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ABSTRACT In this paper, we investigate the rational fractions in the framework of conjugate product and
establish a division ring. Some conjugate properties on the proposed division ring are obtained, and the
similarity and consimilarity properties are investigated.

INDEX TERMS Rational fractions, conjugate product, inverse.

I. INTRODUCTION
The rational fraction is a very important concept in the field of
mathematics with broad applications. For example, a rational
fraction was used to approximate a complicated function
in [1], [2]. By using a continued fraction associated with two
matrices A and B, a solution to the standard Sylvester matrix
equation AX − XB = C was given in [3]. In abstract algebra,
the set of rational fractions is often used as an example for
constructing a field by extending a commutative ring [4].
In classic control theory, the plant and the stabilizing con-
troller of a single-input-single-output system are mathemati-
cally described by a rational fraction [5], [6]. In controller
design, the coprime factorization of rational fractions over
RH∞ plays a key role [7]. For example, a parameterization of
all stabilizing controllers was given in [8] based on a doubly
coprime factorization.

Recently, the concept of conjugate product for polynomial
matrices was proposed in [9] and it was used to give a unified
approach for solving a class of complexmatrix equations. The
conjugate product of polynomials was investigated in [10],
where some concepts in the framework of ordinary operation
are generalized to the case of conjugate product. In [11],
some criteria were provided for the coprimeness of two poly-
nomials in the framework of conjugate product in terms of
the so-called con-Sylvester matrices. The conjugate product
of polynomial matrices was investigated in [12]. Recently,
a real representation was provided in [13] for the complex
polynomial matrices in the framework of conjugate product.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jafar A. Alzubi.

As the conjugate product is a new concept of mathematical
operation and the rational fraction over it has not been inves-
tigated so far, in this paper, a division ring in the framework
of conjugate product is constructed by extending the poly-
nomial ring in the framework of conjugate product proposed
in [9] and [10]. Some interesting properties about this divi-
sion ring are obtained. In [11], a polynomial description in
the framework of conjugate product was given for antilinear
systems. With such a result, it is necessary to introduce
rational fractions in the framework of conjugate product as
tools to investigate antilinear systems. A possible application
of rational fractions in the framework of conjugate product is
to extend the concept of transfer functions into the context of
antilinear systems. We believe this will pave the way for the
study of dynamic control systems defined over a conjugate
product.

The organization of this paper is as follows. In Section II,
some preliminary results on conjugate product of polynomi-
als are given. The construction of rational fraction division
ring in the framework of conjugate product is introduced
in details in Section III. Some mathematical properties on
rational fractions in the framework of conjugate product are
provided in Section IV. A series approach is established in
Section V for rational fractions in the framework of conjugate
product. In Section VI, two concepts, similarity and con-
similarity are investigated, and some elementary results are
provided. Some concluding remarks are given in Section VII.

Throughout this paper, a is used to denote the conjugate of
a ∈ C. For a complex number c and a positive integer k, we
define

c∗k = c∗(k−1)
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with c∗0 = c. By this definition, it is obvious that

c∗k =

{
c, for even k,
c, for odd k.

For an arbitrary real a, the operation bac denotes the greatest
integer number not to exceed a, that is, a = bac + p with
0 ≤ p < 1 and bac ∈ Z.

II. PRELIMINARY RESULTS
The concept of conjugate product for complex polynomial
matrices was first proposed in [9] and it was used to establish
a unified approach for solving a class of complex matrix
equations. Some further properties for conjugate product of
polynomials and polynomial matrices were given in [10],
[12], respectively. In this section, we first present some basic
concepts and properties on conjugate product of polynomials
briefly. For detailed information, one can refer to [10].

Definition 1: For two polynomials a(s) =
m∑
i=0

aisi ∈ C[s]

and b(s) =
n∑
j=0

bjsj ∈ C[s], their conjugate product is defined
as

a(s)~ b(s) =
m∑
i=0

n∑
j=0

aib∗ij s
i+j.

For f (s) =
t∑
i=0

aisi ∈ C[s], with at 6= 0, t is called the

degree of f (s), and we denote the degree t by deg f (s) = t .
It is easily checked that

deg f (s)~ g(s) = deg f (s)+ deg g(s)

for 0 6= f (s), 0 6= g(s) ∈ C[s]. For convenience, the degree
of the zero polynomial is defined to be −∞, and we denote
deg 0 = −∞. Moreover, for any nonzero polynomial f (s) ∈
C[s], there holds deg 0 < deg f (s).
Lemma 1: Given a(s), b(s), c(s) ∈ C[s], the following

relations hold:
(1) Left distributivity: (a(s)+ b(s))~ c(s) = a(s)~ c(s)+

b(s)~ c(s);
(2) Right distributivity: a(s)~ (b(s)+c(s)) = a(s)~b(s)+

a(s)~ c(s);
(3) Associativity: (a(s)~b(s))~c(s) = a(s)~(b(s)~c(s)).
Remark 1: Different from the ordinary product, the conju-

gate product does not obey commutativity. For example, for
the following two polynomials

f (s) = (1+ 2i)s+ 3i,

g(s) = is+ 2− 4i,

One can easily check that

f (s)~ g(s) = (2− i)s2 − (9− 8i)s+ 12+ 6i,

g(s)~ f (s) = (2+ i)s2 + 13s+ 12+ 6i.

Obviously, f (s)~ g(s) is not equal to g(s)~ f (s).

Remark 2: It is well known that an arbitrary polynomial
with its degree not less than 1 can be factorized into product
of some divisors with degree 1 in the framework of ordinary
product in complex domain. However, such a conclusion does
not hold in the framework of conjugate product. For example,
one can not make factorization for the simple polynomial
f (s) = s2 + 1 in the framework of conjugate product.
In order to define rational fractions in the framework of

conjugate product, we give the following definitions of right
and left divisors.
Definition 2: Given two polynomials f (s), g(s) ∈ C[s],

a polynomial ϕR(s) ∈ C[s] is called a common right divisor
of them in the framework of conjugate produce if there exist
f̃ (s), g̃(s) ∈ C[s] such that

f (s) = f̃ (s)~ ϕR(s), g(s) = g̃(s)~ ϕR(s),

Further, ϕR(s) is called a greatest common right divisor
(briefly, gcrd) if an arbitrary common right divisor ϕ(s) of
them is a right divisor of ϕR(s).
Definition 3: Given two polynomials f (s), g(s) ∈ C[s],

a polynomial ϕL(s) ∈ C[s] is called a common left divisor of
them in the framework of conjugate produce if ϕL(s) satisfies

f (s) = ϕL(s)~ f̃ (s), g(s) = ϕL(s)~ g̃(s),

where f̃ (s), g̃(s) ∈ C[s]. Further, ϕL(s) is called a greatest
common left divisor (briefly, gcld) if an arbitrary common
left divisor ϕ(s) of them is a left divisor of ϕL(s).

Next, we give the concept of common right multiples.
Definition 4: For polynomials fi(s) ∈ C[s], i = 1 , 2, · · · ,

n, a polynomial m(s) is called a common right multiple of
them if there exist ui(s) ∈ C[s], i = 1 , 2, · · · , n, such that

m(s) = f1(s)~ u1(s) = f2(s)~ u2(s) = · · · = fn(s)~ un(s).

As to the existence of a common right multiple of two
polynomials, we have the following result.
Lemma 2: For two nonzero polynomials f (s), g(s) ∈ C[s],

there exist a nonzero common right multiple m(s) ∈ C[s].
That is, there exist u(s), v(s) ∈ C[s] such that

f (s)~ u(s) = g(s)~ v(s). (1)

Proof: The conclusion will be proven by using mathe-
matical induction for min{deg f (s), deg g(s)}.
(1) We consider the case of min{deg f (s), deg g(s)} = 0.
It is assumed that deg f (s) ≤ deg g(s). In this case, denote

f (s) = a, 0 6= a ∈ C,

g(s) =
n∑
i=0

bisi, 0 6= bn ∈ C, n ≥ 0.

Then, it is easily found that

v(s) = c, u(s) =
n∑
i=0

bic∗i

a
si

satisfy (1).
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(2) It is assumed that the conclusion holds for min{deg f (s),
deg g(s)} ≤ m. We consider the case of min{deg f (s),
deg g(s)} = m+ 1.
Without loss of generality, let deg f (s) ≤ deg g(s). In this

case, one has deg f (s) = m + 1. It follows from the Theo-
rem 3 of [10] that there exist h(s), r(s) ∈ C[s] such that

g(s) = f (s)~ h(s)+ r(s) (2)

with r(s) = 0 or deg r(s) < deg f (s). If r(s) = 0, then

u(s) = h(s),v(s) = 1

satisfy (1). If deg r(s) < deg f (s), then

min {deg f (s), deg r(s)} = deg r(s) < deg f (s) = m+ 1,

which implies min {deg f (s), deg r(s)} ≤ m. With this,
by using the induction assumption, there exist u0(s), v0(s) ∈
C[s] such that

r(s)~ u0(s) = f (s)~ v0(s).

By combining this relation with (2), one has

f (s)~ (v0(s)+ h(s)~ u0(s)) = g(s)~ u0(s),

which implies that{
u(s) = v0(s)+ h(s)~ u0(s)
v(s) = u0(s)

satisfy (1).
Therefore, the conclusion of this lemma holds for

min{deg f (s), deg g(s)} = m+ 1.
(3) According to the principle of mathematical induc-

tion, it can be concluded from the previous parts that the
result of this lemma holds for any two nonzero polynomials
f (s) and g(s).

The result of Lemma 2 shows the existence of a common
right multiple for any two polynomials in the framework of
conjugate product. By Lemma 2, the existence for a common
right multiple of more than two polynomials in the framework
of conjugate product can also be obtained.
Corollary 1: For nonzero polynomials fi(s) ∈ C[s], i = 1 ,

2, · · · , n, there exist a nonzero common right multiple m(s)
∈ C[s]. That is, there exist ui(s) ∈ C[s], i = 1 , 2, · · · , n, such
that

m(s) = f1(s)~ u1(s) = f2(s)~ u2(s) = · · · = fn(s)~ un(s).

Proof: Only the case of n = 3 is considered.
It follows from Lemma 2 that there exist nonzero common

right multiplem1(s) for f1(s) and f2(s), andm2(s) for f2(s) and
f3(s). Correspondingly, there exist v1(s), v2(s) ,w2(s),w3(s) ∈
C[s] such that

m1(s) = f1(s)~ v1(s) = f2(s)~ v2(s),

m2(s) = f2(s)~ w2(s) = f3(s)~ w3(s).

In addition, it can also be known by using Lemma 2 that there
exists a nonzero common right multiple m(s) for m1(s) and

m2(s). Correspondingly, there exist γ1(s), γ2(s) ∈ C[s] such
that

m(s) = m1(s)~ γ1(s) = m2(s)~ γ2(s).

From the preceding three relations, one has

m(s) = f1(s)~ v1(s)~ γ1(s) = f2(s)~ v2(s)~ γ1(s)

= f2(s)~ w2(s)~ γ2(s) = f3(s)~ w3(s)~ γ2(s).

This implies that the conclusion holds.
Lemma 2 and Corollary 1 will play a vital role in the next

section.
Remark 3: In the framework of ordinary product, there

exists the concept of the least commonmultiple for polynomi-
als. However, such a concept does not exist in the framework
of conjugate product. For example, for

f (s) = s+ 1+ i, g(s) = (1− i)s+ 2i,

one has

m1(s) = (1− i) s2 + (2+ 2i)s+ (2+ 2i)

= f (s)~ ((1+ i)s+ 2) = g(s)~ (s+ 1− i) ,

and

m2(s) = (1− i) s2 + (1+ i)s+ 2i

= f (s)~ ((1+ i)s+ 1+ i) = g(s)~ (s+ 1) .

These relations show that both m1(s) and m2(s) are common
right multiples of f (s) and g(s). However, it is easily found
that m1(s) is neither a right divisor nor a left divisor of m2(s),
and m2(s) is neither a right divisor nor a left divisor of m1(s).

III. THE DIVISION RING OVER (C(s), +,~)
In this section, we aim to establish a rational fraction division
ring by extending the polynomial ring in the framework of
conjugate product. For this purpose, the quotient set C(s)
under an equivalence relation is first constructed, and then the
sum and conjugate product of rational fractions are defined in
the set C(s).

A. THE QUOTIENT SET C(s)
Webegin with this section by defining an equivalence relation
in the following set

C[s]× C[s]\{0}
= {(g(s), f (s))| g(s) ∈ C[s], f (s) ∈ C[s]\{0}} .

Definition 5: (g(s), f (s)), (β(s), α(s)) ∈ C[s] × C[s]\{0}
have a relation ‘‘∼’’, denoted

(g(s), f (s)) ∼ (β(s), α(s)),

if there are two nonzero polynomials γ (s), π (s) ∈ C[s] such
that

m(s) = f (s)~ γ (s) = α(s)~ π (s),

implies

g(s)~ γ (s) = β(s)~ π (s).
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Since common right multiples of f (s) and α(s) are not
unique, we need to answer the following question for the
rationality of the above definition:

Is the relation ‘‘∼’’ between (g(s), f (s)) and (β(s), α(s))
dependent on the choice of a common right multiple of f (s)
and α(s)?
The following lemma gives an answer for this question.
Lemma 3: For (g(s), f (s)), (β(s), α(s)) ∈ C[s]×C[s]\{0},

let m1(s) and m2(s) are two nonzero common right multiples
of f (s) and α(s). That is, there exist γi(s), πi(s), i = 1, 2, such
that

m1(s) = f (s)~ γ1(s) = α(s)~ π1(s), (3)

m2(s) = f (s)~ γ2(s) = α(s)~ π2(s). (4)

Then,

g(s)~γ1(s)=β(s)~ π1(s)⇐⇒ g(s)~ γ2(s)=β(s)~ π2(s).

Proof: Let m(s) be a nonzero common right multiple of
m1(s) and m2(s). Then, there exist nonzero polynomials x(s),
y(s) ∈ C[s] such that

m(s) = m1(s)~ x(s) = m2(s)~ y(s).

By combining this relation with (3) and (4), one has{
f (s)~ γ1(s)~ x(s) = f (s)~ γ2(s)~ y(s)
α(s)~ π1(s)~ x(s) = α(s)~ π2(s)~ y(s)

,

which gives {
γ1(s)~ x(s) = γ2(s)~ y(s)
π1(s)~ x(s) = π2(s)~ y(s)

. (5)

Pre-multiplying both sides of the first expression in (5) by
g(s), gives

g(s)~ γ1(s)~ x(s) = g(s)~ γ2(s)~ y(s). (6)

Pre-multiplying both sides of the second expression in (5) by
β(s), gives

β(s)~ π1(s)~ x(s) = β(s)~ π2(s)~ y(s). (7)

With (6) and (7), the conclusion can be easily obtained.
It can be seen from Lemma 3 that the relation defined in

Definition 5 is not dependent on the choice of common right
multiples. The following result shows that the relation defined
in Definition 5 is in fact an equivalence relation.
Theorem 1: The relation ‘‘∼’’ given in Definition 5 is an

equivalence relation. That is, the following properties hold.
(1) Reflexivity: (g(s), f (s)) ∼ (g(s), f (s));
(2) Symmetry: (g(s), f (s)) ∼ (β(s), α(s)) H⇒ (β(s),

α(s)) ∼ (g(s), f (s));
(3) Transitivity: if (g1(s), f1(s)) ∼ (g2(s) , f2(s)),

(g2(s), f2(s)) ∼ (g3(s), f3(s)) , then (g1(s), f1(s)) ∼
(g3(s), f3(s)).
Proof: The properties (1) and (2) are obvious according

to Definition 5. Now, we give a proof of transitivity.

It follows fromCorollary 1 that there exists a common right
multiple m(s) of f1(s), f2(s) and f3(s), and correspondingly
there exist bi(s), i = 1, 2, 3, such that

m(s) = f1(s)~ b1(s) = f2(s)~ b2(s) = f3(s)~ b3(s). (8)

With this relation, it follows from (g1(s), f1(s)) ∼ (g2(s),
f2(s)) and (g2(s), f2(s)) ∼ (g3(s) , f3(s)) that

g1(s)~ b1(s) = g2(s)~ b2(s),

g2(s)~ b2(s) = g3(s)~ b3(s),

which gives g1(s) ~ b1(s) = g3(s) ~ b3(s). Combining this
relation with m(s) = f1(s) ~ b1(s) = f3(s) ~ b3(s) gives
(g1(s), f1(s)) ∼ (g3(s), f3(s)). The proof is thus completed.

Since the relation ‘‘∼’’ given in Definition 5 is an equiva-
lence relation, we can classify the setC[s]×C[s]\{0} in terms
of the relation ‘‘∼’’. The set of all (β(s), α(s)) for which (β(s),
α(s)) ∼ (g(s), g(s)) holds, will make up an equivalence class
in C[s]× C[s]\{0} by ∼. Let

g(s)
f (s)
= {(β(s), α(s)) ∈ C[s]× C[s]\{0}| (β(s), α(s))

∼ (g(s), g(s))} (9)

denote the equivalence class to which (g(s), g(s)) belongs.
Then the set of all the elements in C[s] × C[s]\{0} being
equivalent to each other is one element in the quotient set.

The quotient set of C[s] × C[s]\{0} by ∼ is the set of all
possible equivalence classes of C[s] × C[s]\{0} by ∼. That
is,

(C[s]×C[s]\{0}) /∼

=

{
g(s)
f (s)
| (f (s), g(s))∈C[s]×C[s]\{0}

}
.

For convenience, the quotient set (C[s]× C[s]\{0}) / ∼ with
the relation ‘‘∼’’ being defined in Definition 5 is denoted by
C(s) in this paper. Any element g(s)f (s) inC(s) is called a rational
fraction. Similarly to the case of ordinary rational fractions,
f (s) is called the denominator of g(s)

f (s) , and g(s) is called the

numerator of g(s)f (s) . According to the definition of equivalence
class in (9), for any g(s), f (s), a(s) ∈ C[s] with f (s) 6= 0,
a(s) 6= 0, there holds

g(s)
f (s)
=
g(s)~ a(s)
f (s)~ a(s)

. (10)

B. OPERATIONS IN C(s)
In the previous subsection, the quotient set C(s) has been
established. In this subsection, we define the sum and conju-
gate product for two rational fractions in C(s). First, the def-
inition for the sum of two rational fractions in C(s) is given.
Definition 6: For any g(s)

f (s) ,
β(s)
α(s) ∈ C(s), their sum in C(s)

is defined as

g(s)
f (s)
+
β(s)
α(s)
=
g(s)~ a(s)+ β(s)~ b(s)

m(s)
, (11)
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where m(s) ∈ C[s] is a common right multiple of f (s) and
α(s), and a(s), b(s) ∈ C[s] satisfy

m(s) = f (s)~ a(s) = α(s)~ b(s). (12)

Now, we check the rationality of Definition 6. For such an
aim, we need to show first that the sum defined in (11) is
independent of the choice of the common right multiplem(s).
Let m0(s) be another common right multiple of f (s) and α(s),
and correspondingly there exist a0(s), b0(s) ∈ C[s] satisfying

m0(s) = f (s)~ a0(s) = α(s)~ b0(s). (13)

In addition, let n(s) ∈ C[s] be a common right multiple of
m(s) and m0(s), and correspondingly there exist x(s), y(s) ∈
C[s] such that

n(s) = m(s)~ x(s) = m0(s)~ y(s).

Combining this relation with (12) and (13), gives{
a(s)~ x(s) = a0(s)~ y(s)
b(s)~ x(s) = b0(s)~ y(s)

.

With the previous relations, by using the property (10) we
have
g(s)
f (s)
+
β(s)
α(s)
=

g(s)~ a(s)+ β(s)~ b(s)
m(s)

=
(g(s)~ a(s)+ β(s)~ b(s))~ x(s)

m(s)~ x(s)

=
g(s)~ a(s)~ x(s)+ β(s)~ b(s)~ x(s)

m(s)~ x(s)

=
g(s)~ a0(s)~ y(s)+ β(s)~ b0(s)~ y(s)

m0(s)~ y(s)

=
(g(s)~ a0(s)+ β(s)~ b0(s))~ y(s)

m0(s)~ y(s)

=
g(s)~ a0(s)+ β(s)~ b0(s)

m0(s)
.

This implies that the sum defined in Definition 6 for two
rational fractions in C(s) does not depends on the choice of
the common right multiple of their denominators.

Next, we need to show that the sum in (11) does not
depends on the choice of the representative elements of
classes g(s)

f (s) and
β(s)
α(s) . Let

g0(s)
f0(s)

=
g(s)
f (s)

and
β0(s)
α0(s)

=
β(s)
α(s)

. (14)

It follows from Corollary 1 that there exists a common right
multiple n(s) ∈ C[s] for f0(s), f (s), α0(s) and α(s). Corre-
spondingly, there exist γ0(s), γ (s) , π0(s) and π (s) such that

n(s) = f0(s)~ γ0(s) = f (s)~ γ (s)

= α0(s)~ π0(s) = α(s)~ π (s).

Combining this relation with (14), gives{
g0(s)~ γ0(s) = g(s)~ γ (s)
β0(s)~ π0(s) = β(s)~ π (s)

.

With the preceding relations, by using the property (10) we
have

g0(s)
f0(s)

+
β0(s)
α0(s)

=
g0(s)~ γ0(s)+ β0(s)~ π0(s)

n(s)

=
g(s)~ γ (s)+ β(s)~ π (s)

n(s)

=
g(s)~ γ (s)
f (s)~ γ (s)

+
β(s)~ π (s)
α(s)~ π (s)

=
g(s)
f (s)
+
β(s)
α(s)

.

This implies that the sum defined in Definition 6 for two
rational fractions in C(s) does not depends on the choice of
the representative elements of the rational fractions.

In the set C(s), there exist a class of elements in the form
of 0

f (s) with 0 6= f (s) ∈ C[s]. According to the definition
of rational fraction in the framework of conjugate product,
we can define that 0

f (s) =
0
g(s) for any two nonzero polyno-

mials f (s), g(s) ∈ C[s]. Due to this reason, we can denote
0 = 0

f (s) inC(s). Before giving the definition of the conjugate
product for two rational fractions in C(s), we first provide an
example to illustrate the uniqueness for the sum.
Example 1: Given the following two rational fractions in

C(s) ,

g(s)
f (s)
=

(1+ i)s+ (2+ i)
s+ 1+ i

,
β(s)
α(s)
=

(1− 2i)s+ (1+ i)
(1− i)s+ 2i

,

we aim to calculate their sum in C(s). First, by simple calcu-
lation it can be obtained that

m1(s) = (1− i) s2 + (2+ 2i)s+ (2+ 2i)

= f (s)~ ((1+ i)s+ 2) = α(s)~ (s+ 1− i) .

With this relation, we have

g(s)
f (s)
+
β(s)
α(s)
=

g(s)~ ((1+ i)s+ 2)+ β(s)~ (s+ 1− i)
m1(s)

=
n1(s)
m1(s)

. (15)

with

n1(s) = (3− 2i) s2 + (7+ 5i)s+ (6+ 2i) .

In addition, it can be checked easily that

m2(s) = (1− i) s2 + (1+ i)s+ 2i

= f (s)~ ((1+ i)s+ 1+ i) = α(s)~ (s+ 1) .

With this relation, one has

g(s)
f (s)
+
β(s)
α(s)
=

g(s)~ ((1+ i)s+ 1+ i)+ β(s)~ (s+ 1)
m2(s)

=
n2(s)
m2(s)

, (16)

with

n2(s) = (3− 2i)s2 + (5+ 2i)s+ (2+ 4i).
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It can be seen that the expressions (15) and (16) for the sum
look very different. Onemay doubt whether the results in (15)
and ( 16) are equal. In fact, by simple calculation we have

m1(s)~ (s− 1) = m2(s)~ (s− 1+ i).

Moreover, it is also easily known that

n1(s)~(s− 1)= n2(s)~ (s−1+i)

=(3−2i)s3+(4+7i)s2+(−1−3i)s+(−6−2i).

By definition, this implies that the expressions in (15) and
(16) are the same.

Next, we give the definition of conjugate product for two
rational fractions in C(s).
Definition 7: For any g(s)

f (s) ,
β(s)
α(s) ∈ C(s), if β(s) = 0, their

conjugate product in C(s) is defined as
g(s)
f (s)

~
β(s)
α(s)
=

0
α(s)

.

If β(s) 6= 0, their conjugate product in C(s) is defined as
g(s)
f (s)

~
β(s)
α(s)
=

g(s)~ a(s)
α(s)~ b(s)

, (17)

where nonzero a(s), b(s) ∈ C[s] satisfy

m(s) = f (s)~ a(s) = β(s)~ b(s). (18)

Similarly to the case of sum, we need to check the ratio-
nality of Definition 7 for conjugate product of two rational
fractions in C(s). The case of β(s) = 0 is very simple, and
thus only the case of β(s) 6= 0 will be considered.

First, we show that the conjugate product defined in (17)
does not depend on the choice of the common right multiple
of f (s) and β(s) . It is assumed that m0(s) is another common
right multiple of f (s) and β(s), and correspondingly there
exist nonzero a0(s), b0(s) ∈ C[s] satisfying

m0(s) = f (s)~ a0(s) = β(s)~ b0(s). (19)

In addition, let n(s) ∈ C[s] be a common right multiple of
m(s) and m0(s), and correspondingly there exist x(s), y(s) ∈
C[s] such that

n(s) = m(s)~ x(s) = m0(s)~ y(s).

With this relation, it follows from (18) and (19) that{
a(s)~ x(s) = a0(s)~ y(s)
b(s)~ x(s) = b0(s)~ y(s)

.

With the previous relations, by using the property (10) it can
be derived that

g(s)
f (s)

~
β(s)
α(s)
=

g(s)~ a0(s)
α(s)~ b0(s)

=
(g(s)~ a0(s))~ y(s)
(α(s)~ b0(s))~ y(s)

=
g(s)~ a(s)~ x(s)
α(s)~ b(s)~ x(s)

=
g(s)~ a(s)
α(s)~ b(s)

.

Second, we will show that the conjugate product (17) is
independent of the choice of the representative elements in
the classes g(s)

f (s) and
β(s)
α(s) . Let

g0(s)
f0(s)

=
g(s)
f (s)

, and
β0(s)
α0(s)

=
β(s)
α(s)

. (20)

By using Corollary 1, there exists a common right multiple
n(s) ∈ C[s] for f0(s), f (s), β0(s) and β(s) . Correspondingly,
there exist γ0(s), γ (s), π0(s), π (s) ∈ C[s] such that

n(s) = f0(s)~ γ0(s) = f (s)~ γ (s)

= β0(s)~ π0(s) = β(s)~ π (s).

Combining this relation with (20), gives{
g0(s)~ γ0(s) = g(s)~ γ (s)

α0(s)~ π0(s) = α(s)~ π (s)
.

With the preceding relations, by using the property (10) it can
be obtained that

g0(s)
f0(s)

~
β0(s)
α0(s)

=
g0(s)~ γ0(s)
f0(s)~ γ0(s)

~
β0(s)~ π0(s)
α0(s)~ π0(s)

=
g0(s)~ γ0(s)

n(s)
~

n(s)
α0(s)~ π0(s)

=
g(s)~ γ (s)
α(s)~ π (s)

,

and
g(s)
f (s)

~
β(s)
α(s)
=

g(s)~ γ (s)
f (s)~ γ (s)

~
β(s)~ π (s)
α(s)~ π (s)

=
g(s)~ γ (s)

n(s)
~

n(s)
α(s)~ π (s)

=
g(s)~ γ (s)
α(s)~ π (s)

.

The preceding two expressions imply that the defined conju-
gate product for two rational fractions is independent of the
choice of the representative elements. Next we will provide
an example for the conjugate product in C(s).
Example 2: Given the following two rational fractions in

C(s),
g(s)
f (s)
=

(1+ 2i)s+ 2− i
s+ 1+ i

,
β(s)
α(s)
=

(1− i)s+ 2i
(2+ i)s+ 1− 2i

,

we aim to calculate their conjugate product inC(s). f (s) in this
example is the f (s) in the previous example, and β(s) here is
the α(s) in the previous example. Thus,

m1(s) = (1− i) s2 + (2+ 2i)s+ (2+ 2i)

= f (s)~ ((1+ i)s+ 2) = β(s)~ (s+ 1− i) .

With this relation, we have

g(s)
f (s)

~
β(s)
α(s)
=

g(s)~ ((1+ i)s+ 2)
m1(s)

~
m1(s)

α(s)~ (s+ 1− i)

=
δ1(s)
θ1(s)

. (21)

64020 VOLUME 7, 2019



A.-G. Wu et al.: Division Ring Over Conjugate Product

where

δ1(s) = g(s)~ ((1+ i)s+ 2)

= (3+ i)s2 + (5+ 5i)s+ (4− 2i),

θ1(s) = α(s)~ (s+ 1− i) = (2+ i)s2 + (2+ i)s− 1− 3i.

In addition, there holds

m2(s) = (1− i) s2 + (1+ i)s+ 2i

= f (s)~ ((1+ i)s+ 1+ i)

= β(s)~ (s+ 1) .

With this relation, it can be derived that

g(s)
f (s)

~
β(s)
α(s)
=

g(s)~ ((1+ i)s+ 1+ i)
m2(s)

~
m2(s)

α(s)~ (s+ 1)

=
δ2(s)
θ2(s)

, (22)

where

δ2(s) = g(s)~ ((1+ i)s+ 1+ i)

= (3+ i)s2 + (6+ 2i)s+ (3+ i),

θ2(s) = α(s)~ (s+ 1) = (2+ i)s2 + (3− i)s+ 1− 2i.

By simple calculation, it can be immediately obtained that

θ1(s)~ c1(s) = θ2(s)~ c2(s) = m(s)

with

c1(s) = is+ i,c2(s) = is+ 1+ i,

m(s) = (−1+ 2i)s3 + (4− 3i)s+ 3− i.

In addition, it can be checked that

δ1(s)~ c1(s)= δ2(s)~ c2(s)

= (−1+3i)s3+(4−2i)s2+(7−i)s+ 2+4i.

This shows that δ1(s)
θ1(s)

in (21) and δ2(s)
θ2(s)

in (22) are equal.
In fact, for both the sum and conjugate product defined in

this section, it is easy to prove their uniqueness. This paves
the way for main results in next section.

C. THE DIVISION RING (C(s), +, ~)
In this subsection, we show that the quotient set defined in
Subsection III-A with two operations ‘‘+’’ and ‘‘~’’ respec-
tively given in Definitions 6 and 7 is a division ring. First,
we show that (C(s), +) with the operation ‘‘+’’ defined in
Definition 6 is an Abelian group.
Theorem 2: Given g(s)

f (s) ,
g1(s)
f1(s)

, g2(s)f2(s)
, g3(s)f3(s)

∈ C(s), for the
operation ‘‘+’’ defined in Definition 6 the following relations
hold.
(1) Commutativity: g1(s)f1(s)

+
g2(s)
f2(s)
=

g2(s)
f2(s)
+

g1(s)
f1(s)

;
(2) Associativity:(

g1(s)
f1(s)

+
g2(s)
f2(s)

)
+
g3(s)
f3(s)

=
g1(s)
f1(s)
+

(
g2(s)
f2(s)
+
g3(s)
f3(s)

)
;

(3) Zero element: 0+ g(s)
f (s) =

g(s)
f (s) ;

(4) Negative element: g(s)f (s) +
−g(s)
f (s) = 0.

Proof: Only the proof of Item 2 is given here due to
limitation of space. It follows from Corollary 1 that there
exists a common right multiple m(s) of f1(s), f2(s) and f3(s),
correspondingly there exist ai(s) ∈ C[s], i = 1, 2, 3, such that

m(s) = f1(s)~ a1(s) = f2(s)~ a2(s) = f3(s)~ a3(s).

With this relation, we have(
g1(s)
f1(s)

+
g2(s)
f2(s)

)
+
g3(s)
f3(s)

=

(
g1(s)~ a1(s)
f1(s)~ a1(s)

+
g2(s)~ a2(s)
f2(s)~ a2(s)

)
+
g3(s)~ a3(s)
f3(s)~ a3(s)

=
g1(s)~ a1(s)+ g2(s)~ a2(s)

m(s)
+
g3(s)~ a3(s)

m(s)

=
g1(s)~ a1(s)+ g2(s)~ a2(s)+ g3(s)~ a3(s)

m(s)
,

and
g1(s)
f1(s)

+

(
g2(s)
f2(s)

+
g3(s)
f3(s)

)
=

g1(s)~ a1(s)
f1(s)~ a1(s)

+

(
g2(s)~ a2(s)
f2(s)~ a2(s)

+
g3(s)~ a3(s)
f3(s)~ a3(s)

)
=

g1(s)~ a1(s)
m(s)

+
g2(s)~ a2(s)+ g3(s)~ a3(s)

m(s)

=
g1(s)~ a1(s)+ g2(s)~ a2(s)+ g3(s)~ a3(s)

m(s)
.

The preceding two relations imply the conclusion of
Item 2.

The following theorem shows (C(s),~) with the operation
‘‘~’’ defined in Definition 7 is a noncommutative group.
Theorem 3: Given g(s)

f (s) ,
g1(s)
f1(s)

, g2(s)
f2(s)

, g3(s)
f3(s)
∈ C(s), for the

operation ‘‘~’’ defined in Definition 7 the following relations
hold.
(1) Associativity:(

g1(s)
f1(s)

~
g2(s)
f2(s)

)
~
g3(s)
f3(s)

=
g1(s)
f1(s)

~

(
g2(s)
f2(s)

~
g3(s)
f3(s)

)
;

(2) Identity element: 1
1 ~ g(s)

f (s) =
g(s)
f (s) ~

1
1 =

g(s)
f (s) ;

(3) Inverse element: there exists a ρ(s) ∈ C(s) such that

ρ(s)~
g(s)
f (s)
=
g(s)
f (s)

~ ρ(s) =
1
1

for any 0 6= g(s)
f (s) ∈ C(s).

Proof: (1) Let a(s), b(s) be two nonzero polynomials in
C[s] such that

m1(s) = f1(s)~ a(s) = g2(s)~ b(s).

Further, let c(s), d(s) be two nonzero polynomials in C[s]
such that

m2(s) = f2(s)~ b(s)~ c(s) = g3(s)~ d(s).

With these relations, we have(
g1(s)
f1(s)

~
g2(s)
f2(s)

)
~
g3(s)
f3(s)

=

(
g1(s)~ a(s)

m1(s)
~

m1(s)
f2(s)~ b(s)

)
~
g3(s)
f3(s)
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=
g1(s)~ a(s)
f2(s)~ b(s)

~
g3(s)
f3(s)

=
g1(s)~ a(s)~ c(s)
f2(s)~ b(s)~ c(s)

~
g3(s)~ d(s)
f3(s)~ d(s)

=
g1(s)~ a(s)~ c(s)

f3(s)~ d(s)
,

and

g1(s)
f1(s)

~

(
g2(s)
f2(s)

~
g3(s)
f3(s)

)
=

g1(s)
f1(s)

~

(
g2(s)~ b(s)~ c(s)
f2(s)~ b(s)~ c(s)

~
g3(s)~ d(s)
f3(s)~ d(s)

)
=

g1(s)~ a(s)~ c(s)
f1(s)~ a(s)~ c(s)

~

(
m1(s)~ c(s)

m2(s)
~

m2(s)
f3(s)~ d(s)

)
=

g1(s)~ a(s)~ c(s)
m1(s)~ c(s)

~
m1(s)~ c(s)
f3(s)~ d(s)

=
g1(s)~ a(s)~ c(s)

f3(s)~ d(s)
.

The preceding two relations imply the result of Item 1.
(2) The proof is very simple, and thus is omitted.
(3) ρ(s) = f (s)

g(s) satisfies the condition.
In fact, in the definition of an inverse element in Theorem 3,

only one condition of ρ(s) ~ g(s)
f (s) =

1
1 or g(s)

f (s) ~ ρ(s) = 1
1 is

sufficient.
Lemma 4: For ρ(s), r(s) ∈ C(s), there holds

ρ(s)~ r(s) =
1
1
⇐⇒ r(s)~ ρ(s) =

1
1
.

Proof: Only the part of ‘‘H⇒’’ is proven.
By using definition of conjugate product for two rational

fractions and the associativity in the Item 1 of Theorem 3,
we have

r(s)~ ρ(s) = r(s)~
1
1
~ ρ(s)

= r(s)~ (ρ(s)~ r(s))~ ρ(s)

= (r(s)~ ρ(s))~ (r(s)~ ρ(s)) ,

which gives

(r(s)~ ρ(s))~
(
1
1
− r(s)~ ρ(s)

)
= 0. (23)

Since ρ(s) ~ r(s) = 1
1 , there hold ρ(s) 6= 0, and r(s) 6= 0.

Thus, r(s) ~ ρ(s) 6= 0. With this, it follows from (23) that
1
1 − r(s)~ρ(s) = 0. This is the conclusion. The proof is thus
completed.
For r(s) ∈ C(s), if ρ(s) ~ r(s) = r(s) ~ ρ(s) = 1, then

ρ(s) is called the inverse of r(s), and is denoted by ρ(s) =
r−1(s) = (r(s))−1.
Theorem 4: Given g(s)

f (s) ,
g1(s)
f1(s)

, g2(s)f2(s)
, β(s)
α(s) ,

β1(s)
α1(s)

, β2(s)
α2(s)
∈ C(s),

for the operation ‘‘+’’ defined in Definition 6 and the oper-
ation ‘‘~’’ defined in Definition 7, the following relations
hold.
(1) Left distributivity:

(
g1(s)
f1(s)
+

g2(s)
f2(s)

)
~β(s)
α(s) =

g1(s)
f1(s)

~β(s)
α(s)+

g2(s)
f2(s)

~ β(s)
α(s) ;

(2) Right distributivity: g(s)
f (s) ~

(
β1(s)
α1(s)
+

β2(s)
α2(s)

)
=

g(s)
f (s) ~

β1(s)
α1(s)
+

g(s)
f (s) ~

β2(s)
α2(s)

.
Proof: (1) Let m(s) be a common right multiple of f1(s),

f2(s) and β(s), and correspondingly there exist a1(s), a2(s),
b(s) such that

m(s) = f1(s)~ a1(s) = f2(s)~ a2(s) = β(s)~ b(s).

With this, by using the property (10) we have(
g1(s)
f1(s)

+
g2(s)
f2(s)

)
~
β(s)
α(s)

=

(
g1(s)~ a1(s)
f1(s)~ a1(s)

+
g2(s)~ a2(s)
f2(s)~ a2(s)

)
~
β(s)~ b(s)
α(s)~ b(s)

=
g1(s)~ a1(s)+ g2(s)~ a2(s)

m(s)
~

m(s)
α(s)~ b(s)

=
g1(s)~ a1(s)+ g2(s)~ a2(s)

α(s)~ b(s)
,

and
g1(s)
f1(s)

~
β(s)
α(s)
+
g2(s)
f2(s)

~
β(s)
α(s)

=
g1(s)~ a1(s)
f1(s)~ a1(s)

~
β(s)~ b(s)
α(s)~ b(s)

+
g2(s)~ a2(s)
f2(s)~ a2(s)

~
β(s)~ b(s)
α(s)~ b(s)

=
g1(s)~ a1(s)
α(s)~ b(s)

+
g2(s)~ a2(s)
α(s)~ b(s)

=
g1(s)~ a1(s)+ g2(s)~ a2(s)

α(s)~ b(s)
,

which imply the conclusion of Item 1.
(2) It can be proven similarly to the case Item 1.
From Theorems 2, 3, and 4, we have the following main

result of this paper.
Theorem 5: The set C(s) with two operations ‘‘+’’ and

‘‘~’’ respectively defined in Definitions 6 and 7 is a division
ring. It is denoted by (C(s), +, ~).
For convenience, we denote a(s)

1 = a(s) for a(s) ∈ C[s]
in the division ring (C(s), +, ~). With this notation, for any
0 6= f (s) ∈ C[s], there holds

f (s)
f (s)
= 1.

In addition, it is easily known that

a−1(s) =
(
a(s)
1

)−1
=

1
a(s)

.

Thus, for a rational fraction r(s) = g(s)
f (s) with f (s), g(s) ∈ C[s],

one has

r(s) =
g(s)
1

~
1
f (s)
= g(s)~ f −1(s).

By now, we establish the division ring (C(s),+, ~) by
extending the ring (C[s],+, ~). With the notation a(s)

1 =

a(s), we can say that C[s] ⊂ C(s).
The inverse of rational fractions has the following property.
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Lemma 5: For nonzero r1(s), r2(s) ∈ C(s), there holds

(r1(s)~ r2(s))−1 = r−12 (s)~ r−11 (s).

Proof: By using the associativity of conjugate product
for rational fractions, it can be derived that

(r1(s)~ r2(s))~
(
r−12 (s)~ r−11 (s)

)
= r1(s)~

(
r2(s)~

(
r−12 (s)~ r−11 (s)

))
= r1(s)~

((
r2(s)~ r−12 (s)

)
~ r−11 (s)

)
= r1(s)~

(
1~ r−11 (s)

)
= r1(s)~ r−11 (s)

= 1,

which implies the conclusion.
The following corollary is obvious.
Lemma 6: For nonzero ri(s) ∈ C(s), i = 1, 2, · · · , n, there

holds

(r1(s)~r2(s)~· · ·~rn(s))−1=r−1n (s)~· · ·~r−12 (s)~r−11 (s).

At the end of this section, we investigate a special rational
fraction. For c ∈ C and an integer k , the operation c

←−
k is

defined as

c
←−
k
= c

k−2
⌊
k
2

⌋
(cc)

⌊
k
2

⌋
.

Given f (s) =
n∑
i=0

aisi ∈ C[s], and c ∈ C , let

g(s) =
n−1∑
k=0

 n∑
j=k+1

aj
(
c∗(k+1)

)←−−−−−j−(k+1)

 sk .

Then, we have

f (s)
x − c

= g(s)+

n∑
j=0

ajc
←−
j

x − c
.

This relation implies that x− c is a right divisor of f (s) if and

only if
n∑
j=0

ajc
←−
j
= 0. Due to this reason, in the framework of

conjugate product we define for f (s) =
n∑
i=0

aisi ∈ C[s] and

c ∈ C

f (c) =
n∑
j=0

ajc
←−
j .

It is easily checked that a polynomial has a right divisor
with degree 1 if and only if it has a monic right divisor
with degree 1. Combining this fact with the preceding reason,
the following conclusion can be obtained.
Lemma 7: A nonzero polynomial f (s) ∈ C[s] has a right

divisor with degree 1 if and only if there exists a c ∈ C such
that f (c) = 0.
In Remark 2, it is pointed out that s2 + 1 can not been

factorized into the conjugate product of two divisors with

degree 1. Such a fact can be easily intepreted by using
Lemma 7. Obviously, if s2 + 1 can be factorized into the
conjugate product of two divisors with degree 1, then it has
a monic right divisor with degree 1. By applying Lemma 7,
there exists a c ∈ C such that c

←−
2
+ 1 = 0. However,

c
←−
2
+ 1 = cc+ 1 = |c|2 + 1 > 0.

Such a contradiction implies that s2 + 1 can not been factor-
ized into the conjugate product of two divisors with degree 1.

IV. CONJUGATE PROPERTIES FOR RATIONAL
FRACTIONS IN C(s)
In this section, wewill investigate somemathematical proper-
ties for rational fractions inC(s). Most of these properties are
related to the conjugate operation. First, we give the definition
of conjugate for a polynomial in the framework of conjugate
product.

Definition 8: For a polynomial f (s) =
n∑
i=0

aisi ∈ C[s], its

conjugate is defined as

f (s) =
n∑
i=0

aisi.

The conjugate of polynomials in the framework of conju-
gate product has some interesting properties.
Lemma 8: Given f (s), g(s) ∈ C[s], the following relations

hold.
(1) f (s) = f (s);
(2) If p(s) = f (s)+ g(s). Then p(s) = f (s)+ g(s);
(3) If h(s) = f (s)~ g(s). Then h(s) = f (s)~ g(s).

Proof: (1) The conclusions of Items 1 and 2 are obvious.

(3) Denote f (s) =
n∑
i=0

aisi, g(s) =
m∑
j=0

bjsj. Then, we have

f (s)~ g(s) =

(
n∑
i=0

aisi
)
~

 n∑
j=0

bjsj


=

n∑
i=0

n∑
j=0

ai
(
bj
)∗i

si+j

=

n∑
i=0

n∑
j=0

aib∗ij s
i+j

= h(s).

The proof is completed.

For f (s) =
n∑
i=0

aisi ∈ C[s] and c ∈ C, one has

f (c) =
n∑
i=0

aic
←−
i
=

n∑
i=0

aic
←−
i = f (c),

which implies that f (c) = 0 if and only f (c) = 0. From this
fact, it can be seen that if s− c is a right divisor of f (s), then
s− c is a right divisor of f (s).
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With the definition of conjugate for polynomials, the def-
inition of conjugate for rational fractions can be given as
follows.
Definition 9: For a rational fraction r(s) = g(s)

f (s) ∈ C(s)
with f (s), g(s) ∈ C[s], its conjugate is defined as

r(s) =
g(s)

f (s)
.

The conjugate of rational fractions in the framework of
conjugate product has some interesting properties.
Lemma 9: Given r(s), ρ(s) ∈ C(s), the following relations

hold.
(1) r(s) = r(s);
(2) If ω(s) = r(s)+ ρ(s). Then ω(s) = r(s)+ ρ(s);
(3) If η(s) = r(s)~ ρ(s). Then η(s) = r(s)~ ρ(s).

Proof: (1) The conclusion is obvious.
(2) Denote r(s) = g(s)

f (s) , ρ(s) =
β(s)
α(s) with g(s), f (s), α(s),

β(s) ∈ C[s]. Letm1(s) be a common right multiple of f (s) and
g(s), and correspondingly there exist nonzeros a(s), b(s) ∈
C[s] such that

m1(s) = f (s)~ a(s) = α(s)~ b(s).

By using Lemma 8, one has

m1(s) = f (s)~ a(s) = α(s)~ b(s).

With this relation, by using Lemma 8 it can be obtained that

r(s)+ ρ(s) =
g(s)

f (s)
+
β(s)
α(s)

=
g(s)~ a(s)

f (s)~ a(s)
+
β(s)~ b(s)

α(s)~ b(s)

=
g(s)~ a(s)+ β(s)~ b(s)

m1(s)
.

In addition, it is known that

ω(s) = r(s)+ ρ(s) =
g(s)~ a(s)+ β(s)~ b(s)

m1(s)
.

According to Definition 9, the preceding two relations imply
the conclusion.

(3) Define r(s) and ρ(s) as before, and let m2(s) be a
common right multiple of f (s) and β(s). Correspondingly,
there exist nonzeros c(s), d(s) ∈ C[s] such that

m2(s) = f (s)~ c(s) = β(s)~ d(s).

By using Lemma 8, we have

m2(s) = f (s)~ c(s) = β(s)~ d(s).

With this relation, by using Lemma 8 it can be obtained that

r(s)~ ρ(s) =
g(s)

f (s)
~
β(s)
α(s)

=
g(s)~ c(s)

f (s)~ c(s)
~
β(s)~ d(s)

α(s)~ d(s)

=
g(s)~ c(s)

α(s)~ d(s)
.

In addition, it is known that

η(s) = r(s)~ ρ(s) =
g(s)~ c(s)
α(s)~ d(s)

.

According to Definition 9, the preceding two relations imply
the conclusion.

For a rational fraction r(s) ∈ C(s), if h(s) ~ r(s) = 1,
we denote h(s) = r−1(s). In addition, according to the pre-
ceding definitions it is easily known that r−1(s) denotes the
conjugate of the inverse r−1(s) of r(s). With these notations,
the following conclusion is obtained.
Lemma 10: For a nonzero r(s) ∈ C(s), there holds

r−1(s) = r−1(s).
Further, by using Lemmas 6 and 9 we can obtain the

following result.
Lemma 11: Given nonzero ri(s) ∈ C(s), i = 1, 2, · · · , n,

denote ω(s) = r1(s)~ r2(s)~ · · ·~ rn(s). Then

ω−1(s) = r−1n (s)~ r−1n−1(s)~ · · ·~ r−12 (s)~ r−11 (s).

V. A SERIES APPROACH IN (C(s), +, ~)
In previous sections, we investigate the rational fractions in
C(s) in general. In this section, we investigate it from a differ-
ent perspective. We begin with this section by investigating a
class of special rational fractions in (C(s), +, ~). Consider a
rational fraction r(s) = a

bsi , with a, b ∈ C, b 6= 0. One has

r(s) =
a
bsi
= a~

1
bsi
= a~

1
si ~ b∗i

= a~

(
b−1

)∗i
si ~ b∗i ~

(
b−1

)∗i
= a

(
b−1

)∗i
~

1
si
.

If we denote

c−i = a
(
b−1

)∗i
, s−i =

1
si
,

then, r(s) = a
bsi = c−i~ s−i. With these notations, for f (s) =

ajsj ∈ C[s] and r(s) = c−i ~ s−i ∈ C(s), i ≥ 1, one has

f (s)~ r(s) = ajc
∗j
−i ~ sj−i.

In addition, by using Definition 7 and the property (10) we
have

r(s)~ f (s) = c−i ~
1
si
~ ajsj

= c−i ~
(
1
si
~ aj

)
~ sj

= c−i ~

(
a∗(−i)j

si ~ a∗(−i)j

~
ajsi

si

)
~ sj

= c−i ~

(
a∗(−i)j

ajsi
~
ajsi

si

)
~ sj

= c−i ~ a∗(−i)j ~
1
si
~ sj

= c−ia
∗(−i)
j ~ sj−i.
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For ρ(s) = d−k ~ s−k ∈ C(s), k ≥ 1, and r(s) = c−i ~ s−i ∈
C(s), i ≥ 1, by Definition 7 and the property (10) it can be
derived that

r(s)~ d(s) = c−i ~
1
si
~ d−k ~

1
sk

= c−i ~

(
d∗(−i)
−k

si ~ d∗(−i)
−k

~
d−ksi

si

)
~

1
sk

= c−i ~

(
d∗(−i)
−k

d−ksi
~
d−ksi

si

)
~

1
sk

= c−i ~ d∗(−i)
−k ~

1
si
~

1
sk

= c−id
∗(−i)
−k ~ s−(i+k).

The preceding relations imply that, if we denote r(s) = c−i~
s−i = c−is−i, for i ≥ 1, then there holds

aisi ~ bjsj = aib∗ij s
i+j, for any integers i and j.

With this observation, the following conclusion can be easily
derived.
Theorem 6: For r(s) =

n∑
i=−m

aisi ∈ C (s), ρ(s) =

l∑
i=−t

bjsj ∈ C (s) with m, n, t and l being integers not less

than 0, there holds

r(s)~ ρ(s) =
n∑

i=−m

l∑
j=−t

aib∗ij s
i+j.

This theorem states that the conjugate product of two
rational fractions can be defined similarly to the case of
polynomials in C[s] when they are represented in the form
of series. Such a fact also shows that the definition of rational
fractions given in Subsection III-A and the operations ‘‘+’’
and ‘‘~’’ for rational fractions in Subsection III-B can be
unified.

VI. SIMILARITIES OF RATIONAL FRACTIONS OVER C(s)
There are several similarity concepts for conjugate prod-
uct [10] and here we fist investigate the normal similarity
concept defined below.

A. SIMILARITY
Wefirst give the so-called similarity for two rational fractions
over C(s).
Definition 10: Two rational fractions r(s), ρ(s) ∈ C(s) are

called similar in the framework of conjugate product, denoted

r(s) m ρ(s)

if there exists a nonzero rational fraction p(s) ∈ C(s) such
that

r(s) = p(s)~ ρ(s)~ p−1(s).

We first prove that the similarity defined above is an equiv-
alence relation as stated below.

Theorem 7: The similarity of rational fractions in Defi-
nition 10 is an equivalence relation. That is, the following
properties hold.

(1) Reflexivity: r(s) m r(s) for r(s) ∈ C(s);
(2) Symmetry: r(s) m ρ(s) H⇒ ρ(s) m r(s) for r(s),

ρ(s) ∈ C(s);
(3) Transitivity: if r1(s) m r2(s), r2(s) m r3(s), then r1(s) m

r3(s), for r1(s), r2(s), r3(s) ∈ C(s).
Proof: The properties (1) and (2) are obvious. Only the

transitivity is proven.
Since r1(s) m r2(s), there exists p2(s) ∈ C(s) satisfying

r1(s) = p2(s)~ r2(s)~ p−12 (s). (24)

Since r2(s) m r3(s), there exists p3(s) ∈ C(s) satisfying

r2(s) = p3(s)~ r3(s)~ p−13 (s).

Substituting this relation into (24), gives

r1(s) = p2(s)~
(
p3(s)~ r3(s)~ p−13 (s)

)
~ p−12 (s)

= (p2(s)~ p3(s))~ r3(s)~
(
p−13 (s)~ p−12 (s)

)
= (p2(s)~ p3(s))~ r3(s)~ (p2(s)~ p3(s))−1 .

This relation implies r1(s) m r3(s).
In the field of ordinary rational fractions, it is not necessary

to define the concept of similarity since the ordinary product
of two rational fractions obeys commutativity law. Now, it is
routine to ask whether we can give necessary and sufficient
conditions for similarity of rational fractions in the frame-
work of conjugate product. Further, is there a canonical form
under the similarity transformation? These questions are not
trivial and we can not answer them currently. For a perceptual
intuition understanding to similarity, we give the following
example to show its complexity.

Example 3: Given the following polynomial

r(s) = (1+ i)s+ 1,

by calculation we can find that r(s) is similar to

ρ(s) =
(1− i)a

a
s+ 1,

and the corresponding p(s) satisfying r(s) = p(s) ~ ρ(s) ~
p−1(s) is given by

p(s) = as+
(1+ i)c

a

with c being a real number. If a = 1, it is obtained that r(s)
is similar to ρ(s) = (1− i)s+ 1. If a = 2+ 3i, it is obtained
that r(s) is similar to ρ(s) = 7+17i

13 s+ 1.
It can be seen from this example that there exist infinitely

many similar fractions for a given fraction even if the trans-
formation fraction p(s) is restricted to be a polynomial. Next
we consider another similarity concept.
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B. CONSIMILARITY
In the area of numerical matrices, there exists the concept
of consimilarity for two complex matrices [14], [15]. Two
square matrices A, B ∈ Cn×n are called consimilar if
there exists a nonsingular matrix P such that A = PBP

−1
.

By generalizing this idea, the concept of consimilarity for two
rational fractions is proposed in the framework of conjugate
product.
Definition 11: Two rational fractions r(s), ρ(s) ∈ C(s)

are called consimilar in the framework of conjugate product,
denoted

r(s) u ρ(s),

if there exists a nonzero rational fraction p(s) ∈ C(s) such
that

r(s) = p(s)~ ρ(s)~ p−1(s).

The following theorem shows that consimilarity over C(s)
is also an equivalence relation.
Theorem 8: The consimilarity of rational fractions in Def-

inition 11 is an equivalence relation. That is, the following
properties hold.
(1) Reflexivity: r(s) u r(s) for r(s) ∈ C(s);
(2) Symmetry: r(s) u ρ(s) H⇒ ρ(s) u r(s) for r(s),

ρ(s) ∈ C(s);
(3) Transitivity: if r1(s) u r2(s), r2(s) u r3(s), then r1(s) u

r3(s), for r1(s), r2(s), r3(s) ∈ C(s).
Proof: The properties (1) and (2) are obvious. Only the

transitivity is proven here.
Since r1(s) u r2(s), there exists p2(s) ∈ C(s) satisfying

r1(s) = p2(s)~ r2(s)~ p2−1(s). (25)

Since r2(s) u r3(s), there exists p3(s) ∈ C(s) satisfying

r2(s) = p3(s)~ r3(s)~ p3−1(s).

Let p(s) = p2(s) ~ p3(s). Then, by using Lemmas 6 and 8,
substituting this relation into (25), gives

r1(s) = p2(s)~
(
p3(s)~ r3(s)~ p3−1(s)

)
~ p2−1(s)

= (p2(s)~ p3(s))~ r3(s)~
(
p3−1(s)~ p2−1(s)

)
= (p2(s)~ p3(s))~ r3(s)~ (p2(s)~ p3(s))−1

= p(s)~ r3(s)~ p−1(s).

This relation implies r1(s) u r3(s).
For a perceptual intuition to understand consimilarity, the

following example is given.

Example 4: Given the following polynomial

r(s) = (1− i)s+ 2,

by calculation it can be found that r(s) is consimilar to

ρ(s) = (1+ i)s+
2b
b
,

and the corresponding p(s) satisfying r(s) = p(s) ~ ρ(s) ~
p−1(s) is given by

p(s) = as+ b

where a and b satisfy

ab = ab+ ibb.

If a = 1, b = −2i, it can be obtained that r(s) is similar to
ρ(s) = (1 + i)s − 2. If a = 2 + 3i, b = −1 + i, it can be
obtained that r(s) is similar to ρ(s) = (1+ i)s+ 2i.
It can be seen from this example that there exist infinitely

many consimilar fractions for a given fraction even if the
transformation fraction p(s) is restricted to be a polynomial.

VII. CONCLUSION
In this paper, the division ring of rational fractions in the
framework of conjugate product has been constructed by
extending the ring of polynomials in the framework of conju-
gate product. Some interesting properties of rational fractions
are also provided. It should be noted that the concept of
common right multiples for polynomials in the framework
of conjugate product plays a key role in the construction
of rational fractions division ring. Unlike the polynomials
in the framework of ordinary product, the concept of least
common multiples can not be defined in the framework of
conjugate product. Consequently, the rational fractions in
the framework of conjugate product have some interesting
properties. For example, two rational fractions may be equal
to each other even if they have very different expressions.

In the proposed rational fraction division ring, the inverse
of a nonzero rational fraction exists. In addition, the conjugate
product of two rational fractions does not obey commutative
law. Similarly to the case of numerical matrices, the con-
cepts of similarity and consimilarity are proposed for rational
fractions in the framework of conjugate product. As a future
work, it is suggested that similarity and consimilarity of ratio-
nal fractions in the framework of conjugate product deserve
further investigation.

REFERENCES
[1] L. Wuytack, ‘‘An algorithm for rational interpolation similar to the qd-

algorithm,’’ Numer. Math., vol. 20, no. 5, pp. 418–424, 1973.
[2] F. Wielonsky, ‘‘Rational approximation to the exponential function

with complex conjugate interpolation points,’’ J. Approximation Theory,
vol. 111, no. 2, pp. 344–368, 2001.

[3] W. X. Gao, ‘‘Continued-fraction solution of matrix equation AX−XB=C ,’’
Sci. China A, vol. 32, no. 9, pp. 1025–1035, 1989.

[4] S. Roman, Field Theory, 2nd ed. Berlin, Germany: Springer, 2011.
[5] T. Kailath, Linear Systems. Englewood Cliffs, NJ, USA: Prentice-Hall,

1980.
[6] K. M. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.

Upper Saddle River, NJ, USA: Prentice-Hall, 1996.
[7] K. Zhou, ‘‘On the parameterization of H∞ controllers,’’ IEEE Trans.

Autom. Control, vol. 37, no. 9, pp. 1442–1446, Sep. 1992.
[8] J. Y. Ishihara and R. M. Sales, ‘‘Doubly coprime factorizations related

to any stabilizing controllers in state space,’’ Automatica, vol. 35, no. 9,
pp. 1573–1577, 1999.

[9] A. G. Wu, G. Feng, W. Liu, and G.-R. Duan, ‘‘The complete solution
to the Sylvester-polynomial-conjugate matrix equations,’’ Math. Comput.
Model., vol. 53, pp. 2044–2056, May 2011.

64026 VOLUME 7, 2019



A.-G. Wu et al.: Division Ring Over Conjugate Product

[10] A. G. Wu, G. R. Duan, G. Feng, and W. Q. Liu, ‘‘On conjugate product of
complex polynomials,’’ Appl. Math. Lett., vol. 24, pp. 735–741, May 2011.

[11] A.-G. Wu and Y.-R. Xu, ‘‘On coprimeness of two polynomials in the
framework of conjugate product,’’ IET Control Theory Appl., vol. 11,
no. 10, pp. 1522–1529, 2017.

[12] A.-G. Wu, W. Liu, and G.-R. Duan, ‘‘On the conjugate product of com-
plex polynomial matrices,’’ Math. Comput. Model., vol. 53, nos. 9–10,
pp. 2031–2043, 2011.

[13] A.-G. Wu and H.-Z. Wang, ‘‘A real representation of complex polynomial
matrices in the framework of conjugate product,’’ Int. J. Comput. Math.,
vol. 96, no. 8, pp. 1567–1575, 2019.

[14] Y. P. Hong and R. A. Horn, ‘‘A canonical form for matrices under consim-
ilarity,’’ Linear Algebra Appl., vol. 102, pp. 143–168, Apr. 1988.

[15] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1990.

AI-GUO WU was born in Gong’an, Hubei, China,
in 1980. He received the B.Eng. degree in automa-
tion, the M.Eng. degree in navigation, guidance,
and control, and the Ph.D. degree in control
science and engineering from the Harbin Insti-
tute of Technology, in 2002, 2004, and 2008,
respectively.

In 2008, he joined the Harbin Institute of Tech-
nology Shenzhen Graduate School as an Assistant
Professor, where he was promoted to Professor,

in 2012. From 2009 to 2011, he was a Research Fellow with the Depart-
ment of Manufacturing Engineering and Engineering Management, City
University of Hong Kong. From 2013 to 2014, he was a Visiting Professor
with the Department of Electrical, Electronic and Computer Engineering,
The University of Western Australia, Australia. Since 2018, he has been
a Professor with the Harbin Institute of Technology, Shenzhen. He has
authored/coauthored one English monograph and more than 60 SCI journal
papers. His research interests include spacecraft control, descriptor systems,
conjugate product of polynomials, switched systems, and robust control.
He was supported by the Program for New Century Excellent Talents in
University, in 2011, and by theNational Natural Science Foundation of China
for Excellent Young Scholars, in 2018.

Dr. Wu received the National Excellent Doctoral Dissertation Award,
in 2011, from the Academic Degrees Committee of the State Council and
theMinistry of Education of the People’s Republic of China and the National
Natural Science Award (Second Prize), in 2015, China. Since 2007, he has
been a Reviewer of American Mathematical Review. He was an Outstanding
Reviewer of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL, in 2010. Since
2015 and 2017, he has been serving as a Regional Editor for Nonlinear
Dynamics and Systems Theory and as an International Subject Editor for
Applied Mathematical Modeling, respectively.

HUI-ZHEN WANG was born in Shangqiu, Henan,
China, in 1988. She received the bachelor’s degree
in automation from the University of Science
and Technology Liaoning, in 2011, and the M.S.
degree in control theory and control engineering
from the Harbin Institute of Technology, in 2014.
In 2014, she joined Huawei Technologies Co.,
Ltd., as a Digital Chip Engineer. In 2015, she was
with Hisome Digital Equipment Co., Ltd., as an
Image Algorithm Engineer. Since 2017, she joined

the Electrical and Electronic Engineering Department, Zhengzhou Technical
College, as a Teacher. Her research interests include nonlinear control and
generalized linear systems.

YU TENG received the M.S. degree in computa-
tional mathematics and the Ph.D. degree in control
science and engineering from the Harbin Insti-
tute of Technology, Harbin, in 2003 and 2008,
respectively. Since 2008, she has been a Senior
Lecturer with the School of Science, Ningbo
University of Technology, Ningbo. She was a
Postdoctoral Researcher with the Harbin Insti-
tute of Technology (Shenzhen). Her current
research interests include output regulation for

continuous-time descriptor linear systems and design of conjugate regulator
for descriptor linear systems over complex field.

VOLUME 7, 2019 64027


	INTRODUCTION
	PRELIMINARY RESULTS
	THE DIVISION RING OVER (C(s), +, )
	THE QUOTIENT SET C(s)
	OPERATIONS IN C(s)
	THE DIVISION RING (C(s), +,  )

	CONJUGATE PROPERTIES FOR RATIONAL FRACTIONS IN  C(s)
	A SERIES APPROACH IN (C(s), +,  )
	SIMILARITIES OF RATIONAL FRACTIONS OVER C (s)
	SIMILARITY
	CONSIMILARITY

	CONCLUSION
	REFERENCES
	Biographies
	AI-GUO WU
	HUI-ZHEN WANG
	YU TENG


