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ABSTRACT The energy in wireless sensor networks is considered a scarce commodity, especially in
scenarios where it is difficult or impossible to provide supplementary energy sources once the initially
available energy is used up. Even in cases where energy harvesting is feasible, effective energy utilization
is still a crucial step for prolonging the network lifetime. Enhancement of life-time through efficient energy
management is one of the essential ingredients underlining the design of any credible wireless sensor
network. In this paper, we propose a sensor selection method using a novel and unsupervised neural network
structure referred to as partly-informed sparse autoencoder (PISAE) that aims to reconstruct all sensor
readings from a select few. The PISAE comprises three submodules, namely: the gate (which selects the most
important sensors), encoder (encodes and compresses the data from select sensors), and decoder (decodes
the output of the encoder and regenerates the readings of all initial sensors). Our approach relies on the
premise that many sensors are redundant because their readings are spatially and temporally correlated and
are predictable from the readings of a few other sensors in the network. Thus, overall network reliability
and lifetime are enhanced by putting sensors with redundant readings to sleep without losing significant
information.We evaluate the efficacy of the proposed method on three benchmark datasets and compare with
existing results. The experimental results indicate the superiority of our approach compared with existing
approaches in terms of accuracy and lifetime extension factor.

INDEX TERMS Autoencoder, energy conservation, energy management, unsupervised feature extraction,
feature importance, feature ranking, lifetime extension, wireless sensor network, deep learning.

I. INTRODUCTION
A wireless sensor network (WSN) is essentially a large col-
lection of networked sensor nodes that are deployed over
a sensing field. These sensor nodes are tiny, low-powered,
and energy-limited devices with computing, communication,
and sensing capabilities. Typically, nodes organize them-
selves in clusters and networks and sometimes cooperate
to perform an assigned monitoring (and/or control) task at
scales and resolutions that are difficult, if not impossible,
to achieve traditionally. In their assumed structure, nodes
monitor environmental and physical conditions/information
(e.g., motion, pressure, sound, humidity, vibration, and
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temperature), locally process their data both in-unit and at
cluster level, and communicate the outcome to the cluster
head and/or to one or more collection points known as the
sinks or base stations [1].

In recent years, scientific and industrial adoptions of
WSNs are becoming more pronounced and predictability and
longevity are of paramount importance in most applications.
Although, many work have sought after balancing lifetime
requirements and network performance, however, due to
unexpected and unpredictable environmental dynamics, these
networks still suffer from premature energy drainage even
for network with harvesting and recharging capabilities [2].
Reconciling these two conflicting objectives is commonly
achieved via energy management. Energy management is
generally conceptualized as strategies and mechanisms by
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which total network energy is coordinated, allocated, and
effectively consumed by all nodes such that the network stays
fully operational for its projected lifetime. Since energy in
WSNs is very limited especially in remote terrains where
access to supplementary energy is impractical due to envi-
ronment hostility, it is important to judiciously balance the
energy supply and network load through energy conservation
to avoid premature energy depletion [3]. As a result, design-
ing a network with lifetime satisfying specific application
requirements is still challenging.

Since data collection is one of the main functions of
WSN, sensor nodes periodically sense surveillance area
and transmit information in a cooperative and distributed
fashion [4]. The sensed data is highly correlated due to the
nature of the monitored parameters and large number of
deployed sensors [5]. It is remarked that the energy used up
in communication phase is very significant compared that
used for processing or sensing. Hence, reporting readings
of individual sensors is not only energy-inefficient, but also
memory-inefficient since the data gathered grows exponen-
tially with time [4], [5]. Schemes that can efficiently manage
the network energy at the data collection and communication
stage are therefore essential to the network sustainability.
Reducing the amount of unnecessary data collection and/or
communication will help minimize energy waste and extend
network lifetime [3], [6], [7].

Intelligent data-driven approaches using Machine
Learning (ML) [4], [5], [8]–[10] and evolutionary techni-
ques [11]–[16] are becoming the tenet for addressing
some of the aforementioned energy management challenges.
As emphasized in [17], the adoption of machine learning
in WSNs has immensely contributed to the practicality of
these networks partly by fostering energy efficiency and
alleviating unneeded redesign issues. More importantly in
some applications such as outdoor/environmental monitor-
ing, sensor nodes might not operate as expected because of
unexpected environmental behavior. Machine learning-based
solutions can overcome such problems by using the newly
obtained information to update their knowledge base. Also,
the environmental unpredictability can drastically increase
the complexity of mathematical model that describes the
resulting network, however, machine learning can help prof-
fer accurate and less complex solutions [5].

Enabling systematic end-to-end processing of huge
amount of data generated in real-life WSN deployments is
challenging. A significant chunk of the problems arises from
the discovery of correlations in the network measurements.
To circumvent this problem, a plethora of approaches based
on ML have been dedicated for identifying and eliminat-
ing data attributes that provide no significant information.
ML enables the selection of dominant set of features, which
have the greater impact on inferring the network perfor-
mance based on historical data patterns [18]. Over the
last few decades, research efforts have focused on strate-
gies that provides solutions to various challenges in WSN,
such as routing [16], link-quality estimation [18], energy

harvesting [19], link reliability prediction [9], just to mention
a few.

Many existing data-driven approaches address the prob-
lem of energy conversation in by removing redundancy in
sensed data WSN as a data compression problem [20]–[23].
Energy-efficient data acquisition schemes have also sought to
reduce energy used for sensing and data transfer to minimize
the energy spent on communication [4]. A vast majority of
these approaches aim to reduce the amount of data to be
sent by the source and delivered to the sink. In data com-
pression paradigm, data in the source node is encoded and
compressed before transmission and upon the receipt at the
sink, the encoded information is decoded and decompressed.
As detailed in [7], [24]–[26], the data transmission sometimes
costs approximately the same energy as that needed to process
a thousand operations in a typical sensor node. Therefore,
it is important to put in place an efficient energy manage-
ment scheme that prevents the communication of unneces-
sary/redundant data and minimizes the wastage of useful
energy. In addition, efficient energy management protocols
can temporarily turn off unused components/circuitories that
consume a large amount of energy in idle state to help
minimize the excessive amount of energy used by such
components.

Of special interest in the data-driven paradigm are
approaches that model the phenomenon that describes the
network data evolution. A handful of these approaches rest
on the premises that the information sensed at nodes can
be predicted to a reasonable degree of accuracy at the sink.
However, when dealingwith high-dimensional data as a result
of large number of sensors, the curse of dimensionality is
a prominent issue in many practical machine learning prob-
lems [27]. Pragmatically, not all sensor are of equal impor-
tance, since most of their readings are often highly corre-
lated and ultimately redundant. Sensor nodes with redundant
information would unnecessarily drain useful energy out of
the network, hence, it is important to put such nodes with
redundant data to sleep in order to reduce energy consump-
tion. Many existing work have addressed the selection of
important sensors frommachine learning perspective [1], [5],
[7]. However, these methods are not end-to-end, that it, they
rely on frameworks that separate sensor selection stage from
the downstream task. This poses a problem because sensors
are not selected based on why they are deployed in the first
place.

Autoencoder and its variants are increasingly impor-
tant for nonlinear dimensionality reduction [27]–[30]. Con-
ventionally, autoencoder is trained to learn compressed
representation of its input while preserving the most
important information. However, it is still challenging to
incorporate deterministic input selection into autoencoder
structure to distinguish between important from unimpor-
tant input readings. To address this issue, we propose a
framework known as partly-informed sparse autoencoder
(PISAE) to integrate input selection and downstream task-
related objectives (e.g., regression, classification, clustering,
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compression, etc). Specifically, the proposed framework per-
forms a dynamic feature selection by separating the important
input features from redundant/irrelevant ones through a joint
learning mechanism with autoencoder. It selects few impor-
tant inputs to reconstructs the entire input.

The problem addressed in this paper is four-fold: (i) an
optimized sensor selection algorithm is proposed using a
novel and unsupervised neural network structure referred to
as partly-informed sparse autoencoder (PISAE) that recon-
structs all sensor readings from readings of select few. The
proposed method jointly learns input feature selection and
extraction in a unified framework to select the most use-
ful sensor readings to reconstruct readings from all sensors,
(ii) the feature selection algorithm is regularized for sparsity
in order to reduce the number of sensors used for data recon-
struction, (iii) comprehensive experiments were performed to
show the efficacy of proposed feature extraction for lifetime
enhancement, and lastly (iv) the proposed approach is com-
pared and contrasted with existing methods on benchmark
tasks and datasets and its superiority is highlighted. The rest
of this paper is organized as follows: Section 2 discusses the
state-of-the-art-data-driven approaches in the area of energy
conservation and/or management in WSNs. Section 3 dis-
cusses the proposed data-driven sensor selection method and
energy conservation scheme. Section 4 discusses the experi-
mental designs and presents the results. Finally, conclusions
with some future work directions are presented in Section 5.

II. RELATED WORK
Energy conservation via data-driven energy management has
a long history [1], [3], [7], [8], [25], [31]. A Bayesian-
based selection technique was proposed in [32] to determine
optimal number of sensors with the intension of reducing
the number of sensor nodes and ultimately improving the
network lifetime. In [8], lifetime of WSNs has also been
enhanced by ranking sensors based on their significance
and using least number of select sensors. In similar vein,
simultaneous energy consumption minimization and lifetime
maximization was proposed in [33]. Energy management
in the WSNs has also been addressed at the architectural
stage for large-scale network by minimizing both informa-
tion exchange and energy consumption using support vector
machine (SVM) [34].

Energy has also been conserved inWSN using a distributed
classification algorithms based on SVM, where nodes’
communication through a centralized processing unit is pro-
hibited [35], [36]. Also in [37], multi-sensor fusion and inte-
gration using artificial intelligence was proposed to address
a variety of errors and faults in WSNs. The method was
analyzed on bulk soil moisture estimation with cosmic ray
sensors and evaluated using four classifiers. Selection of the
most relevant sensor signals for detecting periods of food
intake has also been addressed using SVM to monitor and
classify jawmotion [38]. A system for detecting human direc-
tion was proposed in [39] using Pyroelectric Infrared (PIR)
sensors to capture signals while walking. Discriminative

features was extracted and selected to improve the compu-
tational efficiency of the proposed system using multilater
perceptron, Naive Bayes, and SVM.

Other related works proposed a wide variety of selec-
tion criteria to compute feature importance, such as Lapla-
cian score [40], trace ratio [41], and Fisher score [42].
These methods addressed various combinatorial optimization
bottlenecks, such as expensive computational cost and local
optimality [41], [42]. In addition, many feature extraction
methods have been inspired by conventional autoencoder
(AE), which learns to reconstruct the input from its encoded
representations [43]. The reconstruction is usually achieved
by additive combination through the decoding filters. After
training, generating latent encodings for test samples is
extremely fast, requiring only a simple matrix-vector mul-
tiplication [22], [44]. In general, AEs are forced to unearth
the underlying structure in data through imposition of con-
straints on network parameters. One of such constraints is
pushing the response of all hidden units to a small value as in
sparse AE (SAE) [45]. Other popular constraints are weight-
decay regularization for reducing the effect of overfitting,
nonnegativity for extracting interpretable features [30], [46],
graph-guidance [47], hidden feature selection for compress-
ing task-relevant and irrelevant information into two groups
of hidden units [27]. However, incorporating deterministic
input feature selection into autoencoder framework is still
challenging.

The most closely related work is denoising AE (DAE) that
learns a robust representation through reconstructing a clean
input from a corrupted one [48]. Training a DAE is similar
to training a basic AE. Generally, some input components are
randomly selected and their values forced to 0, while others
remain unchanged. DAE uses partially corrupted inputs to
learn almost the same representation as the uncorrupted ver-
sion. This is feasible because data contains stable structures
that depend on a combination of many dimensions. High
dimensional redundant data are usually recoverable from
partial dimensions of the data [4]. However, the fraction
(also known as denoising ratio) of input features to be cor-
rupted is pre-determined and features are randomly corrupted
based on this predefined ratio. On the other hand, our pro-
posed method is deterministic and the ratio of the input
features to be dropped is automatically learned by our novel
partly-informed AE. Our proposed algorithm thus aims to
select a few input features that are useful for reconstructing
the entire input set.

III. PROBLEM FORMULATION
The proposed input feature selection is fully unsupervised
and based on AE framework that preserves intrinsic data
structures useful for downstream discriminative task. The
conventional AE neural network aims to reconstruct input
vector using unsupervised learning with mathematical repre-
sentation as in (1).

x̂ = fW,b(x) ≈ x (1)
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FIGURE 1. (a) Simultaneous Feature selection and extraction using Partly-Informed Autoencoder architecture (b) Binary gating layer operation.

where x ∈ Rn is the scaled input vector (measurements of
n sensors), W = {W1,W2}, and b = {b1,b2} respectively
represent theweights and biases of the network. The proposed
partly-informed sparse AE (PISAE) is a modified architec-
ture that aims to reconstruct the entire input using partial input
information as given in (2) and depicted in Fig. 1.

x̂ = fW,b,Wg,bg (xpartial) ≈ x (2)

where xpartial = x� ψ(x), � is Hadamard product, and

ψ(xi) =

{
1 z(i)g ≥ τ
0 otherwise

(3)

where z(i)g = σ (
∑n

j=1(W
(ij)
g xi + b(j)g )); Wg ∈ Rn×n and

bg ∈ Rn are weight matrix and bias vector of the gating
layer, respectively. τ is the threshold of importance of input
sensors for reconstruction task and σ (z) denotes an element-
wise application of the logistic sigmoid of z, σ (z) = 1/
(1+ exp(−z)).
For compressed representation, the partial sensory signals

are encoded into a lower dimensional embeddings and the
hidden activations are computed as

h = gθ1 (xpartial) = ReLU (W1xpartial + b1) (4)

where h ∈ Rn′ , W1 ∈ Rn
′
×n, b ∈ Rn

′
×1, and ReLU denotes

a rectified linear unit defined as ReLU (z) = max(0, z). The
resulting hidden representation, h, is then mapped back to a
reconstructed vector, x̂ ∈ Rn, by a similar mapping function,
parameterized by {W2,b2},

x̂ = gθ2 (h) = ReLU (W2h+ b2) (5)

For the purpose of optimizing the parameters in (2), i.e.
θ = {θ1, θ2}, the average reconstruction error is the cost of
the optimization objective:

Jr (W,b,Wg,bg) =
1
m

m∑
i=1

1
2
||x̂(i) − x(i)||2 (6)

where m is the number of examples in the training
set.

It must be remarked that most natural signals are not
sparse in the original form and it is important to sparsify
them through a predefined basis transformation. In order to
improve the sparsity, robustness, and richness of the feature
extraction step, the hidden representation is constrained to
be sparse by penalizing the reconstruction objective in (6)
with the Kullback-Leibler (KL) divergence [49] between the
hidden activities and desired activity level ρ as computed
in (7). The sparsity constraint is essential in WSNs because
it helps reduce the amount of transmitted data within the
network, thus reducing energy consumption and prolonging
the lifetime of whole network.

JKL(ρ||ρ̂) =
n′∑
j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(7)

where

ρ̂j =
1
m

m∑
i=1

hj(x(i)) (8)

It must be emphasized that it is important to also constrain
the output of the gating layer ψ(x) to be sparse in order to
minimize the number of sensors needed to reconstruct the
entire input. To ensure this objective is satisfied, an additional
sparsity term is added, making the overall cost function for
proposed Partly-Informed Sparse Autoencoder (PISAE) to
become:

JPISAE (W,b,Wg,bg) = Jr (W,b,Wg,bg)+ β1 JKL(ρ||ρ̂)

+
β2

mn

m∑
j=1

n∑
i=1

((zg)ij)2 (9)

where β1, β2 > 0 are hyperparameters that control the
tradeoff among conflicting objectives.

The consequences of minimizing (9) are that: (i) the aver-
age reconstruction error is reduced (ii) the sparsity of the
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FIGURE 2. Sensor network architecture. The region of interest is
assumed to be relatively far from the remote station. All sensor nodes are
assumed to have one-hop communication to their respective cluster head
(CH). Cluster heads are assumed to have strong power-bank than sensor
nodes and are designed to transmit compressed data to the sink.

hidden layer activation is increased, and (iii) the number of
sensors required to reconstruct the entire input is minimized.
The parameters W, Wg, b, and bg are updated using (10),
(11), (12), and (13) using the backpropagation algorithm.

w(ij)
l = w(ij)

l − ξ
∂

∂w(ij)
l

JPISAE(W , b,Wg,bg) (10)

b(i)l = b(i)l − ξ
∂

∂b(i)l
JPISAE(W , b,Wg,bg) (11)

w(ij)
g = w(ij)

g − ξ
∂

∂w(ij)
g

JPISAE(W , b,Wg,bg) (12)

b(i)g = b(i)g − ξ
∂

∂b(i)g
JPISAE(W , b,Wg,bg) (13)

where ξ > 0 is the learning rate.

A. ENERGY CONSERVATION USING PISAE
A hierarchical network depicted in Fig. 2 consisting of
k clusters with each cluster containing n sensor nodes
and a cluster head is considered. Each ith sensor (where
i = 1, . . . , n) in a cluster collects a real-valued sample xi
at a predefined sampling period and transmits packets at a
configured transmission power to its cluster head but not at
power level sufficient to reach the sink due to long distance
propagation. Sensor nodes in a cluster are deployed to cover
a large geographic area known as the sensing field and are
assumed to only transmit for short distances. Cluster heads
relay aggregated sensed data to the sink for further analysis
and/or compression. The sink processes the aggregated data
from many cluster heads and relay to the remote station. The
proposed framework assumes a static sensor network, that is,
sink, cluster heads, and sensor nodes are all considered to be
static.

The proposed energy conservation scheme utilizes a
trained PISAE to sparsely encode partial input data with
gating and encoding weights at the clusters and sink. The
entire signal is decoded at remote station using the decoding
weights. In order to train the parameter of PISAE for efficient
energy conservation, a database of historical sensed data
needs to be utilized. Since the model trained with PISAE
needs to generalize to unseen data points, a large quantity
of training data is almost always required to enhance model
generalization. However, obtaining a large quantity of such
data is challenging especially for newly deployed networks.
To circumvent this problem, it is therefore necessary to
enforce sparsity constrain as in (7) to ensure generalization
of model trained on small to mid-sized data.
+ Since sensor nodes are most times densely deployed

and their readings spatially correlated, PISAE is able to
learn the essential spatial correlation and redundant patterns
among the sensors. It must be noted that if the underlying
phenomenon becomes different in a way that it alters sen-
sor nodes’ spatial correlation, then, it might be difficult for
PISAE model trained on previous data to accurately gener-
alize to its new input. In such cases, new data collection and
offline model fine-tuning must be performed. As emphasized
in [22], the amount of data required for training varies heavily
on underlying sensed phenomenon. If the sensors’ correlation
patterns is complex, more data samples are usually required.
In this work, it is assumed that the network designer is able
to collect sufficient training data, on cluster basis.

As aforementioned, the radio transceiver is one of the most
energy consuming unit in a sensor node. Thus, energy man-
agement becomes essential for effective energy consumption
and lifetime extension. To this end, an energy conservation
scheme is designed using a trained PISAE. The energy con-
servation scheme is proposed to be implemented on all cluster
heads and sink in a distributed fashion for sensor selection and
data compression/encoding. Each cluster head is equipped to
relay data to the sink on behalf of other cluster heads without
processing. Therefore, relay nodes that are adjacent to the
sink usually run out of energy faster than those farther away.
This condition must be factored into the design of such net-
work by equipping cluster head adjacent to the sink withmore
powerful battery banks. In the proposed energy conservation
scheme, each sensor node sends data to its respective cluster
head and awaits instruction whether the energy-consuming
circuitries should be put to sleep or shut down. The cluster
heads collect all the data from their cluster members and
determine the importance of each of the sensors using gating
weights {Wg,bg}.

Cluster heads perform a downward communication to their
respective children (sensor nodes) using a binary label. If the
label received by a sensor node is 1, such node should remain
active until the cluster head assigns a different label. Other-
wise, the sensor node is forced to sleep and shut down all
energy-consuming circuitries for a designated time interval.
In the meantime, the cluster heads set the readings of unim-
portant sensor nodes to 0. In the upward communication,
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all cluster heads utilize encoding {W1,b1} to encode and
compress their respective members’ data and relay to the
sink. Cluster heads also send additional information such as
whether the data is coming from their cluster members or it
is relayed on behalf of other cluster heads. The sink also
performs similar operation as the cluster heads by aggregating
all the data from the cluster heads and determining if data
from some of the clusters are not important to reconstruct all
their data. The sink also sends a global cluster label to all
the cluster heads to engage in active sensing or put all cluster
members to sleep and shut down their energy-consuming
circuitries.

Finally, the sink transmits the overall compressed data to
the remote station over the backhaul connection. The remote
station is equipped with decoding weights {W2,b2} in order
to reconstruct back the entire signal. At designated time
interval, all sensor nodes are required to wake up, turn on
their circuitries, and forward their data to cluster heads to
again determine the significance of their sensed data. It is
critical to conserve energy using intelligent schemes such as
the proposed because by blindly turning OFF the radio during
each idle slot, over a period of time to save the energy, more
energy might end up been used than if the radio has been
left on continuously. So, Power saving is efficient only if the
energy conserved is greater than energy expended to transit
to and from sleep state [1], [3], [4].

The proposed energy conservation scheme is summarized
in Algorithm 1. The online encoding and decoding of sparse
codes are practical since both sensor selection and feature
encoding for one cluster head has a time complexity of
O(n2 + n′n) while data decoding at remote station has a
complexity of O(n′ × n). Similar to [5], [8], [50], Lifetime
Extension Factor (LEF) is evaluated as given in (14).

LEF =
Total number of sensors

Number of sensor used for reconstruction

=
n∑n

i=1(ψi)
(14)

IV. EXPERIMENTAL SETUP, RESULTS, AND DISCUSSION
The performance of the proposed energy conservation
scheme based on PISAE is evaluated on sensor selection,
data reconstruction, and classification using three publicly
available databases namely: Ionosphere, Forest CoverType,
and Sensor Discrimination datasets. These datasets have been
used extensively to benchmark many algorithms on wide
variety of tasks [51]–[55]. Each dataset is randomly shuf-
fled and split into 70% and 30% training and testing set,
respectively. Adam optimizer [56] with batch size of 100 was
used to train the model for 1000 epochs. For sensor selection,
the performance of PISAE was compared and contrasted
with four existing and well-established feature extraction
methods namely: Recursive Feature Extraction (RFE) [57],
Independent Significance Features test (IndFeat) [5], [8],
Representation Entropy Clustering Feature Selection Algo-
rithm (REC-FSA) [18], and Recursive Feature Elimination

TABLE 1. Training hyper-parameters.

with Variable Step Size (VSSRFE) [58]. For classification
(referred to as future task in Fig. 1), the hidden activa-
tions (h) of PISAE were extracted and fed into a Softmax
layer and the performance was compared with four other
classifiers (namely, Naive Bayes (NB),Multilayer Perceptron
(MLP), Support Vector Machine (SVM) with linear kernel,
and Decision Tree (DTree)) using RFE and IndFeat for sensor
selection.

All experiments were performed on Intel(r) Core(TM)
i7-6700 CPU @ 3.40Ghz and a 64GB of RAM running a
64-bit Ubuntu 14.04 edition. The software implementation
has been in Pytorch library .1 Naive Bayes, MLP, SVM, and
Decision Tree were implemented in Scikit-learn ecosystem.2

Experiments were repeated 20 times and averaged to mit-
igate the effect of random initialization in the evaluation.
The software implementation and trained models will be
publicly available for reproducibility of results.3 All datasets
were normalized for training PISAE model and decoder out-
put mapped back to the original data interval for efficient
reconstruction of the original data. Similar to [4], the hidden
activations of PISAE are rounded to a low precision during
the offline training. Thus, yielding a less memory intensive
model practicable for deploying on cluster heads’ low preci-
sion settings. Other hyper-parameters for training PISAE is
summarized in Table 1

In the first set of large-scale experiments, Ionosphere
dataset4 was used. The dataset consists of radar data collected
in Goose Bay, Labrador. It has two classes for radar signals,
namely, Good and Bad. Good data are those showing evi-
dence of some type of structure in the Ionosphere. Bad returns
are those that do not let their signals pass through the Iono-
sphere. This dataset consists of 34 readings and 351 records.
Figs. 3a and b show the reconstruction performance of PISAE
with four importance threshold τ = 0.1, 0.3, 0.5, and 0.7 for
training and testing, respectively. It can be observed that τ
of 0.1 outperforms other τ values in terms of both training
and testing reconstruction loss. However, in Figs 4a and b,
when τ is 0.1, PISAE utilizes all 34 sensors for reconstructing

1http://pytorch.org/
2https://scikit-learn.org/stable/index.html
3Source code will be available at: https://github.com/babajide07/energy-

management-in-WSN
4https://archive.ics.uci.edu/ml/datasets/ionosphere
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FIGURE 3. Reconstruction loss against epochs for different τ using Ionosphere (a) Training set (b) Test set.

back its input amounting to no energy conservation. On the
other hand, when τ is changed to 0.5, it uses data from
less than 10 sensors to reconstruct the entire data from all
34 sensors, but it is more lossy in terms of reconstruction.
As τ is increased to 0.7, the reconstruction error increases
because PISAE is using, on average, data from only two
sensors for reconstruction, which is not enough to capture the
dynamics of the data from all 34 sensors.

Algorithm 1 Cluster-Level Energy Conservation Using
PISAE

1: for every cluster in the network do
2:
3: get: readings from all sensor nodes
4:
5: set: threshold of importance τ
6:
7: select: few important sensors using gating weights{

Wg,bg
}

8:
9:
10: set: redundant sensors to sleep and set their readings

to 0
11:
12:
13: encode: the truncated signal into a lower

dimensional embedding using {W1,b1}
14:
15:
16: send: the encoded and compressed data to the sink
17: end for

The performance of PISAEwas also compared to both Ind-
Feat and RFE in terms of how their features are distributed in
feature space. In this regard, t-distributed stochastic neighbor
embedding (t-SNE) [59] was used to project the original data,
the hidden activations of PISAE and select sensor features of
IndFeat and RFE as shown in Fig.6. The t-SNE projections

show that the manifold of embeddings of each class in Fig.6d
using PISAE is distinct and more linear than original feature
space in Fig.6a. It can also be observed that the manifolds in
the projections using IndFeat and RFE are also more convo-
luted than that of the PISAE as shown in Fig.6b and c. This is
an indication that PISAE is able to extract features using data
from 12 sensors to represent the entire data. Performance of
PISAE was also compared and contrasted with IndFeat, RFE,
REC-FSA, and VSSRFE in terms of downstream classifica-
tion task. The classification accuracy and number of sensors
used are reported in Fig. 5a, b, and c for classifiers MLP,
NB, and SVM, respectively. The three classifiers were used
to classify the data from sensors selected by IndFeat, RFE,
REC-FSA, and VSSRFE. Averaged results of 20 independent
trials, related mean values and standard deviation are plotted.

As can be observed in Fig. 5 for MLP classifier, IndFeat
achieved a test accuracy of 86.79%, 87.0%, and 84.29% for
10, 20, and 30 selected sensors, respectively. RFE, on the
other hand, attained test accuracies of 86.42%, 84.0% and
89.19% for the same number of selected sensor. However,
both REC-FSA and VSSRFE outperformed MLP and Ind-
Feat for all sensor selections considered. REC-FSA attained
test accuracies of 91.60%, 90.19%, and 92.56% whereas
VSSRFE achieved 89.15%, 90.47%, 92.55% for 10, 20, and
30 selected sensors, respectively. Sensor selection of 10, 20,
and 30 yielded LEF of 3.4, 1.7, and 1.13, respectively. Ind-
Feat outperforms RFE by 0.37% and 3% using only 10 and
20 sensors, respectively. However, when the number selected
sensors was increased to 30, RFE outperforms IndFeat
by 4.9% with LEF of 1.13. IndFeat outperforms RFE when
few number of sensors are selected and this observation is
consistent for other classifiers considered, except for SVM
with 20 selected sensors. The performance of both REC-FSA
and VSSRFE for MLP classifier are comparable when 20 and
30 sensors were selected.

PISAE outperformed all the four feature selection methods
considered by 6.54% for IndFeat (SVM with 10 sensors),
8.07% for IndFeat (MLP with 20 sensors), and 6.15% for
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FIGURE 4. Evolution of sensor selection for different τ using Ionosphere (a) Training set (b) Test set.

FIGURE 5. Classification performance of PISAE in comparison with RFE, IndFeat, REC-FSA, and VSSRFE on Ionosphere dataset using (a) MLP (b) Naive
Bayes (c) SVM.

RFE (NB with 30 sensors) with 10 (τ = 0.5), 22 (τ = 0.3),
and 32 (τ = 0.1) selected sensors, respectively, yielding
LEF of 3.4, 1.55, and 1.1. PISAE also outperforms both
REC-FSA and VSSRFE by relatively large margins for all
three classifiers considered. It is strongly believed that PISAE
is able to outperform other methods in terms of test accuracy
for comparable number of sensor because it is able to project
the original convoluted high-dimensional space into a lower
dimensional space with relatively better class separability as
shown in Fig.6. The robustness measured by the area under
the curve (auc) of receiver operating characteristic curve for
PISAE-based classifier in comparison with classifiers based
on IndFeat and RFE are shown in Fig. 7a and b, respectively.
It can again be observed that PISAE is more robust with
auc of 0.9905 compared to the best classifiers based on
IndFeat with auc of 0.9381 and RFE with auc of 0.945. It is

also observed that RFE is more robust than IndFeat for all
benchmark classifiers.

In the second set of large-scale experiments, Sensor Dis-
crimination database5 was utilized. The database consists
of 12 different numerical values of samples of an unknown
substance. It is a labeled dataset with three classes, namely,
group A, group B, and false alarm. The receiver node, which
receives 12 numerical values for an unknown sample, was
designed to determine which class each sample belongs to.
In other words, the receiver should indicate whether this
unknown sample is in group A or group B. Conversely,
it falls under false alarm when the sample does not fall
into either of the first two groups. The database contains
2211 records of readings from 12 sensors. Every run of the

5http://www.technologyforge.net/Datasets/
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FIGURE 6. 2D t-SNE projection [59] of (a) original 34D test data representation (b) 30D representation using IndFeat (c) 30D representation
using RFE and (d) 12D of the activation of hidden units of PISAE using Ionosphere dataset.

FIGURE 7. Comparison of receiver operating characteristic curves of classifier with PISAE and four classifiers with (a) IndFeat (b) RFE.

experiments is repeated 10 times and averaged for statistical
significance. The 2D t-SNE projections of the 12D test data
as well as the projections of features selected by PISAE,
IndFeat, and RFE are depicted in Fig.8. Again, the mani-
folds of original test data, IndFeat, and RFE in Fig.8a, b,
and c, respectively, are critically overlapping compared to
that of PISAE in Fig.8d which is almost linearly separable.

As can be observed in Fig.8d, the separability of the projected
embeddings of PISAE features is a testimony of its ability to
not only compress the data, but also to extract meaningful
discriminative representation. The effect of sensor selection
using PISAE is also evaluated and compared with bench-
mark sensor selection methods based on classification perfor-
mance. The performance of MLP, Naive Bayes, and SVM are
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FIGURE 8. t-SNE projection [59] of (a) original 12D test data representation (b) 9D representation using IndFeat (c) 9D representation
using RFE and (d) 9D of the activation of hidden units of PISAE using Sensor discrimination dataset.

depicted in Fig 9a, b, and c, respectively. It can be observed
that PISAE also outperforms the best classifiers based on
IndFeat, RFE, REC-FSA, and VSSRFE. More specifically,
PISAE improves the test accuracy by 2.17% and for Ind-
Feat and 2.15% for RFE. PISAE with τ = 0.3 improves
the LEF by 200% and 100% in comparison with RFE and
IndFeat, respectively. Also, PISAE consistently outperforms
both REC-FSA and VSSRFE in terms of test accuracy and
LEF. PISAE is able to find a suitable subspace to project the
data for better class separability.

In the last set of large-scale experiments, Forest CoverType
dataset6 was used. The dataset was collected and collated at
the University of Colorado to predict the forest cover type of
unknown regions. It has been used in several research endeav-
ors on data stream classification. This database contains 581,
012 instances and 54 attributes, each belonging to one
of 7 classes. The 2747 records were randomly sampled from
each class in order to balance data for the training procedure.
Hyperparameters were set as given in Table 1. One of the

6https://archive.ics.uci.edu/ml/datasets/covertype

observations in Table 2 is that when τ = 0.2 and 0.3,
PISAE-based classifier outperforms the best of both Ind-
Feat and RFE-based classifiers by a small margin. However,
the LEF of PISAE is 3.86 and those of IndFeat and RFE is 1.8.
This implies that even with fewer number of sensors, PISAE
was outshining its counterparts. Another important observa-
tion is that MLP consistently outperforms other classifiers
for all benchmark feature extraction algorithms in terms of
test accuracy. On average, the results of MLP and SVM for
RFE, REC-FSA, and VSSRFE were very competitive and
outperform those of IndFeat. The observation is similar for
NB classifier, except for the VSSRFE which underperforms
compared to IndFeat. However, selecting only 17 sensors
with PISAE yielded a test accuracy that outperforms almost
all of the benchmark methods.

As remarked in [60], it possible to have situation where
some sensors report corrupted and very noisy data due to
many factors such as external noise, inaccurate sensor cali-
bration, and imperfect node design. In this situation, having
over-complete representation might yield improved perfor-
mance. Data representation is over-complete when n′ > n,
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FIGURE 9. Classification performance of PISAE in comparison with RFE, IndFeat, REC-FSA, and VSSRFE on Sensor Discrimination dataset using (a) MLP
(b) Naive Bayes (c) SVM classifier.

TABLE 2. Classification performance on Cover-type dataset.

that is, when the number of selected sensors is less than
the number of hidden units of PISAE. However, in noise-
free networks, using over-complete codes can degrade perfor-
mance due to high susceptibility to overfitting [22]. In light
of this, the number of hidden units in PISAE was increased
to 100 and τ set to 0.1. It was observed that test accuracy
improved by 7.25% compared to when τ = 0.5, 0.4, and
0.2, thus resulting in LEF of 2.25. With 24 selected sensors,
PISAE outperforms all benchmark methods with 30 sensors
as shown in Table 2. The p-value was computed between
test accuracy of each benchmark classifier and PISAE with
comparable number of sensors. The statistical significance of
PISAE is also reported as shown by the p-values.

The average training and inference runtime for PISAE
and all benchmark feature selection methods were evaluated
on CoverType dataset. The timing evaluation of PISAE was

conducted in Pytorch version 0.2.0_3 using a mini-batch
of size 100. It can be observed that PISAE-based model
needed more time to train compared to benchmark meth-
ods but inference is competitive, faster and executed in less
than 0.25 millisecond.

V. CONCLUSION
Autoencoder-based energy conservation in hierarchical wire-
less sensor networks is introduced in this paper for prolonging
the lifetime of wireless sensor networks. Since many sensors
are redundant because their readings are highly correlated,
lifetime can be enhanced by putting sensors with redun-
dant readings to sleep without losing significant informa-
tion. The proposed energy conservation heuristic consists of
three submodules: the gate (which selects the most important
sensors), encoder (encodes and compresses the data from
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TABLE 3. Classification performance on Ionosphere dataset.

select sensors), and decoder (decodes the output of the
encoder and regenerates the readings of all sensors). The
proposed scheme is evaluated on three benchmark datasets,

namely, Ionosphere, Sensor Discrimination, and Forest
CoverType. The energy conservation was measured in terms
of lifetime extension. Experimental results show that network
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TABLE 4. Classification performance on Sensor Discrimination dataset.

lifetime can be enhanced by a factor of 3.4 for Ionosphere,
4.0 for Sensor Discrimination, and 2.25 for Forest CoverType
datasets. It has also be shown that the proposed approach con-
sistently outperforms four existing methods on select datasets
because of its ability to select most important features in

the input space and extract more separable low-dimensional
embeddings in the feature space.

In future, we intend to extend this work by collecting
new data both at cluster and sink level to enable us train
and deploy PISAE model at the sink. We hypothesize that
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this will tremendously improve network lifetime extension
factor since energy of a whole cluster can potentially be
conserved by putting all members to sleep provided they are
not contributing additional information.

APPENDIX
See Table 3 and 4.
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