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ABSTRACT The dynamics of human arms has a high impact on the humans’ activities in daily life, especially
when a human operates a tool such as interactions with a robot with the need for high dexterity. The dexterity
of human arms depends largely on motor functionality of muscle. In this sense, the dynamics of human
arms should be well analyzed. In this paper, in order to analyse the characteristic of human arms, a neural-
network-based algorithm is proposed for exploring the potential model between electromyography (EMG)
signal and human arm’s force. Based on the analysis of force for humans, the mean absolute value of the
electromyographic signal is selected as the input for the potential model. In this paper, in order to accurately
estimate the potential model, three domains fuzzy wavelet neural network (TDFWNN) algorithm without
prior knowledge of the biomechanical model is utilized. The performance of the proposed algorithm has
been demonstrated by the experimental results in comparison with the conventional radial basis function
neural network (RBFNN) method. By comparison, the proposed TDFWNN algorithm provides an effective
solution to evaluate the influence of human factors based on biological signals.

INDEX TERMS Neural-network-based algorithm, force estimation, electromyography (EMG) signal,
human factor, biomechanical model of surface EMG (sEMG)-force.

I. INTRODUCTION
Humans are particularly adept at performing the tasks which
need high dexterity. For a cooperative task between a human
and a robot, the human needs to be more dexterous and
skillful to perform the task in order to achieve the security
and smooth interaction, especially for the tasks involving
interactive force or torque [1], [2]. In such tasks or activities,
the robot should be developed to match the skillful and dex-
terous operation of the humans’ arm. In general, the dexterity
of human arm highly depends on its biomechanics andmuscle
activity [3], [4]. In this sense, the force generated by muscle
plays a key role in the interaction. The human usually mod-
ulates one’s force to achieve a good operation performance
when he/she interacts with the external environments [5], [6].
Therefore, in order to achieve smooth interaction between
the human and the robot instead of simple rigid interaction,
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it is essential to analyze the biomechanical model of human’s
muscle force and transfer it to the robot control.

As reported in [7], the human arm force is closely linked
to muscle activations (MA). In biomechanics, electromyogra-
phy (EMG) signals directly reflect the influence of MA and it
is often used as an indicator forMA. EMG signals provide the
information of force contribution for muscle groups and indi-
vidual muscles. It is demonstrated that the force is produced
by the MA [8], [9]. In general, surface EMG (sEMG) signals
are easily collected in comparison with EMG signals [10].
The force generated by the MA contains the information of
muscle activity and muscle contraction [11]. It is noted that
the generated force depends on the level of MA despite of
muscle fatigue. It is concluded that the arm force can be
estimated by the sEMG signals. Therefore, it is possible to
explore the potential relationship of sEMG signals and the
generated force (sEMG-force) [12].

In order to accurately estimate the biomechanical model of
sEMG-force of the arm, parametric model-based algorithms
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are proposed in the past decades. In [13], a force estimation
model based onmulti-scale physiology was proposed and this
model could take place of Hill muscle model.1 A forward
dynamic model was presented to predict the muscle force
and joint moments simultaneously involving EMG signals
for healthy and impaired human subjects [15]. A muscle
model based on physiological signals was discussed to esti-
mate the relationship between EMG signals and force in
voluntary contraction for human machine interaction and it
proved that this proposed model was not the phenomeno-
logical model [16]. A biomechanical model of muscle was
presented to estimate the force with sEMG peaks and it was
evaluated by using mean absolute value (MAV) and coeffi-
cients of determination (R2) [17]. Different Hill-type muscle
dynamics models were presented for the purposes of force
estimation and the authors analyzed their shortcomings, and
it was suggested that the selection of Hill-type muscle model
relied on the analysis of specific problem [18]. As men-
tioned above, the model of sEMG-force could be estimated
fairly accurately. However, the approaches need to know the
accurate parameters of muscle or muscle-based model and
the convergence of the described parameters is sensitive to
the computing time and computational complexity. Since the
above approaches highly depend on the parameters of model
and their applications in some important fields are restricted,
nonparametric algorithms have been proposed to estimate the
relationship model of sEMG-force.

For nonparametric algorithms, neural network and fuzzy
models have been employed to analyses the relationship of
sEMG-force [19]–[21]. In [22], a multilayer artificial neural
network method was used to evaluate the force of elbow-
induce wrist based on EMG signal with fast orthogonal
search. A neural-network-based method was proposed for
the upper limb prosthesis to validate the association of EMG
signals and force [23]. Hou et al. developed a recurrent fuzzy
neural network to explore the relationship among kinemat-
ics, EMG signals and force [24]. A deep learning method
based on neural network with fuzzy theory was presented
to estimate the interaction force in a unsupervised learning
way for robot-assisted surgery [25]. In [26] [27], generalized
regression neural network approach was proposed to accu-
rately estimate force of the end-of-arm and grip by using the
EMG signal as the input. In order to find the suitable neural
network algorithms to predict the force involving EMG sig-
nals, long short-term memory (LSTM), convolutional neural
network (CNN) and CNN-LSTM were applied. The results
indicated that LSTM and CNN-LSTM could achieve rela-
tively better performance [28]. Cao et al. developed extreme
learning machine to predict handgrip force for myoelectric
prostheses control [29]. For hand gesture recognition, gene
expression programming method was developed to estimate
the relationship between handgrip force and its corresponding
EMG signals [30]. Compared with the parametric model-

1Hill muscle model was first proposed by A. V. Hill to describe the linear
model parameters of muscle [14].

based algorithms, the nonparametric algorithms do no need
to know the parameters of arm muscle model. They just
need properly defined input and output of the neural-network-
based approaches. Those model have the advantages of uni-
versality and non-limitation of model dynamics.

In this paper, a novel neural-network-based approach is
presented to accurately estimate the model of sEMG-force.
The proposed approach estimates the model does not need
prior information of the muscle model. It provides an effec-
tive way to construct the mapping relation between EMG sig-
nals and interactive force. The experimental results validated
the effectiveness of the proposed method.

This paper is organized as follows. Section II describes
problem statement of sEMG-force model and the preliminary
knowledge on neural network. The proposed algorithm of
three domains fuzzy wavelet neural network (TDFWNN)
for estimating the force based on sEMG signals is given in
Section III. The experiment setup, results and evaluation of
the proposed method are presented in Section IV. Section V
provides some discussion on the TDFWNN and the experi-
ments. Conclusion is given in the Section VI.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. PROBLEM STATEMENT
In this paper, we explore the potential relationship of
sEMG-force by using a neural-network-based method.
Because the relationship of sEMG-force is intrinsically non-
linear, it is difficult to utilize a linear algorithm to describe
their relationship.

We assume that for a short time duration there exists a
nonlinear time-invariant mapping ϕ between the EMG sig-
nals and force to describe their relationship. As presented
in Figure 1, the potential model is defined as

F̃ = ϕ(X̃ ) (1)

where ϕ denotes the nonlinear mapping. X̃ is the representa-
tion of EMG signals. F̃ is the output of this model.

B. PRELIMINARY
In this section, we present the preliminary knowledge
about RBFNN that will be used in the rest of this work.
RBFNN was proposed by J. Moody and C. Darken in 1988.
In general, this neural network has three layers with a
single hidden layer [31], [32]. RBFNN belongs to local-
approaching network, it is often used to deal with the non-
linear control [33], [34] and classification issues [35], [36].
As showed in Figure 2, RBFNN is represented as

y =
m∑
j=1

wjhj (2)

where y is the output of RBFNN. wj denotes the connection
weights for the node j from the hidden layer to the output
layer. hj is the activation function for hidden layer, it is
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FIGURE 1. The proposed model of sEMG-force.

FIGURE 2. Framework of RBFNN.

represented as

hj = exp{−
‖X − Cj‖2

2b2j
} (3)

where X denotes the input of the RBFNN. j = 1, 2, . . . , m.
Cj and bj are the parameters of basis function and basis
function width for jth node in the hidden layer, respectively.

III. METHODOLOGY
Figure 3 shows the scheme of the proposed algorithm. This
scheme aims to clarify the relationship of sEMG-force.
A human subject interacts with a force sensor to collect
the interactive force. Measured interaction force and sEMG
signals feature are used as the input to the neural network.
Generally, features of sEMG signals contain mean absolute

FIGURE 3. Framework of the system.

FIGURE 4. Interactive force analysis.

value (MAV), wave length (WL), v-order, Willison amplitude
(WA), and so on. It has demonstrated that MAV was supe-
rior to other features such as WL and WA for sEMG-force
estimation applications [37], [38]. Therefore, in this work,
we choose MAV as the sEMG signal feature. And mean
square error (MSE) is used to evaluate the regression perfor-
mance of the estimation model.

A. DATA ACQUISITION AND FEATURE EXTRACTION
In order to accurately estimate the model of sEMG-force,
force and sEMG signals are sampled from a variety of hand
grip strength.We sampled 10 times (cases 1-10) for the sEMG
signals and force signal with two healthy human subjects
(2 males, age from 20-30 years old). The force average values
of 10 cases is presented in Table 1.

The applied force of the human subject is Fh and the feed-
back force of sensor is Fs, respectively. The force analysis is
showed in Figure 4, it has2

Fs = Fh (4)

2The force signal is preprocessing by using a third-order median filter,
the parameter of this filter is 30.
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TABLE 1. Average values of force for 10 cases.

FIGURE 5. Structure of three domains fuzzy wavelet neural network.

The interactive force Fs3 is represented as

Fs = [fx , fy, fz]T (5)

where fi, i = x, y, z. represents the interactive force in X-Y-Z
coordinate axis.

B. FORCE ESTIMATION BASED ON THREE DOMAINS
FUZZY WAVELET NEURAL NETWORK
As mentioned above, nonparametric algorithms such as the
neural-network-based approach are effective to estimate the
model of sEMG-force. Inspired by [39], [40], a neural-
network-based algorithm is utilized to explore the potential
mapping relationship of sEMG-force in this work.

Structure of three domains fuzzy wavelet neural network
(TDFWNN) is shown in Figure 5. The neural network has
four layers: input layer, TDFWNN layer, defuzzification
layer and output layer.

1) LAYER 1
This is a input layer. It directly transmits the input signals X (1)

to the next layer. L(1) is the output of the first input layer. The
relationship of X (1) and L(1) is defined as

L(1) = X (1)

3Since the force sensor was gravity compensated before experiment,
the sensor’s gravity can be neglected.

= [l11 , l
1
2 , . . . , l

1
i , . . . , l

1
n ], i = 1, 2, . . . , n. (6)

where l11 = (ū1, f1), . . . , l1n = (ūn, fn). ūi and fi are the
features of EMG signals and interactive force, respectively.
n is the amount of the input layer.

2) LAYER 2
In this layer, the activation function is three domain fuzzy
wavelet transformation (TDFWT) for each neuron node of
layer 2. It can be represented as

F2
p (L

(1)) =
1
√ap

φ̂(
L1 − bp
ap

) (7)

where F2
p (L

(1)) denotes the activation function for the pth
neuron node. bp = (b1,p, b2,p, . . . , bn,p), pε[1, 2, . . . ,P] rep-
resents the translation vector. ap is the scaling parameter for
layer 2. P is the total amount of TDFWT layer. φ̂ represents
the three domain fuzzy wavelet function (TDFWF) and it is
given as

φ̂ =

∫
lεR

∫
φεφi

µ(l, φ)
(l, φ)

(8)

where µ(l, φ)ε[0, 1] is the fuzzy membership function, φ̂ ≡
{(l, φ), µ(l, φ)|∀lεR,∀φε{φi}, i = 1, 2, . . . , n}. φi is the
wavelet function for ith element.4

TDFWF contains primary wavelet function and secondary
membership function. The primary wavelet function P

φ̂
(l)

(for all l ∈ R) is defined as

P
φ̂
(l) =

⋃
φi(l), i = 1, 2, . . . , n. (9)

The output of TDFWT layer is defined as a form of matrix
as below

L(2)p =



1
√ap

φ1(
L(1) − bp

ap
) µ̄(φ1)

1
√ap

φ2(
L(1) − bp

ap
) µ̄(φ2)

. . .

1
√ap

φQ(
L(1) − bp

ap
) µ̄(φQ)


Q×2

(10)

where Q represents the amount of possible wavelet func-
tions.5 µ̄(φ) denotes the mean membership function for this
layer and it can be represented as below

µ̄(φ(i)) =

∑
lεX µ(l, φ

(i))∑
lεX

∑
φε{φ(i)} µ(l, φ)

(11)

4φi is the sum of basic wavelet functions for ith element.
5In general, the value ofQ is greater, the cost of calculation of the network

is higher and the performance of network is better. It is noted that the bigger
is not the better for the value of Q.
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3) LAYER 3
This layer is used to compute the centroid of fuzzy output of
L(2)p via defuzzification. The output of defuzzification layer
is given as

L(3)p = [L
(2)
p (1, 1)·L(2)p (1, 2), . . . , L(2)p (Q, 1)·L(2)p (Q, 2)]

(12)

where Q is the total amount of nodes for layer 3.

4) LAYER 4
This layer computes the output of the total network. The
approximated model (nonlinear relationship) of sEMG-force
can be represented as

L(4)p =

P∑
p=1

Q∑
q=1

w̄pL(3)p (q) (13)

where L(4)p is the output of the TDFWNN. w̄p indicates the
wavelet coefficient6 and it can be defined as

w̄p =
∫
+∞

−∞

f (l)
1
√ap

φ̂(
l − bp
ap

)dl (14)

where f (l) is an input signal.

F̃ = L(4)p (15)

where F̃ is the potential model based on TDFWNN.

C. EVALUATION OF THE MODEL
In order to evaluate the regression performance of the poten-
tial model of the sEMG-force, MSE and coefficient of deter-
mination (R2) is utilized in this paper.

MSE =
1
n

n∑
i=1

(Fsi − F̃i)2 (16)

R2 = 1−

∑n
i=1(Fsi − F̃i)

2∑n
i=1(Fsi − F̄si))2

(17)

where Fsi is the measured interactive force. F̃i is the output
based on TDFWNN or RBFNN. F̄si represent the mean value
of the output.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENT SETUP
Figure 6 shows experimental setup of the overall system.
We interacted with a force sensor (FT16498, ATI Indus-
trial Automation, USA) to collect the interactive informa-
tion. The interactive force is converted by a converter device
(NI USB-6361, National Instruments, USA). sEMG signals
are preprocessing by a EMG sensing device (MYO armband,
Thalmic Labs, Canada) which communicates with the sig-
nal processing computer via Bluetooth. Visual Studio 2010
(VS 2010) andMATLAB process the sEMG signals and force

6w̄p reflects the energy distribution of TDFWNN both in time and fre-
quency plane.

FIGURE 6. Description of the overall system.

signal are used to construct the software system for process-
ing on the Microsoft Windows 10 operation system (OS).

In the experiment, the human subjects hold the force sen-
sor and clench it in each case. The experiments are carried
out 10 times and each subject operates 5 times in the experi-
mental process. The human subjects have enough rest before
every trial (case). The sampling data is divided into training
data (50%) for regression and testing data (the other 50%) for
validation.

B. FORCE ESTIMATION
In order to verify the feasibility and effectiveness of the pro-
posed algorithm, experiments as introduced above have been
performed in this study. As mentioned, two healthy human
subjects participated in the experiments (cases 1-5 are per-
formed by the first subject, cases 6-10 are carried out by the
other subject). In the experiments, the sample frequency for
force and sEMG signal are 1000 Hz and 200 Hz, respectively.
The Morlet wavelet is used as the mother wavelet function.

For subject 1, Figures 7(a), 8(a), 9(a), 10(a) and 11(a) show
the estimated force of the potential model based on RBFNN
in cases 1-5. The estimated results based on TDFWNN are
showed in Figures 7(c), 8(c), 9(c), 10(c) and 11(c). In the
figures, the red curves represent the measured force sig-
nal. It can be seen that the TDFWNN algorithm achieves a
better performance for estimating the potential relationship
of sEMG-force in comparison with that of RBFNN. From
the error curves (Figures 7(b) 7(d), 8(b) 8(d), 9(b) 9(d),
10(b) 10(d) and 11(b) 11(d)), it can be clearly seen that the
estimation error of TDFWNN is much smaller than that of
RBFNN.

For subject 2, we can draw a similar conclusion that
the proposed algorithm can perform better for estimating
the potential model of sEMG-force from Figures 12-16 in
cases 6-10 with respect to the error of the potential model.
The TDFWNN achieves smaller error by comparing with that
of the RBFNNmethod. It is noted that the error of TDFWNN
for estimating force are not all positive.

In the experimental results, we have magnified the figures
in order to analyse the error of estimated force by using
RBFNN method in 0-2s for cases 1-10. It can seen that the
curves of error are converged to zero after 2s for RBFNN
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FIGURE 7. Estimated force by using neural network algorithms for case 1.

FIGURE 8. Estimated force by using neural network algorithms for case 2.

FIGURE 9. Estimated force by using neural network algorithms for case 3.

FIGURE 10. Estimated force by using neural network algorithms for case 4.

FIGURE 11. Estimated force by using neural network algorithms for case 5.

while the curves of error are stable after 0.5s for TDFWNN.
It is also noted that the rate of convergence of TDFWNN is
faster than that of RBFNN.

C. EVALUATION OF EXPERIMENTAL RESULT
From Tables 2-3 and Figures 17-18, the MSE of TDFWNN
is much smaller than that of the RBFNN for estimat-
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FIGURE 12. Estimated force by using neural network algorithms for case 6.

FIGURE 13. Estimated force by using neural network algorithms for case 7.

FIGURE 14. Estimated force by using neural network algorithms for case 8.

FIGURE 15. Estimated force by using neural network algorithms for case 9.

FIGURE 16. Estimated force by using neural network algorithms for case 10.

ing the potential model of sEMG-force in cases 1-10
for 2 subjects.

In Table 4, for subject 1, the average MSE for TDFWNN
and RBFNN are (0.0034 + 0.0030 + 6.6673 × 10−4 +

0.0011+0.0623)/5 and (1.3434+1.3053+1.5011+1.7935+
1.8992)/5, respectively. The average MSE of TDFWNN is
(0.0021+0.2032+0.1980+0.0038+0.0085)/5 for subject 2,
that of RBFNN is (3.5240 + 3.7098 + 2.4734 + 1.5729 +
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TABLE 2. MSE of force estimation algorithms.

TABLE 3. MSE of force estimation algorithms.

FIGURE 17. Evaluation criterion (MSE) of force estimation algorithms for
cases 1-5.

FIGURE 18. Evaluation criterion (MSE) of force estimation algorithms for
cases 6-10.

TABLE 4. Average MSE of force estimation algorithms.

1.7749)/5. It verities that the TDFWNN algorithm is superior
to the RBFNN method in estimating the potential model of
sEMG-force when the signal is relative stable.

Figure 19 shows the coefficient of determination R2 of
TDFWNN and RBFNN. It can be seen that the values of R2

of TDFWNN are larger than that of RBFNN, which means
that the regression performance of TDFWNN is superior to
the RBFNN.

V. DISCUSSION
In this study, we carried out experiments of 10 trials
for 2 subjects with absolute average force varing from

FIGURE 19. Evaluation criterion (R2) of force estimation algorithms for
cases 1-10.

7.8749N to 20.3994N. According to the experimental results,
it is observed that the rate of convergence of TDFWNN
is faster than that of RBFNN, which is clearly shown
in Figures 7-16. In Figure 19, it can be seen that the values of
R2 for both are larger than 0.99. This means that the RBFNN
and TDFWNN are both effective in estimating the relation-
ship between sEMG signal and generated force. However,
compared with the RBFNNmethod, the TDFWNN has better
convergence rate and precision which can be explained by
the higher determination coefficient R2 of the TDFWNN as
shown through the experiment.

Because of the complexity of the model of sEMG-force,
richer information should be taken into account in order to
improve the modeling accuracy and robustness. For example,
the kinematic motion of humans’ hand, interactive payload,
and so on [41], [42]. These factors would be considered in
our future work. The obtained sEMG-force model will be
implemented and verified in human-robot interaction appli-
cations [43] as our continuous work as well.

VI. CONCLUSION
In this work, we proposed a force estimation algorithm to
build a relationship between measured sEMG signal and
generated hand force. Considering the advantages of neural
network techniques for non-linear regression, a TDFWNN
algorithm was employed. In the experiments, we utilized
the MAV of sEMG signals as the input of TDFWNN. The
experiments were carried out with 2 subjects for 10 trials.
As the experimental results confirmed, the hand force can
be estimated accurately based on the measured sEMG sig-
nals using the TDFWNN method. And the comparison with
conventional RBFNN shows that the presented TDFWNN
algorithm provides a better estimation performance in terms
of both convergence rate and estimation error.
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