the approximate filtering
in the encrypted domain, this scheme needs to consume a
mass of hardware resources. Then, a query-based encryption
scheme is proposed in [29] and [35]. In this scheme, users
can efficiently perform multiple types of query (e.g., equal-
ity checks, range query and aggregation). However, query-
based encryption requires users to provide their query sets
in advance and it fails to defeat the frequency attack in
deterministic encryption [25]. To address the second problem,
a system named Seabed was proposed in [27]. Seabed adopts
additively symmetric homomorphic encryption (ASHE) to
reduce the overhead of encrypted data aggregation and the
splayed ASHE to cope with the frequency attack. However,
the splayed ASHE introduces multiple new columns for orig-
inal databases to result in heavy storage overheads. Besides,
users’ privacy will be disclosed if their data is updated in this
system.

To overcome the deficiencies in the existing schemes,
in this paper, we propose an effective encrypted query scheme
over outsourcing data on cloud platforms. In our scheme,
users’ data is encrypted based on all possible queries rather
than users’ query sets. This method takes full advantage of
data characteristics and is more reasonable than the query-
based encryption. Meanwhile, a double AES encryption
method is proposed in our scheme, which leverages AES and
row identifies of data to encrypt raw data twice to cope with
the frequency attack in deterministic encryption. The cost of
this method is much lower than that of the splayed ASHE.
To implement the dynamic update of users’ encrypted data,
we design a neighbor rows exchange method. In this method,
the updated data in neighbor rows will exchange their storage
locations. Due to the location changes of updated data, cloud
servers cannot infer sensitive information from the process of
data update, which protects users’ privacy. In summary, our
contributions in this paper are listed as follows.

• In this paper, we propose an effective encrypted query
scheme on outsourcing data. In our scheme, the possible
query encryption method provides users with all possi-
ble queries over encrypted data. Meanwhile, the dou-
ble AES encryption method can defend against the
frequency attack successfully. Besides, the neighbor
rows exchange method can realize users’ encrypted data
update without disclosing users’ privacy.

• We introduce detailed theoretical analysis to demon-
strates the validity of the possible query encryption,
the double AES encryption and the neighbor rows
exchange method.

• The comparetive experiments in this paper indicate that
our scheme has much better performance on users’ data

encryption cost and users’ aggregation query cost com-
pared with the existing schemes.

The remaining of this paper is organized as follows.
Section 2 discusses the related work. Section 3 intro-
duces the preliminaries of our scheme including system
model, adversary model, query-based encryption and ASHE.
Section 4 presents our scheme in detail. Section 5 provides the
theoretical analysis for our scheme and section 6 shows the
experimental results. Finally, section 7 concludes this paper.

II. RELATED WORK
Many works have addressed various security and privacy
issues on data outsourcing (e.g., [13], [19]–[21], [23], [24],
[28], [30]), but they do not consider the query efficiency.
Meanwhile, there are a lot of existing works focus on
encrypted data query, but they only provide a specific query
for users and cannot meet user diverse query demands. Such
as, range query over encrypted data is realized in [8] and [31].
Multi-keyword ranked search over encrypted cloud data is
realized in [10].

A query scheme is proposed in [16], which can support
various SQL queries over encrypted data. In this scheme,
approximate filtering in the encrypted domain is performed
at the server and the final query processing is performed
at a trustworthy client. To support aggregation queries, this
scheme is extended in [17] and [18]. However, approximate
filtering in this scheme is at the level of rows, which results in
the high bandwidth required to transfer intermediate results
and heavy resources consumption to process the client-side
query. In contrast, our scheme can provide more complete
query operations over encrypted data at the server side (e.g.,
equality checks, sorting and aggregation), which can cut
down the unnecessary consumption of bandwidth and other
hardware resources (e.g., CPU).

A query-based query scheme over encrypted data is pro-
posed in [29], which adopts specilized encryption techniques
(e.g., deterministic encryption, order-preserving encryption
and homomorphic encryption) to perform certain kinds of
computations over encrypted data, such as equality, sorting,
and aggregation. By this scheme, users can have rich queries
on their encrypted data and avoid some unnecessary post-
processes to their data. In [35], they further improve the query
efficiency of this scheme by introducing several optimization
techniques. However, query-based encryption requires users
to provide their query sets in advance. In practice, this is
difficult for users because they do not have clear plans for
their data. Furthermore, this scheme fails to defeat the fre-
quency attack in deterministic encryption [25]. In contrast,
our scheme encryptes user data by possible query encryption
method, which can provide all possible queries for users
and allow users to change their query plans at any time.
Meanwhile, the double AES in our scheme can effectively
cope with the frequency attack.

A system named Seabed is implemented in [27],
which adopts additively symmetric homomorphic encryp-
tion (ASHE) to implement data encryption and greatly reduce
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FIGURE 1. The framework of our scheme.

the overhead of data aggregation in the encrypted domain.
Meanwhile, Seabed introduces a splayed ASHE to cope
with the frequency attack by splaying sensitive columns to
multiple columns. However, the splayed ASHE results in
heavy storage overheads because multiple new columns are
added in original databases. Besides, users’ privacy will be
leaked out if their data is updated in ASHE. In contrast,
the double AES method used in our scheme can cope with
frequency attack with much lower cost compared with the
splayed ASHE. Besides, the neighbor rows exchange method
designed in our scheme can successfully protect users privacy
when their encypted data is updated.

III. PRELIMINARIES
A. SYSTEM MODEL AND ADVERSARY MODEL
Fig.1 shows our system model which invloves in three enti-
ties: users, the user proxy and the cloud server. Here, users are
the owner of data and they generate their own secret keys for
encryption. The user proxy is the middleman who is in charge
of transmitting data between users and the cloud server. The
cloud server is in charge of storing users’ encrypted data. The
workflow of our model is described as follows. First, users
share their keys with the user proxy and submit their original
data to the user proxy. Then, the user proxy encrypts user
data according to the possible query encryption method and
outsources the encrypted data to the cloud server. To query the
encrypted data, users submit their original queries to the user
proxy. Then, these queries are parsed and transformed into the
queries used in the encrypted domain by the user proxy. Next,
the user proxy submits the new version of queries to the cloud
server. Finally, the cloud server returns the encrypted query
results to the user proxy according to submitted queries. Since
the user proxy has users’ keys, he can decrypt these results
and send them to users. Once users obtain the query results,
the whole procedure is finished.

We assume that the cloud server in our model is semi-
honest [14]. That is, he will strictly follow our scheme but
he is also curious about each individual user’s data. He may

eavesdrop all the messages sent from or to every user. Mean-
while, the user proxy is assumed be trustworthy. This means
that he will not expose users’ data to the public or tamper
the intermediate results. Besides, he will not collude with the
cloud server to disclose users’ privacy. For users, to protect
their privacy, they will share the real keys with the user proxy.

B. QUERY-BASED ENCRYPTION
Query-based encryption in [29] and [35] aims to improve
the efficiency of querying encrypted databases and it
adopts multiple encryption techniques to achieve this goal,
including randomization, deterministic encryption (DE),
order-preserving encryption (OPE) and homomorphic
encryption (HE). For randomization, two identical values are
mapped to different ciphertexts. Thus, ciphertext operations
are not allowed under this technique. For DE, two equal
values are mapped to the same ciphertext and it allows the
equality checks in the encrypted domain. In OPE, the size
order of plaintexts is preserved after encryption and the
range query is allowed. In HE, the ciphertexts are allowed
to perform aggregation calculations and the decrypted results
are still correct.

In query-based encryption, users first submit their data and
query sets to the user proxy. Then, the user proxy selects the
corresponding encryption techniques to encrypt users’ data
according to users’ query sets. Finally, the user proxy uploads
the encrypted data to the cloud server.

C. ASHE
ASHE in [27] assumes that there exists an additive group
Zn = {0, 1, · · · , n − 2, n − 1} and a secret key k is shared
between the encrypting entity and the decrypting entity.
A message m ∈ Zn is encrypted by ASHE as follow.

Enck (m, i) = ((m− Fk (i)+ Fk (i− 1)) mod n, {i}) (1)

Here, i is an identifier from a set I . Fk : I → Zn is a
pseudo-random function (PRF) that maps an identifier i in
I to a value in Zn and it is implemented by AES. For ease
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of presentation, The ciphertexts in ASHE is also denoted
as (c, S). Here, c is an element of Zn and S is a multiset
of identifiers. That is, the ciphertext Enck (m, i) can be also
denoted as (m, {i}). To create the additive homomorphism in
ASHE, a special operation ⊕ is defined as follow.

(c1, S1)⊕ (c2, S2) = ((c1 + c2) mod n, S1 ∪ S2) (2)

That is, the elements are added togehter and the multisets
of identifiers are combined in the operation ⊕. Besides,
the ciphertext (c, S) is decrypted as follow.

Deck (c, S) = (c,
∑
i∈S

(Fk (i− 1)+ Fk (i))) mod n (3)

The additive result of two ciphertexts is decrpted by com-
puting:

Deck (Enck (m1, i1)⊕ Enck (m2, i2))= (m1+m2) mod n (4)

As shown in (1), the encryption function in ASHE is
designed as (m−Fk (i)+Fk (i−1)) which has great advantages
on data aggregation in the encrypted domain. For example,
the ciphertexts of ASHE with consecutive identifiers {i, i +
1, · · · , n− 1, n} are added together. Due to the clever design
of encryption function, the final result of these ciphertexts
only contains Fk (i)− Fk (n) and the other Fk is offset during
the aggregation. Besides, Fk (i) and Fk (n) are easy to be
worked out. Since the Fk is implemented by AES, the total
computation overheads are low. Even if the identifiers of
ciphertexts are consecutive partly, the overhead of data aggre-
gation in ASHE is still much lower than that in the Paillier
Homomorphic Encryption [26] adopted in [29] and [35].

IV. OUR SCHEME
In this section, we will introduce our scheme in detail, which
includes three methods: possible query encryption, double
AES encryption and neighbor rows exchange.

A. POSSIBLE QUERY ENCRYPTION
To meet users’ diverse query demands for encrypted
databases, the possible query encryption in our scheme adopts
the same encryption techniques as the query-based encryp-
tion described in section 3.2. However, there are some obvi-
ous differences between them. First, DE is directly imple-
mented by AES in the query-based encryption, which can not
defend against the frequency attack. In contrary, in the pos-
sible query encryption, a double AES encryption is proposed
to implement the DE. This encryption method can cope with
the frequency attack effectively and will be discussed later.
Second, in the possible query encryption, HE is implemented
by ASHE rather than Paillier homomorphic encryption. From
section 3.3, we can see that the ASHE is much more efficient
than Paillier homomorphic encryption in terms of data aggre-
gation in the encrypted domain. Last but not least, instead of
users’ query sets, all possible queries for users’ data are taken
into consideration in the possible query encryption. For one
thing, users do not have clear understanding of their data so
that they can not provide valid query sets. For another thing,

TABLE 1. The incomes of employees.

users’ query demands may change over time. This means that
users’ data should not be encrypted by a single encryption
technique. Based on such considerations, the thought of all
possible queries is adopted in the possible query encryption.

Assume users’ original data is presented as Table 1. The
user proxy encrypts the data by columns according to the
possible query encryption method. First, the user proxy picks
out the column of gender and figures out the possible queries
on it. Since the equality check is the only operation on this
column, the user proxy adopts DE to encrypt it. Similarly,
since the equality check and the range query are possible
operations on the column of age, the user proxy encrypts it
by DE and OPE. For the column of salary, data aggregation
is the common operation on it. Therefore, apart from DE and
OPE, HE is also used to encrypt it. Here, HE is implemented
by ASHE. Besides, an identifier is introduced to each row
of encrypted database due to the use of ASHE. By the pos-
sible query encryption, the encrypted version of users’ data
in Table 1 is shown as Table 2.

From the Table 2, we can find some extra columns are
needed to store the encrypted data in possible queries encryp-
tion method. That is, this encryption method is likely to
increase the storage burdens for users. But, the extra storage
costs improves users’ query efficiency by avoiding the post-
process. Therefore, it is reasonable for users to improve their
query efficiency at the sacrifice of their storage costs in
possible queries encryption.

B. DOUBLE AES ENCRYPTION
For one thing, the frequency attack is a common attack mode
in DE. Specifically, the attacker can obtain the occurrence
frequency of plaintexts in advance. If these plaintexts are
encrypted by the existing DE, then the attacker can infer
the corresponding plaintexts according to the occurrence fre-
quency of ciphertexts. This is because the same plaintexts
have the same ciphertexts in DE. For another thing, the ASHE
in the possible query encryption introduces an identifier for
each row in the encrypted database. By these identifiers,
the double AES encryption method in our scheme can defend
against the frequency attack.

Double AES encryption method adopts two rounds of
AES to encrypt users’ data. During the first round of AES
encryption, the user proxy encrypts users’ datam by using the
secret key k shared by users. The encrypted result Enck (m) is
calculated as follow.

Enck (m) = AESk (m) (5)
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TABLE 2. The encrypted version of Table 1.

Then, at the second round of AES encryption, the interme-
diate encrypted result Enck (m) is viewed as the secret key of
AES to encrypt the identifier i (i is the identifier of the row
where m is). The final encrypted result DE(m) is shown as
follow.

DE(m) = AESEnck (m)(i) = AESAESk (m)(i) (6)

Since the identifier of each row is unique, the final encryp-
tion results of two identical data in different rows will be
different by using double AES encryption. This means the
double AES encryption in our scheme can defeat the fre-
quency attack effectively. It is worth noting that we use
AESk (m) to encrypt the identifier i rather than i to encrypt
AESk (m). This is because the cloud server can directly access
i and the final encryption result DE(m). Since AES is a sym-
metric encryption technique, if i is the secret key to encrypt
AESk (m), then the cloud server can directly decrypt DE(m)
and obtain AESk (m). In this case, the cloud server can still
launch the frequency attack. In contrast, using AESk (m) as
the key can avoid this because AESk (m) is unknown to the
cloud server and AES is currently not vulnerable to known-
plaintext attacks.

To support equality queries on encrypted databases imple-
mented by double AES encryption, the user proxy should
submit the intermediate encrypted result Enck (m) to the cloud
server. Then, the cloud server calculates the DE(m) row by
row according to (6) and performs the equality checks in the
encrypted database. If the DE(m) is equal to the data stored
in the database, then the data meets users’ query demands.
Although the cloud server can know the counts of data being
queried, he can not infer the corresponding plaintexts by the
frequency attack because the occurrence frequency of other
data is unknown to him under the double AES encryption.
The double AES encryption version of Table 1 is shown as
Table 3.

C. NEIGHBOR ROWS EXCHANGE
As mentioned before, in the possible query encryption,
we adopt the ASHE to implement the HE. However, if users
update their data encrypted by ASHE, their data privacy will
be leaked out to the cloud server. Assume a user’s original
data is m1. According to (1), it is encrypted by ASHE as
follow.

Enck (m1, i) = ((m1 − Fk (i)+ Fk (i− 1)) mod n, {i}) (7)

Then, the Enck (m1, i) is stored in the i-th row of database
on the cloud server. Now, this user intends to change the m1

to m2. Then, m2 is encrypted by ASHE as follow.

Enck (m2, i) = ((m2 − Fk (i)+ Fk (i− 1)) mod n, {i}) (8)

The Enck (m2, i) is sent to the cloud server to update the
content of the i-th row in database. However, the curious
cloud server can disclose this user’s data privacy by calcu-
lating:

1m = Enck (m2)− Enck (m1)

= ((m2 − Fk (i)+ Fk (i− 1))

− (m1 − Fk (i)+ Fk (i− 1))) mod n

= m2 − m1 (9)

The 1m may indicate the changes in users’ salaries or the
personnel changes of a company. Anyway, the private infor-
mation can be easily obtained by the cloud server, which
results in the disclosure of users’ privacy.

To address this problem, a neighbor rows exchangemethod
is proposed in our scheme. Neighbor rows in this method are
defined as two update rows which are adjacent to each other.
Assume the data in the i-th, (i+3)-th, (i+9)-th and (i+14)-th
row faces with update. Then, the i-th row and the (i + 3)-th
row are neighbor rows. Similar, the (i + 9)-th row and the
(i+14)-th row are also neighbor rows. In the case of multiple
data updates at the same time, each pair of neighbor rows
are divided into an exchange group and their updated value
is stored in each other’s locations. That is, for the data m1 to
be updated in i-th row and the m2 to be updated in j-th row,
assume i and j are neighbor rows. Then, in neighbor rows
exchange method, m1 and m2 are divided into an exchange
group. Meanwhile, the updated value of m1 is stored in j-th
row and the updated value ofm2 is stored in i-th row. Since the
rows where users’ data locates have changed after the update,
the cloud server can not infer users’ sensitive information
anymore and users’ privacy is protected.

In the case of a single data update, after receiving the i-th
user’s update data m, the user proxy stores this update data
locally and does not modify the corresponding data on the
cloud platform for the time being. Once some other users
submit their update data, the user proxy will take out m from
the local and combines it with other update data. The next
steps will the same as those in multiple data updates. It is
worth noting that the i-th user can query his update data at any
time and the user proxy can ensure the correctness of query
result. The above procedure can protect the i-th user’s privacy.

In neighbor rows exchange method, the neighbor rows
rather than two random rows exchange their stored data is
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TABLE 3. The double AES encryption version of Table 1.

to minimize the location changes of update data, which can
take full advantage of the homomorphic property in ASHE.
In addition, the validity of neighbor rows exchange method
will be demonstrated in the next section. The neighbor rows
exchange method is summarized as Algorithm 1.

Algorithm 1 Neighbor Rows Exchange
Input: Users’ update data setsM = {m1, · · · ,mi, · · · ,mn};
Output: The updated database on the cloud platform;
1: The user proxy confirms the number of update data n in

M ;
2: if n > 1 then
3: The user proxy devides the update data into multiple

neighbor rows;
4: The user proxy encrypts the update data according to

ASHE where the identifiers of their neighbor row are
used;

5: The cloud server stores the encrypted data in neighbor
row;

6: else
7: The user proxy stores the single update data mo in the

local;
8: if other update data is submitted from users then
9: mo is combined with these update data;
10: repeat the step 3, 4 and 5;
11: end if
12: end if
13: return the updated version of dataset;

At the end of this section, we compare our scheme with
other existing outsourcing data encryption schemes as shown
in Table 4.

V. THEORETICAL ANALYSIS
In this section, we will present the theoretical analysis of our
scheme. Specifically, we will respectively analyze the effec-
tiveness of possible query encryption, double AES encryption
and neighbor rows exchange.
Theorem 1: Possible query encryption in our scheme can

provide users with richer queries on encrypted data.
Proof 1: In the possible query encryption, users’ data is

encrypted according to all possible queries on their data. Each
type of data has its own characteristics: some are suitable
for equality checks but range queries and data aggregations
are meaningless to them (e.g., gender). DE is enough for
this type of data. Some are not only suitable for equality
checks but also for range queries and even data aggregations

(e.g., salary). This type of data should be encrypted by DE,
OPE and HE simultaneously. Considering these cases, pos-
sible query encryption encrypts users’ data according to the
characteristics of the data. This can avoid a lot of unnecessary
encryption for users’ data.

Compared with query-based encryption, possible query
encryption fully excavates the potential characteristics of
users’ data and provides a more complete query view for
users. For one thing, this method does not depend on users’
query sets, which can avoid users’ subjective limitations. For
another thing, users can change their query plans at any time.
In this case, their queries will not become invalid. Therefore,
possible query encryption is more reasonable than the query-
based encryption.
Theorem 2: Double AES encryption in our scheme can

defend against the frequency attack.
Proof 2: In the double AES encryption, users’ data has

a unique identifier and the different identifiers ensure that the
equal data has different ciphertexts. Assumem1 is equal tom2
and their identifiers are i and j (Here, i 6= j). According to (5)
and (6), m1 and m2 is encrypted by double AES encryption
as follow.

DE(m1) = AESEnck (m1)(i) = AESAESk (m1)(i) (10)

DE(m2) = AESEnck (m2)(j) = AESAESk (m2)(j) (11)

Since m1 is equal to m2, then AESk (m1) is equal to
AESk (m2). But i is not equal to j, then AESAESk (m1)(i) is
not equal to AESAESk (m2)(j). That is, DE(m1) is not equal to
DE(m2).
From the above discussion, we can find two equal data are

mapped to different ciphertexts by double AES encryption.
This can prevent the attacker from inferring the occurrence
frequency of plaintexts from the occurrence frequency of
ciphertexts. Therefore, double AES encryption can defend
against the frequency attack effectively.
Theorem 3: Neighbor rows exchange method in our

scheme can protect users’ privacy when their data is updated.
Proof 3: In the neighbor rows exchange method, in the

case of multiple data update, the update data of neighbor rows
exchanges their storage locations. Suppose m1 in the i-th row
and m2 in the j-th row are facing updates and their update
value are m′1 and m′2 respectively. Meanwhile, the i-th row
and the j-th row are the neighbor rows. According to (1), m1
and m2 are encrypted by ASHE as follow.

Enck (m1, i) = ((m1 − Fk (i)+ Fk (i− 1)) mod n, {i}) (12)

Enck (m2, j) = ((m2 − Fk (j)+ Fk (j− 1)) mod n, {j}) (13)
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TABLE 4. Different outsourcing data encryption schemes.

According to the neighbor rows exchange method, m′1 is
encrypted by ASHE with the identifier j and m′2 is encrypted
by ASHE with the identifier i:

Enck (m′1, j) = ((m′1 − Fk (j)+ Fk (j− 1)) mod n, {j}) (14)

Enck (m′2, i) = ((m′2 − Fk (i)+ Fk (i− 1)) mod n, {i}) (15)

To disclose users’ privacy, the cloud server will try to
obtain 1m1 by calculating:

1m1 = Enck (m′1)− Enck (m1)

= ((m′1 − Fk (j)+ Fk (j− 1))

− (m1 − Fk (i)+ Fk (i− 1))) mod n

= m′1 − m1 + (Fk (i)+ Fk (j− 1)

−Fk (j)− Fk (i− 1)) (16)

Since the cloud server does not know the key k , he can not
work out the Fk (i)+Fk (j−1)−Fk (j)−Fk (i−1) and obtain the
1m1 according to the (16). Similar, the cloud server can not
obtain1m2 either. In the case of a single data update, the only
update datamo is stored in the user proxy temporarily. At this
stage, the cloud server can not disclose users’ privacy because
the encrypted database on the cloud platform has no change.
When other update data is submitted, mo is combined with
them and they are updated by following the method of multi-
ple update data. Therefore, at this stage, users’ privacy is also
protected. In summary, the neighbor rows exchange method
in our scheme can protect users’ privacy when their data is
updated.

VI. EXPERIMENT
A. EXPERIMENT CONFIGURE
In this section, we will run some simulated experiments to
evaluate the performance of our scheme. The hardware used
in our experiments is a laptop with Intel i5-5200U CPU @
2.20GHz and 4GB RAM. Meanwhile, the operating system
is Windows 10 and the programming language is Java 1.8.0.
To implement OPE and Pallier Homomorphic encryption,
the opetoolbox 1 and the pailliertoolbox 2 are used in our
experiments. Meanwhile, AES and AHSE are also imple-
mented in our experiments. In addition, the experimental data
is synthetic which includes 21 users. Each user has gender
data, age data and salary data, as shown in Table 1. We will
evaluate the performance of our scheme from two aspects: the
encryption cost of the user proxy and the aggregation query
cost of users.

1https://github.com/ssavvides/jope
2http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox

FIGURE 2. The user proxy’s encryption cost.

B. THE ENCRYPTION COST OF THE USER PROXY
In this experiment, we will compare the encryption cost of the
user proxy in our scheme with that in CryptDB [29] which is
a mature encrypted query scheme and has been implemeted
by Google. Concretely, in our scheme, the user proxy needs
to encrypt users’ data by double AES encryption, OPE and
AHSE, as shown in Table 2. While In CryptDB, the user
proxy adopts DE, OPE and Pallier Homomorphic encryp-
tion to encrypt users’ data. Meanwhile, in this experiment,
we assume users’ query sets in CryptDB includes all possible
queries. To observe the encryption cost of the user proxy,
we measure the encryption time of the user proxy under the
different number of users which varies from 3 to 21. Repeat
10 times for each experiment and calculate the averages. The
experimental result is shown as Fig. 2.

From Fig. 2, we can find the user proxy in the two schemes
has similar encryption cost. Through our analysis, we find
OPE is most time-consuming in all of the encryption tech-
niques mentioned in this paper. OPE in our scheme has the
same implementation as OPE in CryptDB, which results in
the similar encryption cost of the user proxy in the two
schemes. To further compare the DE cost and HE cost of the
user proxy in the two schemes, we use double AES encryp-
tion, AES, ASHE and Paillier homomorphic encryption to
encrypt users’ salary data. Similarly, in these experiments,
the number of users is varied from 3 to 21. Each experiment
is repeated 10 times and the averages are calculated. The
experimental results are shown as Fig. 3.

From Fig. 3(a), we can find the deterministic encryp-
tion cost of the user proxy in our scheme is higher than
that in CryptDB. This is because double AES encryption in
our scheme is implemented by two rounds of AES while
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FIGURE 3. The encryption cost of the user proxy: (a) Deterministic Encryption, (b) Homomorphic Encryption.

FIGURE 4. The users’ aggregation query cost.

the deterministic encryption in CryptDB is implemented by
one round of AES. To defend against the frequency attack,
the extra encryption cost for the user proxy in our scheme
is acceptable. From Fig. 3(b), we can find the homomorphic
encryption cost of the user proxy in our scheme is much
lower than that in CryptDB. This is because ASHE used
in our scheme is implemented by the symmetric encryption
AES. Compared with the asymmetric encryption (i.e., Paillier
homomorphic encryption) used in CryptDB, ASHE is obvi-
ously much more efficient.

C. USERS’ AGGREGATION QUERY COST
In this experiment, we assume users intend to query the sum
of their salaries. This is a typical aggregation query in the
encrypted domain, which is supported by our scheme and
CryptDB. To compare the users’ aggregation query cost in
the two schemes, we measure users’ query time under the
different number of users which varies from 3 to 21. Each
experiment is repeated 10 times and the averages are calcu-
lated. The experimental result is shown as Fig. 4.

From Fig. 4, we can find that users’ aggregation query
cost in our scheme is much lower than that in CryptDB.

This is because users’ data is encrypted by ASHE in our
scheme. When aggregating the encrypted data, many calcu-
lation items are automatically cancelled out in our scheme,
as discussed in section 3.3. In contrast, in CryptDB, since
users’ data is encrypted by Paillier homomorphic encryption,
many exponent operations are executed when aggregating
the encrypted data, which results in huge time consumption.
Therefore, users’ aggregation query in our scheme is much
more efficient than that in CryptDB.

VII. CONCLUSION
In this paper, we propose an effective scheme to support
for query over encrypted databases on cloud platforms.
In our scheme, the possible query encryption provides a
complete query view for users, which guarantees the effi-
ciency of users’ queries. Meanwhile, the double AES encryp-
tion can defend against the frequency attack in deterministic
encryption successfully. Besides, the neighbor rows exchange
method can protect users’ privacy when their data is updated
on encrypted databases. The theoretical analysis in this paper
demonstrates the effectiveness of the three methods in our
scheme. Meanwhile, The comparative experiments show that
our scheme has good performance on the encryption cost of
the user proxy and users’ aggregation query cost.
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