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ABSTRACT The engine friction and actuator power are the main factors of the cooling system affecting the
fuel economy of a spark ignition (SI) engine. An electrified cooling system containing an electric fan, pump,
and thermostat provides an opportunity to reduce fuel consumption. The coolant temperature is always kept at
a high fixed value within the safe temperature range to avoid friction losses caused by overcooling; however,
the actuator power is not typically considered. Recent publications have attempted to minimize the actuator
power and the coolant temperature is maintained in a range. Nevertheless, neither method quantitatively
considers both factors. In this paper, the integrated consideration of engine friction and actuator power is
presented to minimize engine fuel consumption. The accuracy of a control-oriented model of a cooling
system is improved first in an attempt to exert the full potential of the model. Then, the proposed strategy
for minimum fuel consumption is constructed as an optimization problem and the improvement of fuel
economy obtained by the proposed strategy is evaluated using a causal suboptimal controller and dynamic
programming (DP)-based global optimal controller. Compared with a causal coolant temperature tracking
controller, the causal suboptimal controller and the global optimal controller based on the proposed strategy
both achieve significant improvements. Compared with a global optimal controller for minimum actuator
power, the global optimal controller based on the proposed strategy achieves a certain improvement and this
effect can increase as the environmental temperature decreases. Finally, a real-time implementation of the
proposed strategy on a hardware platform using model predictive control (MPC) with a limited horizon is
presented, which shows the feasibility of the proposed strategy.

INDEX TERMS Electrified cooling system, minimum fuel consumption, spark ignition engine, physics-
based model, model predictive control (MPC), thermal management system.

I. INTRODUCTION
As is known, most of fuel combustion energy in an engine
is wasted by the coolant and exhaust gas, engine thermal
management is a path with great potential in fuel saving,
where many novel technologies have been born, like organic
Rankine cycle [1] and turbo generator [2] to recovery the
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lost heat, exhaust gas recirculation [3] to reduce the exhaust
temperature, electrified cooling system to reduce the loss of
friction and actuator power, etc. Especially the electrified
cooling system that maintains the engine at the ideal thermal
state, can improve not only the fuel economy, but also the
emissions, reliability, and durability [4].

Conventional cooling systems feature a mechanical pump
and fan, which are coupled to the engine crankshaft with
specific or limited transmission ratios, and a wax thermostat
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valve, whose position is reliant on the temperature charac-
teristics of the wax. Thus, the engine cannot be precisely
maintained at an ideal thermal state. Moreover, a conven-
tional cooling system is always designed for the maximum
engine load andworst environmental conditions, which rarely
occur, therefore, in most common conditions, the behaviors
of the actuators will cause engine overcooling, which leads
to more friction losses in the engine and power losses in the
actuators [5]–[7].

An electrified engine cooling system equipped with elec-
tric actuators enables the on-demand supply of coolant and
cooling air, which guarantees a better thermal state of the
engine and effectively improves the engine performance [6].
Among the indicators of engine performance, fuel economy
is focused on. An electrified engine cooling system improves
the fuel economy by reducing the friction resistance of the
engine and the power losses of the actuators. The friction
resistance of a cold engine is 2.5 times that of a fully warmed
engine [8], [9], which can be reduced by shortening thewarm-
up time and maintaining a higher target coolant temperature
[10]–[12]. Choukroun et al. [11] applied an electric pump
to realize a 50% warm-up time reduction and a 2-3% fuel
consumption reduction. Kim et al. [12] showed that the fuel
consumption at a coolant temperature of 105◦ C was 3%
less than that at a coolant temperature of 85◦ C and they
also applied an electric pump and thermostat to realize a
25% warm-up time reduction. Zhou et al. [13] applied an
electric pump, a fan, and a thermostat to provide coolant and
oil temperature control with a 57% reduction in the actuator
power losses. Cortona and Onder [14] applied an electric
pump and a thermostat to reduce the actuator power losses by
16% and to effectively reduce the warm-up time. Some of the
above studies did not evaluate the fuel consumption, but the
fuel consumption certainly decreases. In addition, an electric
engine cooling system has a low cost for saving fuel com-
pared to other engine technologies. Fig. 1 shows a comparison
of the fuel-saving costs of various technologies, wherein the
fuel-saving costs of optimized engine cooling systems and
advanced engine cooling systems are only 150¿ to 200¿ for
1 km/L [15].

FIGURE 1. Fuel-saving costs of optimized cooling systems and advanced
cooling systems compared with those of other various technologies.

Relative studies have addressed the modeling of engine
cooling systems, which can be separated into three cate-
gories: data-based models, semi-physical models, and phys-
ical models. Bruckner et al. [16] applied a linear dynamic
model and identified the coefficient matrix using steady-state
data. Although this modeling method does not necessitate

research on the system mechanism, the model accuracy was
not guaranteed. Vermillion et al. [17] applied the structure
of a physical model, but the parameters were identified by
steady-state and transient data. This modeling method incor-
porated transient data, which were hard to collect on an
engine test bench. Pizzonia et al. [18]–[20] applied a physical
model in which only a small amount of steady-state data was
necessary, but the model accuracy was very dependent on the
understanding of the system.

Studies on the control strategies of electrified cooling
systems have mainly concentrated on coolant tempera-
ture tracking [11], [20]–[24], which has achieved satisfac-
tory control effects and provided significantly greater engine
fuel economy than a traditional cooling system. Fortunately,
when the quantity of electric actuators in the cooling sys-
tem is greater than the number of control objectives, opti-
mization control becomes possible. The optimization control
directly correlates the engine performance with the actuator
actions that will further improve the engine performance,
especially with given knowledge of future driving conditions.
Zhou et al. [13] designed a causal feedforward and feedback
control strategy, where the feedforward minimizes the actu-
ator power under the equality constraint of coolant tempera-
ture. The actuator power in their study was 57% less than that
in a conventional cooling system, but the contribution to fuel
consumption was not evaluated. Nisson et al. [25] presented a
global optimal controller using dynamic programming (DP)
with the knowledge of the entire driving cycle and a causal
controller using Pontryagin’s minimum principle (PMP) to
optimize the actuator power within specified limits of the
coolant temperature. By reducing the actuator power, the DP
and PMP controllers achieved fuel reductions of 0.31% and
0.28%, respectively, compared with a baseline controller
tracking the coolant temperature. However, the paper did not
consider the effect of the coolant temperature on the engine
friction. Furthermore, both studies did not realize real-time
optimization based on future driving conditions.

In this paper, we propose a control strategy for an electri-
fied cooling system to optimize fuel consumption, wherein
the actuator power and engine friction are taken into account.
To this end, we first develop a dynamic heat transfer model
for the cooling system of an SI engine based on the system
mechanisms, where two important intermediate variables—
heating power from the cylinder to the liner and the cooling
power of the radiator—that significantly affect the coolant
temperature are focused on. Through the analysis of the heat
transfer process, the model accuracies of these two interme-
diate variables are improved, thereby ensuring the accuracy
of the dynamic system model and providing a better opti-
mization solution. Then, the optimization problem for the
control strategy of minimum fuel consumption is constructed.
A causal controller with unknown future driving conditions is
applied to evaluate the effectiveness of the proposed strategy
through a comparison with a temperature tracking controller.
A DP controller is applied to explore the potential of the
proposed strategy with knowledge of an entire driving cycle,
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TABLE 1. Nomenclature for main variables.

and the effectiveness is evaluated compared with the opti-
mization for minimum actuator power. Finally, a real-time
model predictive controller (MPC) with a limited horizon is
implemented on the hardware platform, which demonstrates
the feasibility of the proposed strategy.

The remainder of this paper is organized as follows.
In Section II, a mathematical model of the engine cooling
system is studied. In Section III, an optimization problem
of an electrified cooling system to minimum fuel consump-
tion is formulated. Section IV evaluates the effectiveness of
the proposed strategy through comparisons with controllers
for coolant temperature tracking and for minimum actuator
power. Section V realizes the implementation of the proposed
strategy to demonstrate the feasibility of the strategy. Finally,
the paper is concluded in Section VI.

II. SYSTEM INTRODUCTION AND MODELING
A. DYNAMIC SYSTEM MODEL
The configuration and heat transfer process of the cooling
system in this paper is shown in Fig. 2, wherein the fan, pump,
and thermostat are electric actuators. The coolant is circulated
between the engine and the radiator by a pump that absorbs
heat from the engine and releases heat from the radiator to
the environment. The fan promotes the heat release from the
radiator. The thermostat is a three-way valve that distributes
the coolant flow rate to the inner and outer circuits. When
the engine is cold, the thermostat is closed and the radiator is
bypassed. When the engine is warm, the thermostat is opened
to allow part of the coolant to flow through the radiator.
Heat is transferred from the combustion gas in the cylinder
to the liner, and then the heat is transferred to the coolant.
The coolant removes most of the accumulated heat and the
remaining part is transferred to the block and then released to
the environment.

FIGURE 2. Schematic of the configuration and heat transfer process of
the cooling system in this paper.

A zero-dimensional cooling system model was developed
based on the energy conservation law. The engine liner, block,
and coolant temperature are regarded as lumped masses, and
the released power from the block to the environmentQblk,env
is ignored. Accordingly, the system behavior is described as
follows:

ClnrṪlnr = Qcyl,lnr − he,ec(mec,Tc)Alnr,ec(Tlnr − Tc), (1a)
CblkṪblk = he,ec(mec,Tc)Ablk,ec(Tc − Tblk), (1b)

CcṪc = he,ec(mec,Tc)Alnr,ec(Tlnr − Tc)
− he,ec(mec,Tc)Ablk,ec(Tc − Tblk)− Qrc,ra, (1c)

where Clnr, Cblk, and Cc are the heat capacities of the liner,
block and coolant, respectively, Tlnr, Tblk, and Tc are the tem-
peratures of the liner, block, and coolant, respectively,Qcyl,lnr
is the heating power from the cylinder to the liner, Qrc,ra is
the cooling power of the radiator, he,ec is the convective heat
transfer coefficient in the water jacket,mec is the coolant mass
flow rate through the engine, Alnr,ec and Ablk,ec are the heat
transfer area.

B. ISSUES WITH THE EXISTING MODELS
Fig. 2 shows that the cylinder and environment are the
only heat and cold sources in the cooling system, therefore,
the heating power transferred from the cylinder to the liner
Qcyl,lnr and the cooling power of radiator Qrc,ra significantly
affect the coolant temperature. However, the existing models
of Qcyl,lnr and Qrc,ra have problems pertaining to the unclear
expression of the heat transfer mechanism and insufficient
analyses of the characteristic variables.
Remark 1: The existing Qcyl,lnr models include the follow-

ing expressions.
a) Heywood [28]:

Qcyl,lnr = c · mnf , (2a)

b) Bova et al. [29]:

Qcyl,lnr = c · mn1f · N
n2
e · m

n3
ec , (2b)

c) Zhou et al. [13], [14], [19]:

Qcyl,lnr = f (Mbrk,Ne), (2c)
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where mf is the fuel injection mass flow rate, Ne is the engine
speed andMbrk is the engine brake torque. The characteristic
variables in the expressions above are based only on engi-
neering experience that is not supported by any mechanism
analyses of heat transfer processes, therefore, whether these
expressions are comprehensive or reasonable is unknown.
Remark 2: The commonly usedQrc,ramodelwas developed

by Cortona et al. [14], [19]:

Qrc,ra = αr · Ar · (Tc − Tenv), (3a)

αr · Ar = f (vra), (3b)

where αr is the radiator heat transfer coefficient, Ar is the
radiator heat transfer area, Tenv is the environment tempera-
ture, and vra is the air flow velocity through the radiator. The
Cortona model indicates a large dispersion through validation
using data from aGT-Power1 model, shown in Fig. 3, wherein
the sampling points are measured under different air veloc-
ities, environmental temperatures, coolant mass flow rates,
and coolant temperatures. The large dispersion is caused by
an insufficient number of characteristic variables.

FIGURE 3. Validation results of the Cortona model.

For the above reasons, the models of Qcyl,lnr and Qrc,ra are
worth studying. Data used for the study come from a high-
fidelity simulation model of an SI engine with an electrified
cooling system, which was developed by United Automo-
tive Electronic Systems (UAES).2 The model is built using
GT-Power, which is an industry-standard engine performance
simulation software, and themodel is calibrated and validated
byUAES according to the test data of a certain engine. Except
for the engine module, the model also contains transmission
system module, vehicle module and road module to link
the road conditions to the engine working conditions. The
following subsections will present an analysis of the heat
transfer process to derive themain characteristic variables and
model expressions of Qcyl,lnr and Qrc,ra.

C. HEATING POWER FROM THE CYLINDER TO THE LINER
The heat transfer process in the cylinder is complex, involving
air flow, fuel evaporation, mixture combustion, and moving
pair friction. Previous studies [30], [31] have elaborated the
main heat sources to the liner, including combustion, friction,
intake flow, and exhaust flow. Moreover, we explored the
composition of the heat sources to the liner using a GT-Power

1https://www.gtisoft.com/.
2http://www.uaes.com/.

FIGURE 4. Allocation of the heating power from the cylinder to the liner.

model under various working conditions, as shown in Fig. 4,
which shows that the ratio of combustion heating power
Qcomb,lnr and friction heating power Qfric,lnr to Qcyl,lnr is
greater than 94% according to the data analysis. Therefore,
Qcyl,lnr can be approximated as follows:

Qcyl,lnr = Qfric,lnr + Qcomb,lnr. (4)

The friction between the piston and piston ring is consid-
ered boundary friction, which is related to the oil temperature
and engine speed. Since the coolant temperature is slightly
lower than the oil temperature, Qfric,lnr can be expressed as
follows:

Qfric,lnr = f (Ne,Tc). (5)

The combustion heating power Qcomb,lnr involves convec-
tive heat transfer and radiative heat transfer between the com-
bustion gas and engine cylinder wall, which can be expressed
as follows [32]:

Qcomb,lnr = hcomb,lnrAcomb,lnr(Tcomb − Tlnr)

+Acomb,lnrκ[ε(
Tcomb

100
)4 − ζ (

Tlnr
100

)4], (6)

where hcomb,lnr is the convective heat transfer coefficient
between the combustion gas and cylinder wall, Acomb,lnr is the
heat transfer area, Tcomb is the combustion gas temperature, κ
is the blackbody radiation coefficient, ε is the combustion gas
emissivity and ζ is the cylinder wall absorption ratio. In (6),
hcomb,lnr, Tcomb, and Tlnr are the unknowns that will be studied
below.

FIGURE 5. The ideal cycle of an SI engine.

The Tcomb-s curve of the ideal cycle of an SI engine
(isothermal heating cycle) is shown in Fig. 5 [33], where s
is the specific entropy of the combustion gas. For an engine
with a fixed compression ratio, lines c-d , d-a, and a-b are
fixed, so only changing the fuel injection per cycle (i.e., the
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pressure increase ratio) will change the Tcomb-s curve, e.g.,
the increased fuel injection changes the curve from a-b-c-d-a
to a-b′-c′-d-a, which increases Tcomb. In summary, Tcomb is
mainly a function of the fuel injection per cycle, i.e., the fuel
injection mass flow rate mf and engine speed Ne:

Tcomb = f (mf,Ne). (7)

Note that hcomb,lnr is approximated as a function of the
combustion gas temperature Tcomb and combustion gas flow
velocity in the cylinder vcomb, where vcomb is related to
the intake air and engine speed Ne [34]. For an SI engine,
the intake air and the fuel injection amount are a fixed ratio.
Therefore, hcomb,lnr can be summarized as follows:

hcomb,lnr = f (mf,Ne). (8)

Qcomb,lnr can be obtained by substituting (7) and (8) into
(6), and Qcyl,lnr can be obtained by substituting (5) and (6)
into (4):

Qcyl,lnr = f (mf,Ne,Tlnr), (9)

where Tlnr cannot be measured in a real engine. By substi-
tuting (9) into (1a) and setting Ṫlnr = 0 in (1a) (Tlnr is a
slowly changing variable), we obtain the final characteristic
variables of Qcyl,lnr:

Qcyl,lnr = f (mf,Ne,mec,Tc). (10)

A boundary condition needs to be guaranteed that Qcyl,lnr
is zero when mf is zero. Therefore, according to the trend
analysis, the boundary condition and the fitting experience
of Bova [29], a high-precision fitting model is summarized
as follows:

Qcyl,lnr = c · mn1f · N
n2
e · m

n3
ec · T

n4
c . (11)

Each Qcyl,lnr model is compared in Table 2, where the
root mean square error (RMSE) and the normalized RMSE3

(NRMSE) are used as evaluation indexes.

TABLE 2. comparison of the heating power models from the cylinder to
the liner.

D. COOLING POWER OF THE RADIATOR
The heat power transferred from the coolant to the radiator
wall Qrc,r and that from the radiator to the environment Qr.ra
are written as follows:

Qrc,r = hrc,r(mrc,Tc) · Ar · (Tc − Tr), (12a)

Qr,ra = hr,ra(mra,Tra) · Ar · (Tr − Tra), (12b)

3Percentage of RMSE to the mean of the measured data.

TABLE 3. Comparison of the cooling power models of the radiator.

where hrc,r and hr,ra are the convective heat transfer coeffi-
cients between the coolant and the radiator, and between the
radiator and the environment, respectively,mrc andmra are the
coolant and air flow rates through the radiator, respectively,
Tra is the air temperature through the radiator and Tr is the
temperature of the radiator wall. The dynamic processes of
Tr and Tc are analyzed using data from the GT-Power model,
when the coolant flow rate and fan speed are varied. The
results show that the dynamic process of Tr is less than 5 s,
whereas the dynamic process of Tc is approximately 50 s
to 500 s. Therefore, it is reasonable to ignore the dynamic
process of Tr, i.e. setting Ṫr = 0 in (13):

CrṪr = Qrc,r − Qr,ra, (13)

whereCr is the heat capacity of the radiator, thereby obtaining
Qrc,r = Qr,ra (i.e., Qrc,ra). According to (12), we get the
following expression:

Tr = f (mrc,Tc,mra,Tra), (14)

where Tra is unmeasurable, so (14) must be further developed.
We approximate Tra as follows:

Tra = (Tra/out + Tenv)/2, (15)

where Tra/out is the air temperature of the radiator outlet,
which can be expressed as (16) according to the heat con-
servation law:

Tra/out = Tenv +
Qrc,ra

mra · cpa
, (16)

where cpa is the specific heat capacity of the air. By sub-
stituting (16) into (15), and then substituting (14) and (15)
into (12b), we get the final characteristic variables of Qrc,ra.
Therefore, Qrc,ra can be expressed as follows:

Qrc,ra = f (mrc,Tc,mra,Tenv). (17)

The boundary conditions of the model (17) is that when mrc
and the temperature difference Tc − Tenv are zero, Qrc,ra
is zero; when mra is zero, Qrc,ra is not zero since natural
convection exists. Then, through the trend analysis of Qrc,ra
with each variable, a more reasonable and accurate model of
Qrc,ra is derived as (18) and the comparison with the Cortona
model is summarized in Table 3.

Qrc,ra = c1 · mn1rc · (m
n2
ra + c2) · (Tc − Tenv)

n3 . (18)

The air mass flow rates through the radiator mra in (18) is
calibrated as a map related to the vehicle speed vvel and fan
speed Nfan:

mra = fra(Nfan, vvel). (19)
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The coolant mass flow rate through the radiator mrc is:

mrc = mecHth, (20)

where Hth ∈ [0, 1] is the thermostat position.

E. SIMPLIFICATION AND VALIDATION OF
THE DYNAMIC SYSTEM MODEL
At this point, the dynamic system model has been established
in detail. However, the model has three state variables, among
which only Tc is considered in the optimization since it has
a constraint. Thus, considering the real-time performance
of the controller, the dynamic system model needs to be
simplified.

Since the state variables change slowly due to the system
thermal inertia and have roughly the same trend, Ṫlnr and
Ṫblk are approximately equal to Ṫc. Thus, the dynamic system
model (1) is simplified as follows:

CeṪc = Qcyl,lnr(mf,Ne,mec,Tc)

−Qrc,ra(mrc(mec,Hth),Tc,mra(Nfan, vvel),Tenv).

(21)

whereCe = Clnr+Cblc+Cc is the heat capacity of the engine.

FIGURE 6. Comparison of the high-fidelity GT-Power model and the
proposed dynamic model (21).

The simplified dynamic system model (21) is validated
using the data from the GT-Power model. Fig. 6 shows a
comparison of the coolant temperatures in the GT-Power
model and the dynamic system model in response to con-
tinuous changes in the engine injection rate, engine speed,
coolant flow rate, fan speed, thermostat position, and vehicle
speed. The RMSE and NRMSE of the coolant temperature
are 2.65 K and 0.73%, respectively.

III. PROBLEM FORMULATION
A. FORMULATION OF THE OBJECTIVE FUNCTION
Given the sequence of required driving conditions, the opti-
mization objective is to find the optimal fan speed, coolant
mass flow rate, and thermostat position to minimum the
engine fuel consumption, which can be formulated as
an optimization control problem in equations, find u =
[Nfan mec Hth] such that

min J =
∫ tf

t0
mf dt, (22)

where the fuel consumption rate mf is expressed as follows:

mf = ff(Mind,Ne), (23)

where ff denotes the fuel consumption rate, which is repre-
sented by a map that is dependent on the engine indicated
torque and engine speed.

The engine indicated torque Mind is composed of the
engine brake torque Mbrk, engine friction torque Mfric and
alternator torqueMalt:

Mind = Mbrk +Mfric +Malt. (24)

Since the engine brake torque Me and speed N are given as
the required driving conditions, the friction torque Mfric and
alternator torqueMalt of the engine are two ways to affect the
engine fuel consumptionmf. The models ofMfric andMalt are
elaborated below.

The engine friction torqueMfric is calculated by the follow-
ing expression:

Mfric = ffric(Mbrk,Ne) · fcorr(Tc), (25)

where ffric denotes the nominal engine friction, which is
characterized by a map calibrated at a coolant temperature
of 373 K, and fcorr is the correction factor, which reflects the
impact of the coolant temperature on the engine friction map,
as shown in Fig. 7.

FIGURE 7. Correction factor measuring the impact of the coolant
temperature on the engine friction map.

The alternator torque Malt is related to the electrical load.
Here, we consider only the actuator power in the cooling
system. Therefore,Malt is given by the following expression:

Malt =
9550
η · Ne

· (Pfan + Ppump), (26)

where η is the power conversion efficiency from the
crankshaft to the actuators. The thermostat power is small
in comparison with the fan power and pump power, and is
therefore neglected. The fan power is fitted as (27) using data
from various fan speeds and vehicle speeds:

Pfan = c1 · N 3
fan + c2 · N

2
fan + c3 · Nfan + c4, (27)

The RMSE and NRMSE of the fan power are 73 W and
6.7%. The pump power is fitted as (28) using data from
various coolant flow rates and coolant temperatures:

Ppump = c1 · m3
ec + c2 · m

2
ec + c3 · mec + c4, (28)

The RMSE and NRMSE of the pump power are 5.4 W
and 3.9%. The fitting results are shown in Fig. 8.
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FIGURE 8. Fitting results of the fan power model and the pump power
model.

B. OPTIMIZATION PROBLEM STATEMENT
After preparing the dynamic system model and objec-
tive function, the optimization problem can be formulated.
Substituting themf model (23) to (28) into (21), and discretiz-
ing the state equation (21) by the Euler method, the following
expression can be obtained:

xk+1 = f (xk , uk ,wk ), (29)

where uk = [Nfan(k) mec(k) Hth(k) ]′ are the control
variables, xk = Tc(k) is the state variable, and wk =
[Mbrk(k) Ne(k) vvel(k) Tenv(k) ]′ are the disturbances. The
optimization problem is summarized as follows:

min J =
np∑
k=1

mf(uk , xk ,wk ), k = 1, 2, ..., np (30a)

which is subject to (29) and

xk < xmax, (30b)

uk ∈ U , (30c)

where np is the predictive step number, xmax is the upper
limit of the state variable, and U is the set of feasible control
variables.

C. OPTIMIZATION PROBLEM SOLUTION
In the offline simulations of Section IV, a causal suboptimal
controller and a global optimal controller are necessary to
explore the effectiveness of the proposed control strategy.
In the causal suboptimal controller, the optimization problem
is solved using the ‘‘fmincon’’ function in the MATLAB
optimization toolbox. In the global optimal controller, the
optimization problem is solved using the DP method.

In the real-time implement of Section V, since the ‘‘fmin-
con’’ function is not applicable on the hardware platform
and DP cannot compute in real time, the particle swarm
optimization (PSO) algorithm is employed to solve the opti-
mization problem. PSO is an iterative method for nonlinear
optimization that cannot deal with the state constraint [35].
Thus, we construct a penalty function to transform the state-
constrained problem into a state-unconstrained problem.

The penalty function is defined as follows:

J̃ =


np∑
k=1

{eτ ·[xk−xmax] − 1}, xk − xmax > 0

0, xk − xmax ≤ 0

(31)

where τ is an adjustment parameter. The penalty func-
tion increases exponentially when the coolant temperature
exceeds the constraint. The optimization problem (30) is
improved as follows:

min J =
np∑
k=1

mf(uk , xk ,wk )+ J̃ , (32)

which is subject to (29) and (30c).

IV. EFFECTIVENESS OF THE CONTROL STRATEGY
In this section, three comparisons are carried out to
show the effectiveness of proposed control strategy. First
(Subsection B) is the comparison of proposed optimization
controller for minimum fuel consumption with a temperature
tracking controller, where both controllers are causal. The
comparison is to explore the fuel consumption improvement
of proposed control strategy if there is no driving conditions
known. Second (Subsection C) is the comparison of global
optimization controller and causal optimization controller,
which are both based on the proposed control strategy for
minimum fuel consumption. The comparison is to explore the
potential of proposed control strategy with prediction. Third
(Subsection D) is the comparison of proposed optimization
controller for minimum fuel consumption with an optimiza-
tion controller for minimum actuator power, where both con-
trollers know the entire driving conditions. The comparison
is to explore the effect with consideration of engine friction,
which is the improvement of proposed control strategy.

A. DRIVING CYCLE
In this paper, the worldwide light-duty test cycle (WLTC) is
used to study the effectiveness of the control strategy. The
WLTC is classified into three categories according to the
power-to-mass ratio (PMR) of a vehicle. This paper selects
the Class 3b (PMR > 34) cycle, which is commonly used
for passenger cars. The cycle conditions include a low speed
phase (0-589 s), a medium speed phase (589-1022 s), a high
speed phase (1022-1477 s), and an extra-high speed phase
(1477-1800 s), which are characterized by a 131.3 km/h
maximum vehicle speed, and more than 50 accelerations
and decelerations. Thus, this cycle covers most common
driving conditions and can therefore fully verify the effec-
tiveness of the control strategy. The vehicle speed of the
WLTC, the required engine torque and engine speed are
shown in Fig. 9. It should be noted that the required engine
torque and engine speed are extracted from the operation
results of the GT-Power model, calculated according to the
WLTC profile and vehicle longitudinal dynamics. The self-
built vehicle longitudinal dynamics is necessary in practical
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FIGURE 9. Velocity of the WLTC driving cycle and the required engine
torque and speed.

application, but it deviates from the main idea of this paper
and is not considered here.

B. COMPARISON OF THE CAUSAL OPTIMIZATION
CONTROLLER FOR MINIMUM FUEL CONSUMPTION WITH
THE TEMPERATURE TRACKING CONTROLLER
In the coolant temperature tracking system, the target tem-
perature is always selected as the upper limit of the allowable
value to ensure minimum engine friction. Therefore, in this
paper, the upper temperature limit for the optimization con-
troller is also the target temperature for the tracking con-
troller. A coolant temperature tracking controller is used as
the baseline controller, which is hereafter referred to as the
‘‘T-tracking’’ controller. The objective of the ‘‘T-tracking’’
controller is to minimize the fuel consumption under the
premise of tracking the coolant temperature. The optimiza-
tion problem of the ‘‘T-tracking’’ controller is the same as
(30) with np = 1, except the state constraint is replaced by
xk = xmax.

The ‘‘T-tracking’’ controller is a causal controller with
unknown future driving conditions. For fair comparison,
the proposed control strategy is also set as causal with
np = 1, which we refer to hereafter as the ‘‘Fuel-min causal’’
controller.

TABLE 4. Results of the ‘‘t-tracking’’ controller.

In both controllers, the discrete time1td and the sampling
time1t are set to 1 s, and the temperature constraint is set to
368 K. The simulation results are shown in Fig. 10. The alter-
nator work, engine friction work, and fuel consumption data
are summarized in Tables 4 and 5, wherein the driving cycle

FIGURE 10. Comparison of the coolant temperature tracking controller
‘‘T-tracking’’ and the causal optimization controller ‘‘Fuel-min causal’’
based on the proposed minimum fuel consumption strategy.

TABLE 5. Results of the ‘‘fuel-min causal’’ controller.

is divided into two phases, for convenient comparison, by
the time that the ‘‘Fuel-min causal’’ controller takes to reach
the upper temperature limit. The first phase is considered the
warm-up phase (0-605 s) and the second phase (605-1800 s)
is the warmed phase. Fig. 10 shows that the time required for
the ‘‘T-tracking’’ controller and ‘‘Fuel-min causal’’ controller
to reach the upper temperature limit is 460 s and 605 s,
respectively. The ‘‘T-tracking’’ controller requires less time
than the ‘‘Fuel-min causal’’ controller to reach the tempera-
ture limit, which is attributed to the maximum coolant flow
rate during warm-up. Note that before the thermostat opens,
the rise rate of the coolant temperature increases with the
coolant flow rate because the increased coolant flow rate
leads to increased heating power from the cylinder to the
coolant. The higher coolant temperature of the ‘‘T-tracking’’
controller decreases the friction power, whereas the actuator
power increases. In the warm-up phase, the friction work of
the ‘‘T-tracking’’ controller is less than that of the ‘‘Fuel-min
causal’’ controller, whereas the alternator work of the
‘‘T-tracking’’ controller is much greater, therefore, the fuel
consumption of the ‘‘Fuel-min causal’’ controller is less than
that of the ‘‘T-tracking’’ controller. In the warmed phase,
the engine friction is almost the same under both controllers
since the coolant temperatures are very close. The alternator
work of the ‘‘T-tracking’’ controller is slightly greater than
that of the ‘‘Fuel-min causal’’ controller because the equality
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constraint of the ‘‘T-tracking’’ controller enablesmore violent
actuator action than the unilateral constraint of the ‘‘Fuel-
min causal’’ controller. Thus, in the warmed phase, the fuel
consumption of the ‘‘Fuel-min causal’’ controller is slightly
less than that of the ‘‘T-tracking’’ controller.

In contrast to the ‘‘T-tracking’’ controller, the ‘‘Fuel-min
causal’’ controller significantly reduces the actuator power
in the warm-up phase and subsequently reduces the fuel
consumption, whereas the ‘‘Fuel-min causal’’ controller con-
tributes little to reducing the fuel consumption in the warmed
phase.

C. COMPARISON OF THE GLOBAL OPTIMIZATION
CONTROLLER WITH THE CAUSAL
OPTIMIZATION CONTROLLER
Future driving conditions will undoubtedly further improve
the control effect. To explore the potential of the proposed
control strategy with entire driving cycle known, the global
optimization using DP—referred to hereafter as the ‘‘Fuel-
min optimal’’ controller—is employed and compared with
the ‘‘Fuel-min causal’’ controller.

FIGURE 11. Comparison of the causal optimization controller ‘‘Fuel-min
causal’’ with the global optimization controller ‘‘Fuel-min optimal’’, which
are both based on the proposed minimum fuel consumption strategy.

In the ‘‘Fuel-min optimal’’ controller, the time resolution
is 1 s, the coolant temperature resolution is 0.5 K, the fan
speed resolution is 250 r/min, the coolant flow rate resolution
is 350 g/s, and the thermostat position resolution is 0.1.
A comparison of the ‘‘Fuel-min optimal’’ controller and the
‘‘Fuel-min causal’’ controller is shown in Fig. 11, and the
data are summarized in Tables 6 and 7. The separation point
between the warm-up and warmed phases is 650 s, which
is the time required by the ‘‘Fuel-min optimal’’ controller
to reach the upper temperature limit. Fig. 11 shows three
differences between the ‘‘Fuel-min causal’’ and ‘‘Fuel-min
optimal’’ controllers. 1) Before the thermostat opens, the

TABLE 6. Results of the ‘‘fuel-min causal’’ controller.

TABLE 7. Results of the ‘‘fuel-min optimal’’ controller.

‘‘Fuel-min causal’’ controller maintains the coolant flow at
the lower bound, whereas the ‘‘Fuel-min optimal’’ controller
uses a larger flow rate. This difference occurs because the
‘‘Fuel-min causal’’ controller can foresee only one step in
the future (np = 1 in the ‘‘Fuel-min causal’’ controller),
in which the coolant temperature will hardly change with
the present actuator action since it is a slowly changing
variable. Therefore, the friction power will hardly decrease
with increases in the coolant flow, whereas the actuator power
increases, which leads to higher fuel consumption. Therefore,
the ‘‘Fuel-min causal’’ controller makes an optimal decision
for the next step, but not the optimal decision for the entire
driving cycle. However, the ‘‘Fuel-min optimal’’ controller,
which is regarded as possessing a sufficiently long predic-
tive domain, can foresee the coolant temperature variations
over the entire driving cycle caused by the present actua-
tor action. Accordingly, the ‘‘Fuel-min optimal’’ controller
preheats the coolant by increasing the coolant flow to avoid
excessive friction power in the future. 2) The ‘‘Fuel-min
causal’’ controller opens the thermostat until the coolant
temperature reaches the upper limit, whereas the ‘‘Fuel-min
optimal’’ opens the thermostat in advance. The reason for
this strategy is that the ‘‘Fuel-min optimal’’ can precool the
system to avoid excessive actuator power when reaching
the upper temperature limit. 3) The coolant temperature of
the ‘‘Fuel-min causal’’ controller is very close to the upper
temperature limit, whereas that of the ‘‘Fuel-min optimal’’
controller is well within the upper temperature limit. This
finding is also attributed to the precooling of the ‘‘Fuel-min
optimal’’ controller seeking to avoid excessive actuator power
in the future. In addition, the precooling can also prevent the
coolant temperature from exceeding the upper limit under
heavy engine loads. The results show that at 1550-1600 s,
the actuator action of the ‘‘Fuel-min causal’’ controller cannot
keep the coolant temperature within the limit, whereas the
‘‘Fuel-min optimal’’ controller can.

In contrast to the ‘‘Fuel-min causal’’ controller, the ‘‘Fuel-
min optimal’’ controller exploits the knowledge of the
entire driving cycle and further reduces the fuel consump-
tion by preheating or precooling, especially in the warmed
phase.
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D. COMPARISON OF THE GLOBAL OPTIMIZATION
CONTROLLER FOR MINIMUM FUEL CONSUMPTION
WITH THAT FOR MINIMUM ACTUATOR POWER
To show the advantages of the proposed strategy for mini-
mum fuel consumption, a comparison with a controller for
minimum actuator power [25], called the ‘‘Power-min opti-
mal’’ controller, is conducted in this paper. The optimization
problem for the ‘‘Power-min optimal’’ controller is expressed
as follows:

min J =
np∑
k=1

Palt(Nfan(k),mec(k)), (33)

which is subject to (29), (30b), and (30c). Note that the power
of the thermostat is always ignored because it is very small.

FIGURE 12. Comparison of the optimization controller for minimum
actuator power ‘‘Power-min optimal’’ and the optimization controller for
minimum fuel consumption ‘‘Fuel-min optimal’’.

TABLE 8. Results of the ‘‘power-min optimal’’ controller.

DP is applied to solve the optimization problem, wherein
the resolution settings are the same as those for the ‘‘Fuel-min
optimal’’ controller stated in Subsection C. The comparison
is shown in Fig. 12 and summarized in Tables 7 and 8. The
separation point between the warm-up and warmed phases is
875 s, which is the time the ‘‘Power-min optimal’’ controller
requires to reach the upper temperature limit. Fig. 12 shows
two main differences between the ‘‘Power-min optimal’’ and
‘‘Fuel-min optimal’’ controllers. 1) The thermostat position
of the ‘‘Power-min optimal’’ controller is maintained at its
maximum value, whereas that of the ‘‘Fuel-min optimal’’
controller is not. This difference occurs because the thermo-
stat of the ‘‘Power-min optimal’’ controller works hard to

TABLE 9. Results of the ‘‘fuel-min optimal’’ controller.

reduce the coolant temperature to delay the time required to
reach the upper temperature limit. This strategy guarantees
the smallest actuator power, but at the expense of friction
power, and we can see that the coolant temperature rise rate
of the ‘‘Power-optimal’’ controller is much slower and the
friction work in the warm-up phase is much greater. 2) The
coolant mass flow of the ‘‘Fuel-min optimal’’ controller is
initially larger than that of the ‘‘Power-optimal’’ controller.
The reason for this difference in coolant mass flow is the
preheating explained in Subsection C, which helped avoid
excessive friction in the future, however, this scenario is not
considered by the ‘‘Power-optimal’’ controller. Tables 8 and 9
show that the actuator power of the ‘‘Fuel-min optimal’’
controller is slightly higher than that of the ‘‘Power-min
optimal’’ controller, whereas the friction power of the for-
mer is lower, especially in the warm-up phase. This find-
ing indicates that the ‘‘Fuel-min optimal’’ controller makes
compromises between the friction power and actuator power,
while the ‘‘Power-optimal’’ controller wastes a large amount
of friction power in order to achieve lower actuator power.
Especially in lower environmental temperatures where the
friction is higher, the advantages of the ‘‘Fuel-min optimal’’
controller are more obvious, as shown in Fig. 13, in which
the fuel consumption saving of the ‘‘Fuel-optimal’’ controller
is compared with that of the ‘‘Power-optimal’’ at various
environmental temperatures.

FIGURE 13. Fuel-saving rates of the ‘‘Fuel-min optimal’’ controller
compared with those of the ‘‘Power-min optimal’’ controller at various
environmental temperatures under the WLTC.

In addition, in the optimization problem (33), the objective
function Palt is not dependent on either the thermostat posi-
tionHth (control variable) or the coolant temperature Tc (state
variable), which means that the thermostat position impacts
the optimization objective only through the coolant temper-
ature constraint (30b). Therefore, if the predictive coolant
temperature cannot reach the constraint in the prediction
horizon, the thermostat position will have no effect on the
optimization objective, which causes an uncertain solution of
the thermostat positionHth. The proposed strategy (30) in this
paper selects fuel consumption as the optimization objective,
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which is related to the thermostat positionHth by considering
the engine friction, thereby avoiding the uncertain solution of
the thermostat position Hth.
In contrast to the ‘‘Power-min optimal’’ controller, the

‘‘Fuel-min optimal’’ controller makes compromises between
the friction power and actuator power to realize the minimum
fuel consumption, and the fuel saving effects of the ‘‘Fuel-
min optimal’’ controller are more obvious in lower envi-
ronmental temperatures. Moreover, the ‘‘Fuel-min optimal’’
controller avoids the uncertain solution of the optimization
problem of the ‘‘Power-min optimal’’ controller.

TABLE 10. Fuel consumption of each controller under various driving
cycles.

FIGURE 14. Velocity of the real world driving cycle in Changchun, China.

E. SUMMARY OF THE FUEL CONSUMPTION
PERFORMANCE OF EACH CONTROLLER
The fuel consumption of each controller under various com-
mon driving cycles is summarized in Table 10, including the
WLTC, the New European Driving Cycle (NEDC), the Urban
Dynamometer Driving Schedule (UDDS), the Federal Test
Procedure (FTP75), and a real world (RW) driving cycle. The
RW driving cycle is recorded in the urban area of Changchun,
China and the velocity of the RW driving cycle is shown
in Fig. 14. The required engine torque and engine speed of
each driving cycle are extracted from the operation results
of the GT-Power model according to the velocity of the
corresponding driving cycle. The environmental temperature
of the GT-Power model is set as 300 K. Compared with
the ‘‘T-tracking’’ controller, the ‘‘Fuel-min causal’’ controller
based on the proposed control strategy without known driving
conditions achieves a significant effect that 1.29%-2.76%
fuel is saved. Compared with the ‘‘Power-min optimal’’
controller, the ‘‘Fuel-min optimal’’ controller based on the
proposed control strategy with knowledge of entire driving
conditions achieves a certain effect that 0.25%-0.46% fuel
is saved. Although the improvement is not significant, it is
more obvious as the environmental temperature decreases.
Moreover, this improvement has almost no cost that only

the map of correction factor fcorr is to be made. Compared
with the ‘‘Fuel-min causal’’ controller, the ‘‘Fuel-min opti-
mal’’ controller achieves 0.27%-0.78% fuel reduction, which
indicates the potential of prediction in the proposed control
strategy.

V. REAL-TIME IMPLEMENTATION OF
THE CONTROL STRATEGY
From the above study, considering the driving conditions
can further improve the fuel consumption. Although the con-
troller in the DP method has an apparent effect, it is actually
an offline method that does not consider external distur-
bances or time consumption. In addition, the behaviors of the
cooling system are designed under given driving conditions,
which means once the conditions are changed, the effect may
be influenced. For the above reasons, an attempt is made to
realize the application of the proposed control strategy using
a PSO-MPC controller. A dSPACE 1106 is used as the real-
time implementation platform.

FIGURE 15. Diagram of the MPC framework used in this paper.

Compromising between the computation time and the con-
trol effect, the MPC framework used in this paper is shown
in Fig. 15, wherein we set the prediction horizon nh to 6,
the horizon length th is 20 s, and the discretization interval
1td is 5 s, which means the predictive step number is np = 24
(np = nh · th/1td). The control variables are invariant in each
predictive horizon, as shown hereafter:

u1|k = u2|k = ... = u(th/1td)|k , u1,

u(th/1td+1)|k = u(th/1td+2)|k = . . . = u(2·th/1td)|k , u2,

. . .

u((nh−1)·th/1td+1)|k = u((nh−1)·th/1td+2)|k= . . .

= u(nh·th/1td)|k , u6. (34)

The sampling time1t is set to 1 s, the adjustment parameter τ
is 10, the particle quantity is 1000, and themaximum iteration
number is 20. By solving the optimization problem (32) based
on the latest measured state x0|k at each sampling instant,
the optimal control sequence is obtained, and then the first
element is applied to the system.

The controller and plant model are implemented together
in dSPACE, wherein the run time of the plant model is
negligible compared to that of the controller. The platform
is shown in Fig. 16, and the real-time simulation results are
shown in Fig. 17. The results reveal that the real-time control
is realized under the hardware conditions. Fig. 17 shows that
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FIGURE 16. Platform for real-time simulations.

FIGURE 17. Results of the real-time implementation of the proposed
control strategy using PSO-MPC with a limited horizon.

the state variable and control variables are basically consis-
tent with those of the ‘‘Fuel-min optimal’’ controller except
for some fluctuations in the control variables. The reason for
these fluctuations is that the positions of the particles have
a certain randomness, which is an inherent flaw of the PSO
algorithm. The fuel consumption of the real-time simulation
is 1808.74 g, which indicates the effectiveness and feasibility
of the proposed strategy.

A knowledge of future driving conditions is a challenge
for MPC application, however, for vehicles whose driving
environment are certain or similar every day, e.g. taxis and
buses, and vehicles equipped with a GPS combined with a
traffic-flow information system, the Markov-based driving
cycle generator can supply the driver’s required vehicle speed
to the controller, which is in a stochastic, average sense rather
than a predetermined cycle [36], [37]. Moreover, with the
development of V2V, V2I communications, advanced sen-
sors, and automated vehicles, a knowledge of future driving
conditions is possible to realize [38], [39].

VI. CONCLUSION
In this paper, a control strategy for minimum fuel consump-
tion is proposed that accounts for both the engine friction
caused by the coolant temperature and the actuator power of

the cooling system. A physics-based dynamic heat transfer
model of an electrified cooling system is developed. Two
main intermediate variables—the heating power from the
cylinder to the liner and the cooling power of the radiator—
are focused on, and their characteristic variables are derived
through an analysis of the heat transfer process, thereby, the
accuracies of their fitting models are improved by at least
6.4% and 17.2%. To observe the effectiveness of the proposed
strategy, a causal suboptimal controller using this strategy
is compared with that for tracking the coolant temperature,
which achieves 1.29%-2.76% fuel reduction under various
driving cycles, and a DP-based optimal solution using this
strategy is compared with that for minimizing the actua-
tor power, which achieves 0.25%-0.46% fuel reduction, and
this effect can increase as the environmental temperature
decreases. Furthermore, this improvement has almost no cost.
A comparison of the causal suboptimal solution and the
DP-based optimal solution is also given to explore the poten-
tial of prediction, and the results show that a 0.27%-0.78%
fuel reduction is achieved when the entire driving cycle is
known.Moreover, the behavior of each controller is discussed
and analyzed in detail according to the comparisons, which
provides a basis for possible heuristic controllers in the future.
Real-time implementation using PSO-MPC with a limited
horizon is realized on a hardware platform, and the results
indicates the feasibility and effectiveness of the proposed
strategy.
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