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ABSTRACT Winter jujubes get bruised easily during harvest and transportation. In order to detect subtle
bruises on winter jujubes in a more efficient way, a rapid and accurate technique, hyperspectral imaging was
used. Near-infrared reflectance (NIR) and visible/near-infrared reflectance (Vis-NIR) hyperspectral imaging
at the spectral region of 874-1734 nm and 380-1030 nm, respectively, were applied in this study. The
hyperspectral images of winter jujubes from four geographical origins were acquired. Pixel-wise spectra
were extracted and preprocessed; pixel-wise principal component analysis (PCA) was used to conduct
a qualitative analysis. Accuracy, true positive rate (TPR) and false positive rate (FPR) were utilized to
compare the efficiency of the models. Support vector machine (SVM), logistic regression (LR) and a deep
learning method, and convolutional neural network (CNN) were used to build pixel-wise classification
models based on single or all geographical origins for quantitative analyses. All the models using NIR
spectra obtained decent results with accuracies in the range of 90–100%, and TPRs and FPRs close to
1 and 0, respectively. Compared with the other two methods using Vis-NIR spectra, the CNN model based
on all geographical origins got the best performance with most of the accuracies surpassing 85%. For
Vis-NIR spectra and NIR spectra, the overall time efficiency for modeling and prediction of CNN was
at an intermediate level among the three models. The short prediction time of CNN indicated that CNN
had the potential for real-time detection. The prediction maps obtained by the CNN models indicated that
the color information and geographical origins could affect the detection performance. The overall results
demonstrated the promising potential for detecting subtle bruises on winter jujubes using pixel-wise spectra
extracted from the hyperspectral images at the two spectral ranges with the deep learning method. The results
in this study would help to develop an online winter jujube bruises detection system in the future.

INDEX TERMS Winter jujubes, hyperspectral imaging system, support vector machine, logistic regression,
convolutional neural networks.

I. INTRODUCTION
Winter jujube is one of the most favored fruits in China due
to its good taste and abundant nutrition. The winter jujube
is harvested and stored at a low temperature. The ripen win-
ter jujube becomes browning and softening and its quality
deteriorates after harvesting [1]. Bruises are the damage to
the soft tissue of fruit caused by external forces, which can
cause physical changes in the texture of the fruit as well as

The associate editor coordinating the review of this manuscript and
approving it for publication was Jon Atli Benediktsson.

chemical changes in color, odor and taste [2]. It is a common
knowledge that winter jujubes often suffer from mechanical
defects during gathering, transportation and postharvest treat-
ment. As time goes by, the bruise can develop into mildew or
decay, which not only affects the quality of bruised winter
jujubes, but also has chances to infect other healthy winter
jujubes.

Traditionally, discriminating bruised winter jujubes is per-
formed by human naked eye, which is inefficient and toil-
some for large-scale processing and production. At present,
to meet the requirement of industrial development, some
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non-destructive methods are applied to evaluating fruit
attributes. Cox et al. utilized electrical impedance measure-
ments to detect and monitor the development of the bruises
on apples named ‘Granny Smith’. The results showed that
impedance measurements could distinguish bruises of differ-
ent level in apples successfully [3]. Zhang et al. employed
electronic nose to establish quality indices model for pears.
All models presented good prediction results for firmness
and soluble solid content [4]. Some studies detected apple
bruises using machine vision technology. Combined with
certain image processing algorithm, early bruises on apples
could be detected successfully [5], [6].

In addition to the methods mentioned above, hyperspec-
tral image technology is a non-destructive testing method
which combines image technique and spectroscopy technol-
ogy [7]–[10]. Hyperspectral imaging technology can obtain
the chemical information of heterogeneous samples and
further explore the spatial distribution of chemical compo-
nents [11], [12]. In recent years, the hyperspectral tech-
nology has been extensively used in the detection of fruit
bruises. Baranowski et al. (2012) used a hyperspectral sys-
tem to detect bruises in apples. Otsu thresholding algo-
rithm was used to distinguish bruised areas. It showed
that the bruised tissue could be distinguished using princi-
pal components analysis (PCA) and minimum noise frac-
tion (MNF) analysis methods [13]. Zhao et al. (2010) also
used PCA to extract useful information for bruise detection
on pears [14]. Fan et al. (2017) successfully detected bruises
of blueberry using near-infrared reflectance (NIR) hyperspec-
tral reflectance imaging with optimum wavelengths selected
by competitive adaptive reweighted sampling (CARS) [15].
Then the same team discriminated bruises of blueberry using
two hyperspectral imaging systems, which demonstrated the
possibility of blueberry bruises detection using the data
fusion strategy [16]. Gamal et al. (2007) selected three effec-
tive wavelengths in the near infrared region to detect early
bruises of apples. An adaptive thresholding was used to iden-
tify bruised areas of apples. The results showed the possibility
of the detection of apple bruises after 1 h using hyperspectral
imaging technology [17].

Among the studies detecting fruit bruises based on hyper-
spectral imaging, the object-wise analysis based on regions
of interest (ROI) is a common method used for normal
and bruised areas selected [18]–[20]. However, the ROIs
for normal and bruised area were selected manually. The
hyperspectral reflectance variation caused by the height dif-
ferences of the sample surface was also ignored by analyzing
spectral data within ROIs [21]. The object-wise analysis is
a common feature extraction method which uses average
spectra of samples for data analysis. Although it can save
time for modelling, it still loses the detailed information of
samples [22]–[24]. The pixel-wise analysis uses spectra of
individual pixels of samples for analyses. Compared with the
object-wise analysis, the pixel-wise analysis contains much
more detail information, though it will take more time for
data processing. Studies have showed that pixel-wise spectra

are effective in hyperspectral image analyses [8], [21], [25].
Che et al. (2018) used pixel-wise spectra extracted from
hyperspectral images of bruised apples to detect apple
bruises. The overall results showed the potential for
bruised region extraction based on pixel-wise hyperspectral
imaging [26].

How to deal with the large amount of pixel-wise spectra
is a great challenge at present. Deep learning, a new field
in artificial intelligence, has been one of the hottest fields in
artificial intelligence, due to its characteristics such as feature
representation, self-learning and effectiveness of dealing with
large data, etc [27], [28]. Deep learning has been popu-
larly applied in various fields, and has shown competitive or
better performances compared with other machine learning
methods [29]–[32]. The hyperspectral image analysis is a
hot application area of the deep learning. Researchers have
conducted a large number of studies to use deep learning in
hyperspectral images of remote sensing [33]–[35]. Only a few
researchers have introduced deep learning in spectral data
analysis and ground-based hyperspectral images [36]–[39].
These studies indicate that deep learning has great potential
in spectral data and hyperspectral image analyses.

This study used hyperspectral imaging systems at two dif-
ferent spectral ranges to detect bruises in winter jujubes.Win-
ter jujubes from different geographical origins were studied.
Detection performances varied with geographical origins,
indicating the influence of geographical origins of winter
jujubes. Pixel-wise spectra were extracted for analyses, and
the results showed that it was feasible to use pixel-wise
spectra for bruise detection of winter jujubes. Better detection
performances were obtained by near-infrared hyperspectral
imaging, and the results showed that NIR spectra would
be better for the winter jujube bruise detection for industry
applications.More importantly, convolutional neural network
(CNN) was adopted to detect winter jujube bruises along
with traditional methods support vector machine (SVM) and
logistic regression (LR). Detection performances of CNN
were close to SVM and LR. Time efficiency of modelling and
prediction showed that CNN had great potential for real-time
detection. The results of this study would help researchers
from related fields to use deep learning methods for the
similar tasks on the other fruits, and extend the use of the deep
learning in the hyperspectral image analyses for food and the
other fields.

II. MATERIALS AND METHODS
A. SAMPLES PREPARATION
Winter jujubes (Zizyphus Jujuba Mill.) from four different
geographical origins were collected during the harvest period
in 2017, including Dali, Shanxi Province, China; Huanghua,
Hebei Province, China; Linyi, Shanxi Province, China;
Zhanhua, Shandong Province, China, respectively. For the
4 geographical origins, 150 samples of single geographi-
cal origin were prepared, including 75 healthy jujubes and
75 bruised jujubes. The bruises in winter jujubes were mainly
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caused by external force during the process of picking and
transportation, and the region of bruised winter jujube sam-
ples were marked for the convenience of spectral data extrac-
tion. All jujubes were washed, dried and stored at room
temperature of 20 ◦C for 24 hours for hyperspectral image
acquisition.

B. HYPERSPECTRAL IMAGING ACQUISITION
1) HYPERSPECTRAL IMAGING SYSTEM
In order to acquire hyperspectral images, a NIR hyperspectral
imaging system with the spectral range of 874-1734 nm and
a Vis-NIR hyperspectral imaging system with the spectral
range of 380-1030 nm was applied to this experiment.

The Vis-NIR hyperspectral imaging system consists of an
imaging spectrograph (ImSpector V10E; Spectral Imaging
Ltd., Oulu, Finland) with the spectral resolution of 2.8 nm,
a high performance CCD camera (Hamamatsu, Hamamatsu
City, Japan) with 672× 512 (spatial × spectral) pixels and a
camera lens (OLES23; Specim, Spectral Imaging Ltd., Oulu,
Finland).

NIR hyperspectral imaging system comprised an imag-
ing spectrograph (ImSpector N17E; Spectral Imaging Ltd.,
Oulu, Finland), a high performance camera (Xeva 992; Xen-
ics Infrared Solutions, Leuven, Belgium) with 326 × 256
(spatial × spectral) pixels and a camera lens (OLES22;
Specim, Spectral Imaging Ltd., Oulu, Finland).

A platform integrated the two systems. For the platform,
two 150 W tungsten halogen lamps (3900 Lightsource, Illu-
mination Technologies Inc., USA) are used for illumination;
a conveyer belt driven by a stepper motor (Isuzu Optics
Corp., Taiwan, China) is used for sample motion. Hyper-
spectral image acquisition was controlled by corresponding
softwares (Spectral Image-V10E and Spectral-Image-Xenics
17E, Isuzu Optics Corp., Taiwan, China), which could be
applied to calibrating and analyzing the hyperspectral images.

To prevent hyperspectral images distortion and get distinct
hyperspectral images, three parameters, including moving
speed of conveyer belt, the exposure time and the height
between the lens of the camera for NIR hyperspectral imaging
system, were set as 15 mm/s, 3 ms and 19.5 cm, respectively.
For the Vis-NIR hyperspectral imaging system, three of the
same parameters were adjusted to 2.2 mm/s, 0.05 s and
19.5 cm.

2) HYPERSPECTRAL IMAGE ACQUISITION AND
CALIBRATION
The raw hyperspectral images should be corrected into
reflectance images by the following equation for further
analysis:

Ic =
Iraw − 1dark
Iwhite − Idark

(1)

where Ic represented the calibrated image; Iraw represented
the raw image; Idark is the dark reference image acquired by
covering the lenswith lens capwhose reflectivity is about 0%;

Iwhite is the white reference image collected using a piece of
pure white Teflon board whose reflectivity was about 100%.

C. SPECTRAL EXTRACTION AND PREPROCESSING
After image correction, spectral information could be
extracted from preprocessed hyperspectral images. For
healthy sample, the entire sample region in the hyperspectral-
image was defined as the region of interest (ROI) and all the
pixel-wise spectra within the ROIwere extracted. It was noted
that some regions were over exposed, and these pixels were
removed during pixel-wise spectra extraction. For bruised
sample, the mask procedures on binary image couldn’t be
used to distinguish the bruised area on winter jujubes auto-
matically. Thus, a rectangle area in the center of the marked
area (Figure 1) were manually defined as the ROI, and all the
pixel-wise spectra within the ROI were extracted. It should
be noted for the bruised samples, only one bruised region
was marked, and there might be more bruised regions within
the bruised samples. To reduce the influence of unflatten
surface of different ROIs, the normalization preprocessing on
the extracted spectra was applied. More importantly, it could
be observed in Figure 1 that the marked bruised regions had
similar color as some healthy regions. The similarity in color
of bruised regions to healthy regionsmade it difficult to detect
bruises visually.

FIGURE 1. Hyperspectral images of (a) NIR; (b) Vis-NIR. (Red boxes in the
images were selected as the region of interest of bruised samples.)

The beginning and the end part of the spectral data
included obvious noises, so the spectral range of 975-1646
(200 wavelengths) nm for the NIR hyperspectral images and
502-947 nm (350wavelengths) for the Vis-NIR hyperspectral
images were used for further analyses. For both NIR and
Vis-NIR hyperspectral images, the original pixel-wise spectra
was denoised bywavelet transform (WT) basis function using
Daubechies 8 (db8) with decomposition level 3. After WT
denoising, an area normalization preprocess was applied on
the pixel-wise spectra to reduce the influence of light intensity
variations caused by fruit shape [40]–[42].
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D. DATA ANALYSIS METHODS
1) PRINCIPAL COMPONENT ANALYSIS
Principal component analysis (PCA), a multivariate statistical
method, is commonly used for data dimension reduction by
studying the correlation between multiple variables. The first
few principal components (PCs) contained the most spectral
information of samples, so the first few PCs can be used to
explore the differences among samples. As for hyperspectral
image, PCA can be conducted on pixels to form pixel-wise
score images [43], [44]. PCA was applied to explore qualita-
tive discrimination of healthy and bruised winter jujubes in
this study.

2) SUPPORT VECTOR MACHINE
Support vector machine (SVM) is a generalized linear clas-
sifier based on supervised learning method used for data
classification and regression. SVM is one of the most com-
monly used and best-performing classifiers, which can usu-
ally get better results than other algorithms on small sample
training sets. SVM Radial basis function (RBF) is a widely
used kernel function for SVM models in spectral data anal-
ysis [45], [46]. The regularization parameter c and kernel
function parameter g are two main parameters which should
be decided for SVM models. In this study, grid-search was
applied in SVM models optimization. The values of regular-
ization parameter c and kernel function parameter g of SVM
models with the highest accuracy were chosen as the optimal
model parameters. SVM is conducted on Matlab R2017a
(The Math Works, Natick, MA, USA) [47], [48].

3) LOGISTICAL REGRESSION
Logistic regression (LR) is a common method for dealing
with the problem of binary classification [49], as well as the
most popular algorithm for solving problems in industrial
scale. What’s more, LR is easy to understand and implement
with simple formula and low computational burden. The
dependent variable of a binary logisticmodel has two possible
values labeled ‘‘0’’ and ‘‘1’’. Based on linear regression
model, sigmoid function is added to map the linear combi-
nation of independent variables into the value in range [0, 1].

In this research, we fit the LR model utilizing the general-
ized linear model regression toolbox of Matlab R2017a (The
Math Works, Natick, MA, USA).

4) CONVOLUTIONAL NEURAL NETWORK
Convolutional neural network (CNN) studies local patterns
from original data based on local sparse connections, and it
can reduce the risk of overfitting by weight sharing [50].

As shown in Figure 2, we designed a simple CNN archi-
tecture consisting of two main blocks utilizing MXNet1.4.0
(MXNetAmazon, Seattle, WA, USA) [51].

The first block is convolutional block including two con-
volutional layers, each followed by a max pooling layer
and an activation layer. Considering that the inputs are
one-dimensional vectors composed of pixel-level spectral

FIGURE 2. The architecture of CNN.

data, we adopt one-dimensional convolution (Conv1D) [38].
The parameters in CNN were chosen by empirical method
at first. In order to find the optimal architecture of the CNN
models, the parameters were adjusted according to the accu-
racy of the validation set and the simplicity of the model. All
convolutional layers in the proposed model use a kernel size
of 3, stride of 1 without padding. The number of filters is
64 for the first convolutional layer and 32 for another one.
The convolutional block can be trained by pixel-level spectra
to extract abstract spectral features. The second block is a
fully connected (FC) network consisting of three layers of
neural networks, each of which contains 512, 128, 32 neurons
respectively. And we add a dense layer at last for output.
Features extracted by the convolutional block was fed into
the FC block to predict the health status.

Furthermore, the proposed architecture used the rectified
linear unit (ReLU) as activation function. The output of the
CNN model is followed by a softmax function to convert the
output data of the last dense layer to a value in the range of
[0, 1] as classification confidence scores. Cross entropy cost
function, which calculates the expected value of the loss for a
distribution over outcomes, was chosen as the loss function.

The training procedure was performed by optimizing the
softmax cross entropy loss using the SGD algorithm. The
learning rate (L0) was reduced with the increase of training
epoch according to the following equation:

L =
L0

1+ kt
(2)

where L denotes the initial learning rate; t is the number of
epochs; and k is set to 0.001 in this research which determines
the speed of reduction. Other hyperparameter of the CNN is
shown in Table 5 and Table 6.
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The Pseudocode of the Method was as Follows:

Data preprocessing
Input: raw pixel-level spectra data S of m bands by n
samples
Function Area normalization:
For each s(m×1) in S:

s = s./sum(s)
end For

mark the new S as S’
output: S’ and divide S’ as S’_calibration, S’_validation,

S’_prediction
Training task
Input: a batch of preprocessed pixel-level spectra data of m
bands
Define the network architecture as net() and set the trainer
using MXNET
ctx=gpu(0)
(0): Conv1D(64, kernel_size =3, stride =1,

Activation(relu))
(1): MaxPool1D(size =2, stride =2,)
(2): BatchNorm(eps =1e-05, momentum =0.9)
(3): Conv1D(32, kernel_size =3, stride =1,

Activation(relu))
(4): MaxPool1D(size =2, stride =2,)
(5): BatchNorm(eps =1e-05, momentum =0.9)
(6): Dense(512, Activation(relu))
(7): BatchNorm(eps =1e-05, momentum =0.9)
(8): Dense(128, Activation(relu))
(9): BatchNorm(eps =1e-05, momentum =0.9)
(10): Dense(32, Activation(relu))
(11): BatchNorm(axis =1, eps =1e-05,

momentum =0.9)
(12): Dense(2, linear)

For epoch = 1 to defined_epochs:
start = time()
learning rate = init_learning_rate/(1+k ∗epoch)

For each batch in S’_calibration as [Xi, yi]:
loss = softmax cross entropy loss
(ŷ =net(Xi),yi)

net.backward()
calculate calibration_accuracy
calculate validation accuracy
print(epoch, loss, calibration accuracy, validation

accuracy, time() - start))
End For
Testing task
Load the trained network
For each batch in S’_prediction as [Xi, yi]:

ŷtest (the ith batch) = net(Xi)
calculate prediction_accuracy
Visualization
Load a spectral image I in shape of a∗b∗m
Load the trained network
ŷ = net(For each pixel in I)
Reshape ŷ as a∗b
plot the colormap

5) CALIBRATION SET SELECTION
In this study, pixel-wise spectra of healthy jujubes were
extracted from the entire sample region, whereas pixel-
wise spectra of bruised samples were extracted from
the marked ROIs. The number of pixel-wise spectra of
healthy samples was much larger than that of bruised
regions. Thus similar number of representative pixel-wise
spectra was selected from the original healthy pixel-wise
spectra.

To select representative pixel-wise spectra, the following
procedures were conducted:

1) Calculate the average spectrum of all healthy
pixel-wise spectra as reference spectrum;

2) Use spectral angle mapping (SAM) to calculate the
spectral angle value between each pixel-wise spectra
and the reference spectrum;

3) Rank the pixels according to the spectral angle value
from low to high. The pixel-wise spectra with the
lowest and highest spectral angle values were firstly
selected into the calibration set;

4) Divide the remaining samples uniformly into the
certain number of groups according to the spectral
angle value. Pixel with medium spectral angle value
of each group was selected into the calibration set.
Note that there might be empty groups, the corre-
sponding samples were not chosen, resulting in less
selected pixels. Thus the number of groups to be
divided should be larger than the expected selected
number.

6) RECEIVER OPERATING CHARACTERISTICS
Receiver operating characteristics (ROC) is used to illustrate
the discrimination ability of a binary classifier system.

True Positive (TP), False Positive (FP), TrueNegative (TN)
and False Negative (FN) are terminologies used in the
description of ROC.

TP means the classified result and the actual label are
both positive. FP means the classified result is positive
while the actual label is negative. TN means the classified
result and the actual label are both negative. FN means
the classified result is negative while the actual label is
positive.

In this study, the label ‘‘healthy’’ was defined as positive
and label ‘‘bruised’’ was defined as negative.

True positive rate (TPR) and false positive rate (FPR)
are features introduced by Fawcett (2004) to evaluate the
performance of the classifier. The equations are presented as
follows [52]:

TPR =
TP

TP+ FN
(3)

FPR =
FP

FP+ TN
(4)

For a good classifier, TPR should be close to 1 while FPR
should be close to 0.
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III. RESULTS AND DISCUSSION
A. SPECTRAL PROFILE
In order to reveal the differences of the reflectance spec-
tra between healthy and subtly bruised winter jujubes more
intuitively, the average spectra with standard deviation (SD)
of calibration set for four geographical origins of winter
jujubes were calculated and presented in Figures 3 and 4.
Figure 3 shows the average reflectance spectra of winter
jujubes from four geographical origins acquired by NIR
hyperspectral imaging system, whereas Figure 4 presents the
data acquired by Vis-NIR hyperspectral imaging system.

FIGURE 3. The average spectra with SD of four geographical origins of
winter jujubes from four geographical origins acquired by NIR
hyperspectral imaging system (H: Healthy; B: Bruised ): (a) Dali winter
jujube; (b) Huanghua winter jujube; (c) Linyi winter jujube; (d) Zhanhua
winter jujube.

It can be seen from Figures 3 and 4, the variation trend
of reflectance spectra curves of four geographical origins of
winter jujubes is similar. In addition, healthy winter jujubes
and subtly bruised samples also have similar variation trend
of curves within one figure.

For NIR hyperspectral images, the spectral reflectance
of bruised winter jujubes was slightly higher than that of
healthy samples in the wavelength range of 972-1150 nm,
whereas the average spectra of healthy samples were higher
than bruised winter jujubes around 1400-1642 nm. As for the
Vis-NIR hyperspectral images, the curve had the most obvi-
ous difference in the range of 569-688 nm and 753-947 nm.
Although there are some differences in the spectra reflectance
in specific spectra range, overlap still exists between two
curves to some extent. So it is necessary to conduct further
study in order to make a better distinction between healthy
and bruised samples.

B. PIXEL-WISE PCA SCORE IMAGES
NIR hyperspectral images and Vis-NIR hyperspectral images
of winter jujubes of single geographical origin were selected
randomly to conduct PCA for quantitative analyses. More

FIGURE 4. The average spectra with SD of winter jujubes from four
geographical origins acquired by Vis-NIR hyperspectral imaging system
(H: Healthy; B: Bruised ): (a) Dali winter jujube; (b) Huanghua winter
jujube; (c) Linyi winter jujube; (d) Zhanhua winter jujube.

than 99% of information in the original spectra was included
in the first six PCs. Score images of the Dali winter jujube
were shown in Figure 5. PCA score images of the other three
geographical origins of winter jujubes were similar to those
of the Dali winter jujube. Considering the size of image,
PCA score images of the other three geographical origins of
winter jujube were shown in Figures S1, S2 and S3 of the
Supplementary Materials, respectively.

For NIR hyperspectral images, score image of PC3 shows
obvious difference between healthy samples (blue color) and
bruised winter jujubes (red color). Score images of PC5 and
PC6 contained most of the noise information. For Vis-NIR
hyperspectral image, the existence of staggered green and
browning patches on the surface of winter jujubes brings dif-
ficulties for the classification of healthy and bruised samples.
So discriminant models of both NIR and Vis-NIR hyperspec-
tral images were needed to obtain better results.

C. DISCRIMINATION RESULTS OF DIFFERENT MODELS
SVM, LR and CNN models based on single geographical
origin or all geographical origins of winter jujubes using
pixel-wise spectra were built for quantitative analyses. The
results are shown in Tables 1-6.

SVM and LR models based on single geographical origin
or all geographical origins using NIR spectra (extracted from
NIR hyperspectral images) all obtained decent results for
healthy and bruised samples, with accuracies close to 100%,
TPR close to 1 and FPR close to 0 for both calibration set and
prediction set. The performance of the CNN model based on
single geographical origin using NIR spectra were inferior
to SVM and LR models, with accuracies surpassing 96% for
calibration sets and accuracy in the range of 87%-100% for
prediction sets. CNNmodel based on all geographical origins
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TABLE 1. The classification accuracy of SVM models based on single geographical origin.

FIGURE 5. Score images for the first six principal components of dali
winter jujube.

obtained satisfactory results, with all accuracies over 94%,
TPRs reaching 1 and FPRs close to 0.

The performances of SVM and CNN models based on
single geographical origin using Vis-NIR spectra (extracted
from Vis-NIR hyperspectral images) were inferior to LR

models. The FPR of Dali and Zhanhua winter jujubes were
higher than 0.4. Among all the three models based on all
geographical origins using Vis-NIR spectra, the CNN model
had the best performance with the most of accuracies sur-
passing 70% of prediction set. Moreover, the TPRs reached
0.90, 0.93 for calibration set and prediction set, respectively.
The FPR of CNN model were also lower than SVM and LR
models.

Compared with healthy winter jujubes, bruised samples
showed lower classification accuracies for SVM and LR
models using Vis-NIR spectra, especially for bruised Dali
winter jujube and Zhanhua winter jujube. Different from
SVMand LRmodels, the CNNmodel based on all geographi-
cal origins using Vis-NIR spectra achieved reasonable results
for the subtle bruises detection of Huanghua and Linyi winter
jujube, with accuracies reaching more than 90%.

On the whole, green and browning patches of winter
jujubes made it difficult to discriminate bruised samples from
healthy winter jujubes using Vis-NIR spectra due to the fact
that Vis-NIR spectra were sensitive to color information.
SVM, LR, CNN models using NIR spectra performed much
better than models using Vis-NIR spectra, with most accura-
cies close to 100%.

In addition, the Huanghua and Linyi winter jujubes got
better performances in the discrimination of bruised samples
using Vis-NIR spectra than Dali and Zhanhua winter jujubes.
The results of models using samples from all geographical
origins were close to those using samples from single geo-
graphical origin. The results also showed that winter jujubes
from different origins also had an influence on the results.

The performances of the models were also compared from
the perspective of computation time. For NIR spectra, mod-
elling of CNN takes more time and SVM takes the least
amount of time. Furthermore, the prediction of three models
were fast, and the computation time of the CNN prediction
set was at an intermediate level among the three models. For
Vis-NIR spectra, SVM models would spend more time for
model establishment and prediction while LR models took
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TABLE 2. The classification accuracy of SVM model based on all geographical origins.

TABLE 3. The classification accuracy of LR models based on single geographical origin.

the shortest time. The prediction time of models using NIR
spectra and Vis-NIR spectra showed that these models had
the great potential for real time detection. It should be noted
that the computation time of prediction set is more important
for realistic application once the models are built.

In order to compare the performance of CNN and the
other two models more intuitively, the color of per grid
in Figure 6 reveals the difference of modelling results. The
warmer the color for per grid is, the better classification
accuracy obtained by CNNmodel was. Compared with SVM
model, CNN model performed better for models using Vis-
NIR spectra, whereas the results of CNNmodels built accord-
ing to NIR spectra were close to the results of SVM models.
The results of CNN models were also close to LR models
with the most of the differences between two models were
−5%-5%.

D. PREDICTION MAPS
In order to reveal the classification results of CNN model
more intuitively, prediction maps based on CNNmodel based

FIGURE 6. Difference maps of accuracy between CNN and the other
model (Vce, Vpa, Nce and Npa represent for calibration set of model
based on single geographical origin using Vis-NIR spectra, prediction set
of model based on all geographical origins using Vis-NIR spectra,
calibration set of model based on single geographical origin using NIR
spectra, prediction set of model based on all geographical origins using
NIR spectra, respectively.): (a) CNN-SVM; (b) CNN-LR.

on all geographical origins were are shown in Figure 7.
It can be seen from Figure 7, CNN model using NIR spectra
was more distinguishable for healthy and bruised samples.
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TABLE 4. The classification accuracy of LR model based on all geographical origins.

TABLE 5. The classification accuracy of CNN models based on single geographical origin.

TABLE 6. The classification accuracy of CNN model based on all geographical origins.

For prediction map using Vis-NIR spectra, Huanghua win-
ter jujube and Linyi winter jujube achieved reasonable dis-
crimination results contrast with the other two geographical

origins of winter jujube. For Vis-NIR hyperspectral images,
the predicted bruised regions were not the entire region.
Specially, the marked regions in the Vis-NIR hyperspectral
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FIGURE 7. Prediction maps based on CNN model based on all
geographical origins: (a) Prediction map using NIR spectra; (b) Prediction
map using Vis-NIR spectra.

images can be identified. Some other regions were also pre-
dicted as bruised, the reason might be that only one bruised
region was marked, and there might be more bruised regions
within the bruised samples. As shown in Figures 1 and 7,
color differences could be found within one sample, and
the reflectance spectra could be influenced by the different
distribution of color in the Vis-NIR region. Another factor
of winter jujubes was that the bruised region had the similar
color of those healthy regions (browning), which resulted
in the difficulties of identifying healthy and bruised pixels.
Thus, the results of healthy pixels were also influenced by the
color information. The prediction maps of winter jujubes in
the Vis-NIR image were influenced by the color distribution.
It was also noted that for NIR hyperspectral images, the entire
sample region except themarked circles of the bruised jujubes
were predicted as bruised. This might be caused by the
unique characteristic of winter jujubes that the winter jujubes
deteriorated rapidly, and the chemical composition changed
after damaging. The NIR region related more to the chemical
compositions, thus the healthy samples in the NIR hyper-
spectral images were predicted with nearly 100% prediction
accuracy. The reason might be that the bruised winter jujubes
deteriorated rapidly, and the chemical composition changed
after damaging.

IV. CONCLUSIONS
In this study, pixel-wise NIR spectra and Vis-NIR spectra
were both applied to detect subtle bruises on winter jujubes.
Pixel-wise spectra could extend the amount of data and cov-
ered much more details compared with average spectra of
samples. The results proved the feasibility of using pixel-wise
spectra extracted from hyperspectral images to detect subtle
bruises on winter jujubes.

As one of the widely used deep learning methods, CNN
has showed great potential for data analyses in various fields.
In this study, SVM, LR and CNN models built on single geo-
graphical origin or all geographical origins were compared.
TPR and FPR were employed to compare the efficiency of
the models. SVM, LR and CNNmodels using NIR spectra all
obtained decent results with accuracies close to 100%, TPRs
and FPRs close to 1 and 0, respectively. For Vis-NIR spectra,
the results of CNN models were better than those of SVM
models. Compared with LR models, CNN models performed
better in the discrimination of bruised samples. Models using
NIR spectra performed better than models based on Vis-NIR,
and the reason might be that NIR spectra related to chemical
changes while Vis-NIR spectra were likely to be interfered
by factors such as the color of winter jujubes. Among three
models, CNN were more effective to extract features using
Vis-NIR spectra which had many interference factors.

Moreover, the modelling time and prediction time were
also used to evaluate the performance of models. The time
efficiency of CNNmodels was at an intermediate level among
three models. On the whole, the results of CNN models
were close to those of SVM and LR models, indicting the
feasibility of CNN to detect subtle bruises on winter jujubes
using hyperspectral images.

The results of the detection of bruised winter jujubes
from different geographical origins were different, indicating
that the geographical origin variations had influence on the
detection performances. The performances of models using
samples from a single geographical origin and all geograph-
ical origins indicted that models covering more geographical
origins would benefit the bruise detection. In this study, only
75 healthy jujubes and 75 bruised jujubes of each geograph-
ical origin were prepared. In the future study, the number of
samples should be expanded to improve the universality of
the CNN model. Besides, the spatial information of samples
should also be included and utilized to improve the perfor-
mances of CNN models.

APPENDIX
Figure S1: Score images for the first six principal components
of Huanghua winter jujube.

Figure S2: Score images for the first six principal compo-
nents of Linyi winter jujube.

Figure S3: Score images for the first six principal compo-
nents of Zhanhua winter jujube.
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