
Received April 17, 2019, accepted May 12, 2019, date of publication May 16, 2019, date of current version May 28, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917312

Acceleration of LSTM With Structured Pruning
Method on FPGA
SHAORUN WANG, PENG LIN, RUIHAN HU, HAO WANG , (Member, IEEE), JIN HE , (Senior Member, IEEE),
QIJUN HUANG , AND SHENG CHANG , (Senior Member, IEEE)
School of Physics and Technology, Wuhan University, Wuhan 430072, China

Corresponding author: Sheng Chang (changsheng@whu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61874079, Grant 61574102, and Grant
61774113, in part by the Fundamental Research Fund for the Central Universities, Wuhan University, under Grant 2042017gf0052, in part
by the Wuhan Research Program of Application Foundation under Grant 2018010401011289, and in part by the Luojia Young Scholars
Program.

ABSTRACT This paper focuses on accelerating long short-term memory (LSTM), which is one of the
popular types of recurrent neural networks (RNNs). Because of the large number of weight memory accesses
and high computation complexity with the cascade-dependent structure, it is a big challenge to efficiently
implement the LSTM on field-programmable gate arrays (FPGAs). To speed up the inference on FPGA,
considering its limited resource, a structured pruning method that can not only reduce the LSTM model’s
size without loss of prediction accuracy but also eliminate the imbalance computation and irregular memory
accesses is proposed. Besides that, the hardware architecture of the compressed LSTM is designed to pursue
high performance. As a result, the implementation of an LSTM language module on Stratix V GXA7 FPGA
can achieve 85.2 GOPS directly on the sparse LSTM network by our method, corresponding to 681.6-GOPS
effective throughput on the dense one, which shows that the proposed structured pruning algorithm makes
7.82 times speedup when only 1/8 parameters are reserved. We hope that our method can give an efficient
way to accelerate the LSTM and similar recurrent neural networks when the resource-limited environment
is emphasized.

INDEX TERMS FPGA, hardware acceleration, LSTM, pruning.

I. INTRODUCTION
Recurrent Neural Network (RNN) is a class of neural net-
works which has the capability of capturing long-range
dependencies in sequential and temporal data. Long
Short-Term Memory (LSTM) [1] network is one of the most
popular types of RNNs, which achieves great success in
various applications such as speech recognition [2], machine
translation [3], scene analysis [4], etc. Since these applica-
tions demand real-time processing and low power consump-
tion, customized hardware acceleration of LSTMs becomes
an important way to improve computing speed, meeting the
above requirements.

However, there are some challenges in accelerating LSTM.
Due to the recurrent nature of RNNs, the computing pattern
is quite complex as it needs to process temporal data and
dependencies. Since RNN is fully connected, a large number
of weight memory accesses is required. As a result, high

The associate editor coordinating the review of this manuscript and
approving it for publication was Mauricio Silveira.

computation complexity and large memory footprint become
the two main barriers in LSTM accelerator design.

As demonstrated in recent works, GPUs [5]–[7], FPGAs
[8]–[10] and ASICs [11], [12] are all employed as accelerator
to speedup LSTMs. Among the numerous platforms, FPGA
shows great potentiality of promising solution for accelerat-
ing the neural networks, as it can attain high performance
with flexible reconfigurability. Many outstanding works on
CNNs’ acceleration [12]–[15] have revealed that FPGA can
achieve high performance nearly comparable to GPU but
with much less energy consumption. What’s more, by the
virtue of cutting-edge FPGA design methodologies such as
High-level Synthesis (HLS) and OpenCL [16], it becomes
easier to design complex systems on FPGAs. Under OpenCL
framework, mapping a neural network to FPGA hardware is
available through designing OpenCL kernels and then syn-
thesizing them to RTL specifications. So, in this work we
choose OpenCL based FPGA to explore the scheme of LSTM
acceleration.

62930
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-5279-3645
https://orcid.org/0000-0002-8747-0472
https://orcid.org/0000-0001-9679-5191
https://orcid.org/0000-0003-4875-5501

S. Wang et al.: Acceleration of LSTM With Structured Pruning Method on FPGA

Recently, some works about accelerating RNNs are done
for FPGA’s high performance, low power and reconfigurabil-
ity. References [8]–[10], [17] focused on exploring the par-
allelism for RNN but ignored the compression techniques in
algorithm level. References [18]–[21] capitalized on the data
sparsity of RNNs to speed up the inference procedure. The
ESE [18] proposed by Han et al. emphasized on optimizing
memory footprint with pruning scheme, which can compress
the dense weight matrices into sparse ones. They achieved
6.2× speedup over the dense model by pruning the LSTM
model to 10% non-zeros. C-LSTM [19] proposed a method
that reduces the weight matrices in LSTM inference model in
a spruced manner by using block circulant matrix and apply-
ing FFT algorithm to accelerate the computation-intensive
circulant convolution operator. The DeltaRNN [20] explored
the temporal dependency of input and activation vectors
on GRU [22] RNNs by employing Delta Network Algo-
rithm which creates sparsity in input and activation vectors.
The BBS [21] proposed Bank-Balanced Sparsity to compress
the weight matrices and achieved good efficiency for LSTM
inference.

In this work, focusing on high computation efficiency on
resource-limited platform, a novel structured pruning method
for compressing model size is proposed in algorithm level.
It can generate the sparse weight matrices in one-step training
process, and no repeated retraining used in ESE’s pruning
scheme is needed. Moreover, the distribution of the sparse
weight matrices produced by our compression method is
balanced, which is superior to the traditionally skewed dis-
tribution that is likely to cause unbalanced workloads among
parallel compute units. As a result, our compress algorithm
has the ability to prune the whole columns of weights matri-
ces instead of removing the small weights that the com-
mon pruning schemes do. Hence, we get the regular sparse
weight matrices avoiding unbalanced workloads among par-
allel compute units, and meanwhile the logic design of sparse
matrix - vector multiplication is simplified. After a model is
training well with that structured pruningmethod, an efficient
hardware architecture is also proposed to accelerate the sparse
LSTM model in FPGA platform.

Overall, the contributions of this paper are listed as:
• Anovel structured pruningmethod is proposed to realize
model compression for LSTM, which can complete the
compression in training stage and directly produce bal-
anced sparse weight matrices. It can accelerate LSTM
as it reduces computation complexity because of sparse
weights. And therefore, high efficiency of speedup is
attained.

• An efficient hardware acceleration architecture is
proposed for structured pruning. The acceleration
scheme not only explores fully parallel LSTM
computing but also considers coarse-grained layer
pipeline.

• An OpenCL based implementation of LSTM models
with structured pruning method and well-optimized
architecture is presented. The results demonstrate that

FIGURE 1. Typical long-short term memory cell architecture.

the proposed design can achieve high computing
efficiency.

II. BACKGROUND
LSTM is one of the most widely used RNN variants.
It has been proposed to deal with the well-known explod-
ing/vanishing gradient problems. Since a gate mechanism is
introduced to control the modeling of temporal sequence,
it can capture long- term dependencies more easily than
conventional RNNs. The architecture of a typical LSTM cell
has four gates shown in Fig. 1, as the equations described as
follows:

it = δ(WxiXt +Whiht−1 + bi) input gate (1)

ft = δ(Wxf Xt +Whf ht−1 + bf) forget gate (2)

ot = δ(WxoXt +Whoht−1 + bo) output gate (3)

c̃t = tanh(WxcXt +Whcht−1 + bc) cell gate (4)

ct = ft � ct−1 + it � c̃t memory cell (5)

ht = ot � tanh(ct) hidden state (6)

Xt , ht−1 and ct−1 denote input data, hidden data and inter-
nal cell state. A LSTM unit contains gate structures that learn
to determine when to accept input information and update cell
state. Wxj, Whj, and bj (j = i, f, o, c) are parameters to be
learned during the training process. � denotes element-wise
multiplication. σ and tanh are element-wise nonlinear activa-
tion functions, where

σ (x) =
1

1+ e−x
, tanh (x) =

ex − e−x

ex + e−x
(7)

it , ft and ot are the input, forget and output gates respectively,
ct is the current state of LSTM, ht−1 is the previous output, Xt
is the current input at time t. Andmatrix-vector multiplication
is applied to compute it , ft , ot , c̃t .

III. PROPOSED STRUCTURED PRUNING ALGORITHM
In this work, we propose a structured pruning algorithm that
can remove whole columns of weight matrix. Compared with
the methods pruning small value weights, pruning the entire
columns of redundant weights has some advantages. In one
hand, the sparse weight matrix produced by our method can

VOLUME 7, 2019 62931

S. Wang et al.: Acceleration of LSTM With Structured Pruning Method on FPGA

FIGURE 2. Store column sparse weight matrix with dense format.

be stored as a dense matrix, while ordinary sparse matrix
needs to be stored in particular formats, like CSC, CRC et al.,
which consume more memory storage at the same sparsity.
Fig. 2 gives the weights storage strategy as the form of dense
matrix in FPGA memory bank. On the other hand, thanks
to the regularity of our sparse matrix, it’s not necessary to
design complex logic for sparse matrix vector multiplication.
It can work almost the same as dense one in addition with
input sparse encode.

Our structured pruning algorithm directly acts on the
weights in the process of network training, described by the
following formulation:

F
(
Wij
)
=

{
0, Sj ≤ Cw
KwW ij, Sj > Cw

(8)

where F represents the function of pruning weights, Wij
denotes the weight located at the spatial position on i-throw
and j-th column of the original weight matrix. And Sj is the
sum of the absolute value of weights in j-th column, as shown
in (9). Cw is the critical value to prune the weights away. Sj is
calculated as (10).Cw is not a pre-defined constant and is self-
adaptive alongwith the training iterations.Cw which is related
to the sparsity and Sj can be chosen as the n-th maximum
value of Sj according to the pruning rate. For example, if the
weight matrix has 100 columns and the pruning rate is 0.8,
then Cw is the 20’th maximum value of Sj . Since the weights
change every iteration, Cw is not a constant value because of
the change of Sj.

Sj =
n∑
i=0

|Wij| (9)

Kw =
Sj − Cw

Sj
(10)

If the sum of absolute value of weights in the same column is
smaller than a threshold, then the whole column weights are
pruned away. Specifically, apply the compression algorithm
to the weights first, and get the pruned weightsW

′

. Then start
LSTM unit’s forward computation with the sparse weight
matrix W

′

instead of the original ones, replacing the W in
(1) ∼ (4) with F(W) in brief.

During the training procedure the weights are updated
usually in the way described in (11) for a standard neural
network. While back propagation is modified to (12), intro-
ducing the structured pruning algorithm. Where l denotes

the learning rate, and ∂ε
∂Wij

is the partial derivate of weights
which can be written in the form of (13) based on the chain
rule. From (8), we can get ∂F(Wij)

∂Wij
as (14). In order to avoid

the correspond weight maintaining constant 0 once Sj <
Cw at some iterations, we set ∂F(Wij)

∂Wij
= 1, so (11) can be

rewritten as (12). It doesn’t change the direction of gradient
convergence when ∂F(Wij)

∂Wij
= 1. So, it will not cause the

failure of network convergence. The computation of ∂ε

∂Wij
′ is

the same as the original LSTM network. The training process
has no much difference compared to a standard one. Only
the weights need to be processed by the structured pruning
algorithm every time before start LSTM layer and the back
propagation following (12).

Wij = Wij + l
∂ε

∂Wij
(11)

Wij = Wij + l
∂ε

∂Wij
′

(12)

∂ε

∂Wij
=

∂ε

∂Wij
′
•
∂Wij

′

∂Wij
=

∂ε

∂Wij
′
•
∂F(Wij)
∂Wij

(13)

∂F(Wij)
∂Wij

=

{
0
Kw

(14)

After finishing the training procedure, the dense weight
matrix W and sparse weight matrix W

′

are got. In the infer-
ence stage, W

′

is imported into the LSTM units for com-
puting. The pruning algorithm we proposed can prune the
weights along with the training iterations rather than pruning
the weights after training. By this way, the repeated retraining
process is eliminated, and the efficiency is enhanced. Besides
that, since W

′

is the result of the network converging to the
optimal point in training, the accuracy of network is ensured.

IV. HARDWARE METHODOLOGY
In this section, the hardware implementation scheme of
LSTM acceleration based on the proposed structured pruning
method is presented. By designing massive parallel process-
ing elements combining with coarse-grained layer pipeline
strategy, hardware’s potential for high-performance compu-
tation is well brought out.

A. OVERALL LSTM ARCHITECTURE
The overall LSTM unit architecture designed for the entire
model is shown in Fig. 3. There are three main components,
SpIn, MxV and Act, respectively. The SpIn is responsible
for generating the sparse input vector for MxV compute unit.
The MxV executes the matrix-vector multiplication (MVM)
using the sparse output of SpIn. It contains four parallel chan-
nels to complete matrix-vector multiplication for it , ft , ot , c̃t
synchronously. The Act realizes the action of computing
it , ft , ot , c̃t , through the activation function based on the
results from MxV, and further calculates ct , ht for the current
timestep. The architecture and the function of each block are
presented subsequently in detail.

62932 VOLUME 7, 2019

S. Wang et al.: Acceleration of LSTM With Structured Pruning Method on FPGA

FIGURE 3. The overall hardware architecture.

FIGURE 4. The structure of the SpIn.

1) SPARSE INPUT ENCODING
After pruning, the sparse weight matrix is got, in which the
most columns of weights are zero. In order to reduce the
memory cost, only the nonzero part of weights is loaded
to FPGA memory bank, as Fig. 2 demonstrates. So before
executing the sparse matrix - vector multiplication, the effec-
tive elements are extracted from the entire input vector to
generate the new input vector for MxV. This process of sparse
input encoding can be easily realized by designing a bit-map
look-up table. ‘1’ indicates that the data under the current
index is valid, while ‘0’ indicates invalid. The structure of
SpIn is shown in Fig. 4. According to the bit-map, the valid
data are stored in registers. After the data flow of Xt , ht−1,
passes through the block finished, the valid data are sent
to MxV for computation. Hence, the sparse matrix - vector
multiplication is transformed into the dense one with sparse
input encode.

2) MATRIX - VECTOR MULTIPLICATION
The computation of the LSTM unit is defined as (1) –(6), and
its core is thematrix -vectormultiplication applied to generate
it , ft , ot ,c̃t . Through the optimization of the matrix -vector
multiplication, good performance can be attained.

Fig. 5 shows the optimized matrix -vector multiplica-
tion process. Considering the independence of it , ft , ot , c̃t
calculations, they can be processed in parallel. As shown
in Fig. 5, four channels are applied to transferWi,Wf ,Wo,Wc

FIGURE 5. The architecture of MxV unit.

FIGURE 6. The architecture of PE.

respectively, forming a daisy chain for MVM computing.
The pattern employed on MVM calculation is data pipeline
and parallel computation, which can provide high efficiency.
Each process element (PE) completes N times dot product
accumulations of 16 elements vector every clock and 4 PEs
work simultaneously to calculate gi, gf , go, gc. The structure
of PE is shown in Fig. 6. Each PE products a N elements
vector by working N times dot product in parallel, making
total 64N times synchronous multiplication accumulation
(MAC) operations every clock.

3) ACTIVATION FUNCTION
In LSTM unit, two activation functions, Sigmoid and tanh,
are employed as (7). We can see that they are both complex
exponential functions, which are not hardware friendly. Like
the strategy applied in [9], [19], piecewise linear functions
are also utilized in this paper to approximate them. In detail,
the Sigmoid and tanh functions are approximated by the
piece-wise linear functions with 22 segments, and the error
rates are less than 1% compared with the original func-
tions. The piece wise linear functions can be represented as
y = kx+ b and only the associate parameters of k and b need
to be stored, which is beneficial to reduce the implementation
complexity and resource consumption.

Since the dependence between it , ft ,ot , c̃t and ct , ht , sev-
eral stages are needed. As shown in Fig. 7, Act has 3 pipeline

VOLUME 7, 2019 62933

S. Wang et al.: Acceleration of LSTM With Structured Pruning Method on FPGA

FIGURE 7. Data flow of Act module.

FIGURE 8. Working state of three modules along with timestep.

stages to produce the final activation. So the LSTM formu-
lation is divided into 3 steps corresponding to each pipeline
stage. Because ct , ht are in relation to the computation of
next timestep, two RAM blocks are utilized to store ct , ht
respectively.

B. LAYER PIPELINE STRATEGY
Due to the dependence of RNNs, the layers in LSTMare com-
puted in series for the current timestep, and the computation
of the next timestep relies on the results of current timestep.
In order to improve the computing efficiency, the computa-
tion of different layers along with timestep needs to be well
pipelined. The goal is to reduce the latency between different
layers and adjacent timesteps.

Since the computing pattern is almost the same among
different layers except different input, the three modules,
SpIn, MxV and Act, can support the calculation of differ-
ent layers. FIFOs are adopted to transfer data among these
three modules. By this way, the computation of SpIn and
Act can be overlapped with MxV. Due to MxV undertakes
the most computation of LSTM, it is important to improve
the computing efficiency of MxV to promote the overall
system’s performance. Using the FIFO strategy to transfer
weights of different layers, the computations of several layers
are put together. The MxV computation of next layer can
start simultaneously as the input procedure is completed via
SpIn module. A control signal flg_lis introduced to denote
the computing schedule of different layers. According to the
switch state of flg_l, our designed LSTM architecture can
automatically practice the processing of corresponding layer.
Fig. 8 shows the working state of three modules along with
timestep. Following this fluent data flow, the computation
between adjacent layers is pipelined.

FIGURE 9. Language model.

FIGURE 10. The influence of compression ratio to the performance of
language model, where compression ratio = number of all weights/
number of none zero weights.

In general, we propose an efficient LSTM architecture.
By the optimization as high parallelism and effective pipeline,
it can achieve high performance in hardware.

V. ANALYSIS AND EVALUATION
The performance analysis and the evaluating of our proposed
LSTM methodology are presented in this section.

A. MODEL PERFORMANCE ANALYSIS
The proposed structured pruning algorithm is applied to com-
press the language LSTMmodel, as shown in Fig. 9. The lan-
guage model has two LSTM layers with word embedding as
input and Softmax layer as output. In this work two different
size language models with 256 nodes or 512 nodes are tested
for the evaluation of the proposed structured pruning method.
The proposed compression method is evaluated under Penn
Treebank (PTB) Corpus [23], which contains 5017k charac-
ters with only 50 different values.We split the 90% of data for
training set and 5% for validation and test set, respectively.

As shown in Fig.10, the proposed pruning algorithm
presents powerful ability in pruning network without sacri-
ficing performance. The original model without compression
has many redundant weights having no contribution to per-
formance promotion can be pruned away without accuracy
loss [24]–[26]. After pruning moderate amount of weights,
the generalization capacity of the model has been strength-
ened. However, if overmuch weights are pruned away, the
performance will decrease. Put it all together, the perplex-
ity decreases firstly and then increases with the increase of
compression ratio. And the language model gets worse per-
formance when compression ratio is larger than 8. The pro-
posed pruning algorithm can remove the ineffective weights
to improve performance but it will reach the limit when the

62934 VOLUME 7, 2019

S. Wang et al.: Acceleration of LSTM With Structured Pruning Method on FPGA

FIGURE 11. The influence of weigths sparsity to the performance of
acoustic model.

compression ratio is fairly high. Our compression strategy
adopted to the LSTM languagemodelmakes it attaining supe-
rior performance to standard ones, even the 7/8 of weights
are removed. Our method can achieve better compression on
language model than the ISS [27] which can achieve 7.48×
operations reduction and about 3.03× model size reduction.
Specifically, our method can attain both 8× operations and
model size reduction on the language model. What’s more,
thanks to the identity of generating regular sparse weight
matrix in the algorithm, it’s favorable to hardware friendly
design on FPGA.

The proposed structured pruning algorithm is also applied
to an acoustic model which has two 512-nodes LSTM lay-
ers and one fc layer. The input of the acoustic model is a
40-dimensional log mel-frequency filterbank feature vector
with energy and their delta and double-delta values, result-
ing in a 123-dimensional vector. The Fig.11 presents details
of trade-offs among different sparsity evaluated on TIMIT
dataset. The acoustic model compressed by our method can
achieve 0.75 sparsity with only 0.91% PER decrease. Since
the acoustic model is compressed 4 times in columns, it will
achieve about 4 times speedup when it’s implemented on
FPGA.

B. FPGA IMPLEMENTATION PERFORMANCE ANALYSIS
The total number of multiplication and addition operations
of the two LSTM layers with inputs length of Nin and Nout
outputs of the language model or acoustic model per timestep
can be approximately estimated as:

Nop = (Nin + 3× Nout)× Nout × 4× 2 (15)

Since MVM operations dominate the total number of oper-
ations, cost of element-wise multiplications, additions and
activation functions are ignored. Then the effective through-
put is defined as:

T .e ff =
Nop × Timesteps

Time
(16)

Each DSP block in our FPGA can be instantiated as aMAC
unit to perform 16-bit fixed point multiplications or 32-bit
floating point multiplications and accumulation. In this case,

TABLE 1. Resource utilization.

the potential peak throughput can be calculated in terms of
the number of DSPs instantiated in the design:

T · peak = 2× NDSP × fmax (17)

where NDSP is the number of DSPs consumed by the whole
system, and fmax is the max working frequency. (17) is to
evaluate the baseline of potential peak throughput, consider-
ing one DSP can complete one addition and multiplication.
16bit fixed point data is employed in this work to improve
theDSP efficiency. EachDSP can complete two additions and
multiplications when 16bit fixed point data is used, making
T .peak doubled on the base of (17). Then, the computation
efficiency measuring how efficiently the hardware makes use
of DSP is defined as:

Com.Efficiency =
T .eff
T .peak

(18)

As mentioned above, the whole system is able to perform
64N MAC operations every clock, where N indicates the
parallelism of dot16 computation of each PE. The larger N
is, the less running time is required. According to N , the total
number of the DSPs utilized is the sum of three blocks’
consumptions:

NDSp = NSpIn + NMxV + NAct = 32× N + 8× N (19)

Considering the limited resource of FPGA and the size of
LSTM unit, the design parameter N should be reasonably
chosen to achieve satisfying throughput.

C. HARDWARE EVALUATION
Our proposed implementation of the LSTM models is evalu-
ated on DE5-NET which employs a Stratix V GXA7 FPGA
and has two 4GB DDR3 memories. The Intel R©FPGA SDK
for OpenCLTMis used to synthesize the C/C++ based LSTM
design onto FPGA. The DE5-NET board is connected to
the host via PCIe interface to build OpenCL heterogeneous
environments with an Intel Core i5-6500 CPU.

The language models have two LSTM layers with
128 inputs length and 256 or 512 outputs respectively and
the acoustic model has two 512-nodes LSTM layers. Set
N = 4 for the three different models considering the FPGA’s
resource limitation. The total resource utilization of different
LSTM models is listed in Table 1. For the three models, the
model size and weights sparsity are different, which leads to
different logic and RAM blocks utilization.

The influence of the sparsity of weights pruned by our
proposed pruning method is explored on FPGA, as shown

VOLUME 7, 2019 62935

S. Wang et al.: Acceleration of LSTM With Structured Pruning Method on FPGA

TABLE 2. Comparison with relative works.

FIGURE 12. Speedup with respect to compression ratio.

in Fig. 12. Only the inference stage is implemented on FPGA,
and the compression process is completed in the training
procedure. Themeasured results fit the theory exactly, that the
speedup increases with the raise of compression ratio. With
8 times compression, the sparse model can achieve 7.82 times
speedup over the dense model, which is more outstanding
than other works. Because the weight matrix is pruned in
the column direction, the speedup has linear correlation with
sparsity, which infers our method has good potential for large
scale network applications where high compression ratio is
important under limited resources.

To verify our design’s capacity, it is compared with some
state-of-art works in Table 2. ESE used deep compression
method to compress the model 8.9×, and DeltaRNN cre-
ated sparsity in input and activation vectors, and BBS pro-
posed Bank-Balanced Sparsity pattern to accelerate LSTM.
These models have different size and weights sparsity lead-
ing to different loop iterations in MVM calculation, thus
these models implemented on FPGA using OpenCL com-
plier have different frequency. From it one can see, our
FPGA implementation of 256-nodes language model is able
to attain 81.5 GOPS on the 8× sparse model being equiv-
alent to 652 GOPS effective throughput for dense LSTM.
Computation efficiency of 831.63% is achieved under the
condition of 7/8 weights pruned away. And the 512-nodes
language model can achieve 681.6GOPS effective through-
put and 946.63% computation efficiency when the model is

compressed eight times. Because the acoustic model is only
4× compressed, effective throughput of 339.7 GOPS and
computation efficiency of 482.61% are achieved on FPGA.

Since the limited resource strategy is considered, our
work has lower throughput comparing with others, while
the resource (DSP) cost is significantly reduced. That ver-
ifies our method’s high computation efficiency, as that
946.63% is achieved on language model under the condition
of 7/8 weights pruned away and 482.61% is achieved on
acoustic model while only 4× is compressed. Compared to
ESE, our design can attain higher computation efficiencywith
lower compression ratio. Thismerit should be attributed to the
proposed structured pruning method which makes the design
almost the same compared to dense one, through eliminating
the irregular computation and memory accesses of sparse
model. The efficient hardware design methodology is another
reason for the efficient implementation of the pruned LSTM
on FPGA. These two aspects make our work both compact
and powerful.

VI. CONCLUSIONS
In this paper, we propose a novel structured pruning method
to prune the weights away. It can automatically remove the
whole column of ineffective weights along with the net-
work training procedure, therefore generating regular sparse
weight matrix which guarantees the regular computation and
memory access of sparse model. Implementing this algorithm
with a highly parallel and effective pipelined accelerator
architecture for FPGA, a computation-efficient compressed
V GXA7 FPGA, it not only can achieve an effective through-
put of 681.6GOPS and computation efficiency of 946.63%
in an 8× compressed language model, but also can achieve
339.7GOPS effective throughput and 482.61% computation
efficiency in a 4× compressed acoustic model with less
than 1% accuracy loss, which gives an inspiration of the
acceleration of recurrent neural networks especially under the
resource-limited environments.

ACKNOWLEDGMENT
Part of calculation in this work has been done on the
supercomputing system in the Supercomputing Center of
Wuhan University.

62936 VOLUME 7, 2019

S. Wang et al.: Acceleration of LSTM With Structured Pruning Method on FPGA

REFERENCES
[1] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural

Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.
[2] A. Graves, A.-R.Mohamed, andG. Hinton, ‘‘Speech recognition with deep

recurrent neural networks,’’ in Proc. IEEE Int. Conf. ICASSP, Vancouver,
BC, Canada, May 2013, pp. 6645–6649.

[3] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning
with neural networks,’’ in Proc. NIPS, 2014, pp. 3104–3112.

[4] W. Byeon, M. Liwicki, and T. M. Breuel, ‘‘Scene analysis by mid-
level attribute learning using 2D LSTM networks and an application to
Web-image tagging,’’ Pattern Recognit. Lett., vol. 63, pp. 23–29,
Oct. 2015.

[5] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and D. Chen, ‘‘Efficient
GPU spatial-temporal multitasking,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 3, pp. 748–760, Mar. 2015.

[6] K. Hwang and W. Sung, ‘‘Single stream parallelization of generalized
LSTM-like RNNs on a GPU,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Apr. 2015, pp. 1047–1051.

[7] M. F. Stollenga, W. Byeon, M. Liwicki, and J. Schmidhuber, ‘‘Parallel
multi-dimensional LSTM, with application to fast biomedical volumetric
image segmentation,’’ in Proc. NIPS, 2015, pp. 2998–3006.

[8] S. Li, C. Wu, H. Li, B. Li, Y. Wang, and Q. Qiu, ‘‘FPGA acceleration
of recurrent neural network based language model,’’ in Proc. FCCM,
Vancouver, BC, Canada, May 2015, pp. 111–118.

[9] A. X. M. Chang, B. Martini, and E. Culurciello. (2016). ‘‘Recurrent
neural networks hardware implementation on FPGA.’’ [Online]. Available:
https://arxiv.org/abs/1511.05552

[10] M. Lee, K. Hwang, J. Park, S. Choi, S. Shin, and W. Sung,
‘‘FPGA-based low-power speech recognition with recurrent neural net-
works,’’ in Proc. IEEE Int. Conf. Signal Process. (SIPS), Oct. 2016,
pp. 230–235.

[11] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr,
‘‘Accelerating recurrent neural networks in analytics servers: Comparison
of FPGA, CPU, GPU, and ASIC,’’ in Proc. 26th Int. Conf. Field Program.
Logic Appl. (FPL), Aug./Sep. 2016, pp. 1–4.

[12] Z. Wang, J. Lin, and Z. Wang, ‘‘Accelerating recurrent neural networks:
A memory-efficient approach,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 25, no. 10, pp. 2763–2775,
Oct. 2017.

[13] Z. Hanqing et al., ‘‘A framework for generating high throughput CNN
implementations on FPGAs,’’ in Proc. Int. Symp. Field-Program. Gate
Arrays, 2018, pp. 117–126.

[14] A. Utku, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
‘‘An OpenC deep learning accelerator on Arria 10,’’ in Proc. Int. Symp.
Field-Program. Gate Arrays, 2017, pp. 55–64.

[15] Z. Jialiang and L. Jing, ‘‘Improving the performance of OpenCL-based
FPGA accelerator for convolutional neural network,’’ in Proc. Int. Symp.
Field-Program. Gate Arrays, 2017, pp. 25–34.

[16] Khronos OpenCL Working Group. The OpenCL Specification
Version 1.1. Accessed: May 19, 2019. [Online]. Available:
https://www.khronos.org/registry/OpenCL/specs/opencl-1.1.pdf

[17] P. Ouyang, S. Yin, and S. Wei, ‘‘A fast and power efficient architecture to
parallelize LSTM based RNN for cognitive intelligence applications,’’ in
Proc. ACM/IEEE Design Autom. Conf. (DAC), Jun. 2017, p. 63.

[18] H. Song et al., ‘‘ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,’’ in Proc. FPGA, 2017, pp. 75–84.

[19] S. Wang et al., ‘‘C-LSTM: Enabling efficient LSTM using structured
compression techniques on FPGAs,’’ in Proc. Int. Symp. Field-Program.
Gate Arrays, 2018, pp. 11–20.

[20] C. Gao et al., ‘‘DeltaRNN: A power-efficient recurrent neural network
accelerator,’’ in Proc. Int. Symp. Field-Program. Gate Arrays, 2018,
pp. 21–30.

[21] C. Shijie et al., ‘‘Efficient and effective sparse LSTM on FPGA with
Bank-Balanced Sparsity,’’ in Proc. Int. Symp. Field-Program. Gate Arrays,
2019, pp. 63–72.

[22] K. Cho et al. (2014). ‘‘Learning phrase representations using RNN
encoder-decoder for statistical machine translation.’’ [Online]. Available:
https://arxiv.org/abs/1406.1078

[23] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, ‘‘Building a large
annotated corpus of English: The penn treebank,’’ Comput. Linguistics,
vol. 19, no. 2, pp. 313–330, 1993.

[24] S. Han, H.Mao, andW. J. Dally. (2015). ‘‘Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding.’’ [Online]. Available: https://arxiv.org/abs/1510.00149

[25] W.Wen, C.Wu, Y.Wang, Y. Chen, andH. Li, ‘‘Learning structured sparsity
in deep neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 2074–2082.

[26] C. Tai, T. Xiao, Y. Zhang, X. Wang, and W. E. (2016). ‘‘Convolu-
tional neural networks with low-rank regularization.’’ [Online]. Available:
https://arxiv.org/abs/1511.06067

[27] W. Wei et al., ‘‘Learning intrinsic sparse structures within long short-
term memory,’’ presented at the 6th ICLR, 2018. [Online]. Available:
https://openreview.net/pdf?id=rk6cfpRjZ

VOLUME 7, 2019 62937

	INTRODUCTION
	BACKGROUND
	PROPOSED STRUCTURED PRUNING ALGORITHM
	HARDWARE METHODOLOGY
	OVERALL LSTM ARCHITECTURE
	SPARSE INPUT ENCODING
	MATRIX - VECTOR MULTIPLICATION
	ACTIVATION FUNCTION

	LAYER PIPELINE STRATEGY

	ANALYSIS AND EVALUATION
	MODEL PERFORMANCE ANALYSIS
	FPGA IMPLEMENTATION PERFORMANCE ANALYSIS
	HARDWARE EVALUATION

	CONCLUSIONS
	REFERENCES

