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ABSTRACT With the trend of manufacturing globalization, distributed production has attracted wide
attention from the industry and academia. Nevertheless, there has been little research on the distributed
hybrid flowshop scheduling (DHFS) problem. To make up for the gap, this study aims to solve the DHFS
problem, in which multiple factories with hybrid flowshop scheduling (HFS) problems are considered. This
problem consists of two subproblems: 1) how to choose a factory for each job and 2) how to schedule
all jobs within the assigned factories. To solve the DHFS problem, a mathematical model is formulated.
Then, inspired by successful applications of brain storm optimization (BSO) algorithm in different fields,
we try to solve the DHFS with a hybrid BSO (HBSO). In the proposed algorithm, firstly, a new approach to
calculate the distance in the procedure of clustering is embedded. Then, a novel constructive heuristic based
on the Nawaz–Enscore–Ham (NEH) method, called distributed NEH, is proposed. Moreover, an improved
crossover operator based on the partial-mapped crossover (PMX) is designed for the distributed scheduling
problem. Finally, the 20 large-scale instances based on the realistic production data are randomly generated to
test the performance of the proposed algorithm. The experimental results verify that the proposed algorithm
is efficient and effective for solving the considered DHFS problems in comparison with the other recently
published efficient algorithms.

INDEX TERMS Distributed hybrid flowshop, hybrid brain storm optimization, distributed Nawaz-Enscore-
Ham, K -means method.

I. INTRODUCTION
Production scheduling is one of the important problems
which should be settled in the production management sys-
tem of enterprises. The hybrid flow shop scheduling (HFS)
problem has attracted the attention of many researchers since
Salvador’s innovative paper in the 1970’s [1]. In the tra-
ditional hybrid flow shop scheduling problem, a series of
jobs is processed by only one factory, which consists of a
set of production stages and at least one stage has multiple
identical machines. HFS system is widely applied in actual
production, e.g., in glass-making, textile industries, paper and
steel production. Therefore, a large number of researchers
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have conducted in-depth studies during the last decade and
proposed many methods to solve the HFS problem such as
the exact solution, heuristics and metaheuristics [2].

Nowadays, with the trend of manufacturing globalization,
companies have already started to employ distributed pro-
duction management system to reduce manufacture costs
and mitigate management risks [3]. Unlike the classical flow
shop scheduling problem within a single factory, the dis-
tributed flowshop scheduling problem (DFSP) with multi-
ple factories has attracted attention by researchers in the
last few years. Many different types of DFSP have arisen
from actual manufacturing activities, such as distributed
permutation flow shop scheduling problems (DPFSP) [4],
distributed assembly permutation flowshop scheduling prob-
lems (DAPFSP) [5], distributed flexible job-shop scheduling
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TABLE 1. The processing times of six jobs at each stage.

FIGURE 1. Gantt chart of the example. (a) Gantt chart of the example
generated by rule 1. (b) Gantt chart of the example generated by Rule 2.

problems (DFJSP) [6], distributed no-wait flowshop schedul-
ing problems (DNFSP) [7], distributed hybrid flowshop
scheduling problem with multiprocessor tasks (DHFSPMT)
[8], and distributed reentrant permutation flow shop schedul-
ing problems (DRPFS) [9].

Due to the complexity and practicality of the DFSP,
a number of literatures have tried to propose multiple
models and algorithms to tackle them. Naderi and Ruiz
characterized distributed permutation flow shop schedul-
ing (DPFS) problem and proposed six different alternative
mixed integer linear programming (MILP) models [4]. For
the DPFS with makespan criterion, Gao and Chen proved
that the tabu search (TS) and a hybrid GA_LS are effi-
cient algorithms [10], [11]. Wang et al. developed an effec-
tive estimation of distribution algorithm (EDA) with some
local search operators based on DPFSP characteristics [12].
Naderi and Ruiz presented a scatter search (SS) method
for DPFSP to optimize the makespan [13]. Viagas et al.
introduced a bounded-search iterated greedy algorithm for

Algorithm 1: Canonical BSO

1. Randomly generate N individuals (solutions)
2. Evaluate the fitness of N individuals
3. Iteration = 1
4. While Iteration <= max_iterations do
5. Cluster N individuals into K clusters with the

K -means method
6. Select the best individual in each cluster as the

cluster center
7. If random (0,1) < Preplace then
8. Randomly select a cluster center and generate

Xnew to replace the selected cluster center
9. End if

10. While i < N do do
11. If random (0,1) < Pone then
12. Randomly select a cluster with probability

Pr
13. If random (0,1) < Poc then
14. Select the cluster center and add

random values to generate Xnew
15. Else
16. Randomly select an individual from

this cluster and add random values to
generate Xnew

17. End if
18. Else
19. Randomly select two clusters
20. If random (0,1) < Ptc then
21. Combine the two cluster centers and

add random values to generate Xnew
22. Else
23. Randomly select two individuals from

two clusters and add random values to
generate Xnew

24. End if
25. End if
26. If Xnew is better than Xselected then
27. Replace Xselected with Xnew
28. End if
29. End while
30. End while
31. Output the best individual

the DPFSP and proposed eighteen constructive heuris-
tics to obtain high-quality solutions [14], [15]. A novel
chemical Reaction Optimization (CRO) is proposed lately
by Bargaoui et al. to solve DPFSP with makespan crite-
rion [16]. More recently, Ruiz et al. provided a simple
Iterated Greedy (IG) algorithms to solve the DPFSP, in
which modified initialization, construction and destruc-
tion methods, associate with a novel local search are pre-
sented [17]. For distributed flexible job-shop scheduling
problems (DFJSP), Wu et al. briefly reviewed the impact
of diverse chromosome representations and proposed an
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FIGURE 2. The distance of each dimension.

improved genetic algorithm [18]. Lin and Zhang worked
out distributed assembly permutation flowshop scheduling
problems (DAPFSP) with a hybrid biography-based opti-
mization (HBBO) algorithm [19]. Lin et al. put forward
ten heuristic construction rules in a backtracking search
hyperheuristic (BS-HH) algorithm to settle DAPFSP [20].
Zhang and Xing combined memetic algorithm (MA) with
social spider optimization (SSO) to solve DAPFSP for the
first time [21]. Ying et al. developed an Iterated Reference
Greedy (IRG) algorithm for distributed no-wait flowshop
scheduling problems (DNFSP) with makespan criterion [22].
Unlike the DFSP with a single objective, the DFSP with
multiple objectives has drawn attention from researchers
recently. For example, Rifai et al. developed a novel multi-
objective adaptive large neighborhood search (MOALNS)
algorithm [9]. Deng and Wang proposed a competitive
memetic algorithm (CMA) [23]. Furthermore, Jiang et al.
presented an improved multi-objective evolutionary algo-
rithm which gives much thought to low-carbon scheduling
and energy-efficiency [24], [25].

Although, a significant number of studies have investigated
the HFS and the DFSP, there is less research on the distributed
hybrid flowshop scheduling (DHFS) problem. To make up
for the gap, this study explores the DHFS problem. In the
classical HFS, there is only one factory and each job is
processed by a machine at each stage. However, in the DHFS,
each job can be processed in any among a set of available
factories. The two-stage HFS problem is already NP-hard on
minimizing the makespan [26], while the DHFS is a much
more complex version of the HFS. It follows that the DHFS
problem is also NP-hard. To explore the DHFS problem, this
study attempts to minimize the makespan for this problem.
More specifically, there are two subproblems need to be
solved: the one is the distribution subproblem that assigns
each job to a factory selected from a set of suitable factories,
and the other is the scheduling sub-problem that sequences
jobs within each factory so as to yield a feasible schedule to
minimize the makespan.

During recent years, many types of meta-heuristics
have been developed to solve realistic optimization prob-
lems, such as artificial bee colony (ABC) [27]–[36], tabu
search (TS) [37]–[41], genetic algorithm (GA) [42], [43],
teaching-learning-based optimization (TLBO) [44], [45],
invasive weed optimization (IWO) [46]–[48], particle swarm
optimization (PSO) [49]–[51], and the fruit fly optimiza-
tion algorithm (FOA) [52]–[54]. The other optimiza-
tion algorithms such as the migrating bird optimization
(MBO) [55], the harmony search (HS) [56], and the artificial

FIGURE 3. Process of encoding and decoding. (a) Process of encoding.
(b) Process of decoding.

fish swarm (AFS) algorithm [57] have also been researched.
In addition, the multi-objective optimization algorithms have
also been developed [58]–[64] and many typical applica-
tions including task assignment in a cooperative multi-agent
design system [65], trust propagation and sequential behav-
iors [66], heterogeneous scheduling [67], interval data driven
construction of shadowed sets with application to linguis-
tic word modeling [68], cloud scheduling [69], and grid
scheduling [70].

Algorithm 2: DNEH

1. Randomly assign jobs to factories (each factory is
assigned at least one job)

2. f = 1
3. While f <= factory_num do
4. While there are unscheduled jobs in f do
5. Calculate the makespan for all possible

positions of job j
6. Find the best position to insert job j and store

the makespan
7. End while
8. End while
9. Return the maximum makespan of all factories

Very recently, the brain storm optimization (BSO) algo-
rithm proposed by Shi has been extended greatly by
researchers [71]. In [72], a random grouping method is intro-
duced by Cao et al. to simplify the BSO. Jia et al. incorpo-
rated the BSO algorithm with the simulated annealing (SA)
algorithm to solve continuous optimization problems [73].
Yu et al. combined the BSO algorithm with the chaotic local
search (CLS) to alleviate stagnation during exploitation [74].
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FIGURE 4. Procedure of the proposed crossover operator. (a) Two
selected blocks. (b) Swap two blocks. (c) The mapping relationship.
(d) Two offspring.

TABLE 2. Key parameter levels.

Abd proposed the global-best BSO (GBSO), which improved
the performance of the BSO algorithm [75]. In [76], Yu et al.
introduced the flexible search length and memory-based
selection to reinforce the BSO algorithm.More recently, it has
been proved that the BSO algorithm is an effective method
for many types of problems in practice, e.g., multi-objective
optimization problems [77], optimization problems in the
electromagnetic field [78], the formation reconfiguration of
multiple satellites [79], the neural network [80], and vehicle
routing problems [81].

The rest of the paper is organized as follows. Section 2
describes the DHFS problem and presents amixed integer lin-
ear programming (MILP) formulation for the DHFS problem.
Section 3 illustrates the procedure of BSO and proposes three
methods to strengthen BSO. Section 4 presents experimental
results and analyses. Finally, Section 5 details conclusions
and future research works.

II. PROBLEM DEFINITION AND FORMULATION
A. PROBLEM DEFINITION
The DHFS can be defined in the following way. There is a set
of n jobs that must be assigned to one of F identical factories
and each job must be processed through a set of S produc-
tion stages in their designated factory. The job cannot be
transferred to another factory when it has been assigned to a
certain factory. Each factory f ( f = 1, . . . ,F) has exactly
the same stage and can process all the jobs. Every single
stage s (s = 1, . . . , S) consists of Ms identical machines,
and at least one stage has more than one machine. Every job
j ( j = 1, . . . , J ) has to be processed by the only one machine
at each stage. The buffer between two successive stages is
infinite and no precedence is allowed.

The optimization objective is to choose a factory for
each job and scheduling all jobs within the designated

TABLE 3. Response values.

factories simultaneously, so as to minimize the maximum
makespan of all factories. According to the classic notation
of Graham et al. [82], the DHFS with makespan criterion of
this paper can be denoted as DHFF |Psjf = Psj|Cmax, where
DHFF is a distributed hybrid flowshop with F distributed
factories, Psjf = Psj means the processing time of each job
j is identical at stage s for all factories, and Cmax denotes
the objective is to minimize the maximum makespan of all
factories.

B. ILLUSTRTIVE EXAMPLE
In this section, we present a straightforward example to illus-
trate the DHFS, applying two factory assignment rules pro-
posed by Naderi and Ruiz [4]. Here is an example consists of
two factories, six jobs, two stages and two identical machines
at each stage. The processing times of six jobs at each stage is
shown in Table 1. We assume that there has been a sequence
generated by a heuristic: X = {2, 5, 6, 4, 3, 1}. Fig. 1 (a)
shows the Gantt chart of a feasible solution generated by
Naderi’s Rule 1, assigning the job j to the factory f with
the current lowest makespan (without considering the job j).
Fig. 1 (b) presents the Gantt chart of a possible solution
produced by Naderi’s Rule 2, assigning the job j to the factory
f with the lowest makespan after inserting the job j.

C. PROBLEM FORMULATION
This section will introduce aMILPmodel for DHFS, expand-
ing from an HFS model introduced by Li and Han [83].

The following assumptions are used to build the mathemat-
ical model:

• A job can only be processed in one factory and changing
the factory during processing is not allowed.

• Each job can be processed at time 0.
• Every job must pass through all stages in a factory and
is processed by one machine at each stage.

• All machines are in good condition and does not require
maintenance during processing.

• All machines in a stage are identical.
• The machine can only process one job at a time.
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• All factories are identical, and each factory has the abil-
ity to process every job.

Parameters and binary variables of the DHFS model are
shown as follows:

Parameters

F : Number of factories
S : Identical number of stages in all factories
J : Number of jobs
Ms : Number of identical machines in each stage s
f : Factory index
s : Stage index
ij : Job index
m : Machine index
Pjs : Processing time of job j at stage s
Bjs : Beginning time of job j at stage s
Cjs : Completion time of job j at stages s
T : a very large positive number

Binary variables

Xi,j,m,f =


1 if job j is the successor of job i on

machine m
0 otherwise

Yjf =

{
1 if job j is processed in factory f
0 otherwise

Zj,s,m=


1 if job j is processed on

machine m at stage s
0 otherwise

The mathematical model of the DHFS can be formulated
as follows:

minC max (1)

S.T
F∑
f=1

Yjf = 1 ∀j ∈ J (2)

Ms∑
m=1

Zj,s,m = 1 ∀j, s (3)

J∑
i=1,i 6=j

(Xi,j,m,f + Xj,i,m,f ) ≤ 2 · Yjf ∀j,m, f

(4)

Cjs ≥ Cis + Pjs + ((
F∑
f=1

Ms∑
m=1

Xi,j,m,f )− 1) · T

∀i, j,m, f (5)

Cjs ≥ Cjs − 1+ Pjs s ∈ {2, . . . , S} ∀j ∈ J (6)

C max ≥ Cjs ∀j ∈ J (7)

Cjs = Bjs + Pjs ∀j ∈ J , ∀s ∈ S (8)

Xi,j,m,f ∈ {0, 1} ∀i, j,m, f (9)

Yjf ∈ {0, 1} ∀j, f (10)

Zj,s,m ∈ {0, 1} ∀j, s,m (11)

FIGURE 5. Factor level trend.

As is illustrated in the formula (1), the objective of the
mathematical model is to minimize the maximum makespan
of all factories. Constraint (2) mandates that a job can only
be assigned to one factory, in other words, all the stages of
an unprocessed job must be performed in the one factory.
Constraint (3) ensures that each job passes through all stages
in a factory and is processed by one machine at each stage.
Constraint (4) guarantees that each job can serve as either an
immediate predecessor activity or successor on the selected
machine, in simple terms, a job can only be processed once
by the selected machine. Constraint (5) ensures that one
machine can only process one job at a time. Constraint (6)
requires that a job cannot start until the previous stage is
completed. Constraint sets (7) and (8) define the maximum
makespan. Constraint sets (9) - (11) define all the binary
variables.
Theorem 1: In the optimal solution of DHFS with general

makespan criterion, each factory is assigned at least one job
(if J > F).

Proof: Let Cmax be the optimal solution of DHFS with
makespan criteria.
Cmax = max

{
C1,C2, . . . ,Cα, . . .Cβ , . . .CF

}
, where Cf

denotes the completion time of factory f . Suppose that no one
job is assigned to factory α and let Cmax = Cβ . Owning to
J > F , at least one factory is assigned more than one job.
Without loss of generality, let’s consider two scenarios.
Scenario 1: Let factory β be the factory which is assigned

more than one job. We send the last complete job in fac-
tory β to factory α. And now let C∗max be the global
makespan, C∗α be the makespan of factory α and C∗β be
the makespan of factory β. After operating, C∗max =

max
{
C1,C2, . . . ,C∗α, . . .C

∗
β , . . .CF

}
, C∗β ≤ Cβ ≤ Cmax,

C∗α ≤ Cβ ≤ Cmax. Therefore, we derive C∗max ≤ Cmax.
Scenario 2: Let factory β has only one job and factory

k (k 6= α, β) has more than one job. If we move one job from
factory k to factory α, the Cmax won’t increase.

III. ALGORITHM FOR THE DHFS
A. THE CANONICAL BSO
The concept and theory of the BSO algorithm originates
from the human brainstorm conference, which is a way of
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TABLE 4. Comparisons of HBSO_NO and HBSO_DNEH.

stimulating thinking to inspire innovative ideas. The BSO
algorithm applies clustering method to search for the local
optimum and the global optimum is obtained by comparing
the local optimum of each cluster. In order to avoid the
algorithm falling into the local optimization, BSO adopts a
mutation operation to keep the diversity of solutions.

Inspired by successful applications of BSO in different
fields, we try to solve the DHFS problem based on the
BSO algorithm. The specific procedure of the canonical BSO
algorithm is shown in Algorithm 1. The canonical BSO algo-
rithm involves five parameters: Preplace, Pone, Pr, Poc, Ptc.
Preplace is a probability value that determines the probability
of replacing the selected cluster center with a new individual.
The probability value Pone determines whether to select one
cluster or two clusters to generate new individuals. In the
case of selecting one cluster, Poc is a probability value which
decides whether to select a cluster center or randomly select
a cluster member to generate new individuals. In the case of
selecting two clusters, the probability value Ptc determines
whether to select two clusters’ center or randomly select one
member from each selected cluster to generate new individ-
uals. The parameter Pr is calculated directly according to the
function (12)

Pr = MK/N (12)

whereMK is the number of individuals in the cluster K and N
is the total number of individuals of all clusters. However, in

FIGURE 6. Means and 95% LSD intervals for HBSO_NO and HBSO_DNEH
(p = 1.47× 10−6).

the case of randomly selecting two clusters to generate new
individuals, the function (12) is not adopted.

In the step of generate new individuals, individuals are
generated according to the following function (13).

Xdnew = Xdselected + ξ × n(µ, σ ) (13)

where Xdselected is the d dimension of the selected individual
and Xdnew is the d dimension of the newly generated individ-
ual. n(µ, σ ) is a gaussian function with a mean of µ and a
variance of σ . The ξ is a weighting coefficient that making a
difference to the contribution of the gaussian noise, which is
generated according to function (14).

ξ = log sig((0.5×max _T − current_T )/k)× rand() (14)

where the log sig is log-sigmoid transfer function, the max _T
and the current_T represent the maximum iterations and the
current number of iterations respectively. K can change the
slope of the log sig function and the rand() is the random
value between (0,1).

B. K-MEANS DISCRETIZATION
In this subsection, the K -means clustering method is adapted
to solve the DHFS problem. The K -means clustering method
is an algorithm to classify or to group objects based on
attributes or features, intoK number of groups.K is a positive
integer number. Since the K -means method is only applied to
a given complete data set and it does not require any special
training data, it is an unsupervised machine learning method.
The procedure of the K -means clustering method is shown as
follows:

Step 1: K solutions are randomly selected from N solutions
as the initial center of K clusters.

Step 2: For each solution, calculate the distance to each cen-
ter and classify it to the nearest center. The distance
is calculated according to the Euclidean distance
formula:

Di
=

√
(S i − C i)2 (15)

where S i and C i represent the i dimension of each
solution and each center respectively. Di is the
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TABLE 5. Comparisons of HBSO_D-I and HBSO_D-II.

distance between the solution and the center of
i dimension.

Step 3: Recalculate the center of each cluster by the average
of the i dimension.

Step 4: Iterate 2∼ 3 steps until the new center is equal to the
old center or the specified threshold is satisfied.

Furthermore, instead of using Euclidean distance of all
dimensions to cluster solutions, we propose a novel approach
to calculate the distance between the solution and the center.
As shown in Fig. 2, in the first step, we calculate the distance
of each dimension between the solution s and the center c.

Then, the sum of the distances of all dimensions D =
6∑
i=1

di

is used to measure the distance from the solution s to the
center c.

C. ENCODING/DECODING SCHEMES
AND INITIALIZATION
As described in the above sections, for the DHFS problem, a
solution consists of two parts, i.e., the distribution of each job
to the factory, and the processing sequence of jobswithin each
factory. To solve the problem with the BSO algorithm, we
propose an encoding scheme and two initialization strategies.
The encoding scheme is illustrated as follows.

Let the vector A consists of J elements which are randomly
generated fromUnidrnd (1, F). To make the encoding scheme

understood easily, we apply it to the previous example pre-
sented in Table 1.

Here is a simple DHFS problem consists of two factories,
six jobs, two stages and two identical machines at each stage,
one of the possible factory assignment of the problem can be
denoted by A = (2 1 1 2 1 2). As shown in Fig. 3 (a), the first
element 2 means that the job 1 is assigned to the factory 2.
Similarly, the second element 1 represents that the job 2 is
assigned to the factory 1, and so on. To put it in a nutshell,
the job set (2 3 5) is assigned to the factory 1, and the job
set (1 4 6) is assigned to the factory 2.
It has been proved that each factory is assigned at least

one job in the optimal solution in Theorem 1. In order to
satisfy this condition, we adopt a method which combines
the shuffling order and the random generation in the first
initialization strategy. Steps of the first initialization strategy
are shown as follows:

Step 1: Randomly disrupt the order of factories (1,2, . . . ,F)
as the first F elements of the vector A.

Step 2: Randomly generate J−F elements from (1,2, . . . ,F)
as the remaining part of the vector A.

In the first step, we guarantee that each factory is assigned
at least one job. To simplify the decoding scheme, let
A = (2 1 1 2 1 2).

In the decoding scheme, jobs are assigned to the first idle
machine at each stage. Fig. 3 (b) illustrates the decoding
process of the factory 1. Makespan is 15 in the factory 1.
The same scheduling process is applied to the factory 2.
Finally, the makespan of the DHFS problem is the maximum
completion time of all factories.

Next, a simple example is given to illustrate the novel
approach to calculate the distance between the solution and
the center presented in Fig. 2. c = (2, 1, 2, 2, 1, 1) is one
of the centers, s = (2, 2, 1, 2, 1, 2) is a solution, then the
distance between the solution and the center D = (2 − 2) +
(2− 1)+ (1− 2)+ (2− 2)+ (1− 1)+ (2− 1) = 1.

D. DNEH CONSTRUCTIVE HEURISTIC
NEH is one of the most effective construction heuristic algo-
rithms for flowshop scheduling problems, which is proposed
by Nawaz et al. [84]. The procedure of NEH is shown as
follows:

Step 1: Sum up the processing time of each job at all pro-
cessing stages, and then sort the sum value from
large to small.

Step 2: Select the first job (the job with the longest pro-
cessing time) and insert the second job into the
front and the back position of the first job, and
then arrange the second job into the position with
minimum makespan.

Step 3: Insert the next job into all possible positions of
the previous processing sequence and calculate
the makespan for each possible position, and then
arrange it into the position with minimummakespan.

Step 4: Iterate step 3 until all of jobs are arranged.
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FIGURE 7. Means and 95% LSD intervals for HBSO_D-I and HBSO_D-II
(p = 1.67× 10−2).

To take advantage of good features of NEH, we develop
a novel constructive heuristic based on NEH for distributed
flowshop scheduling problems in this paper, which is called
distributed NEH (DNEH). The main procedure of the pro-
posed DNEH method is illustrated in Algorithm 2. Firstly,
jobs are assigned to each factory randomly, and the final
manufacturing scheduling must satisfy the Theorem 1. And
then, in the process of scheduling within each factory, the job
is scheduled according to the order in which it is assigned
to the factory. Each job is inserted into all possible posi-
tions of the previous sequence and the makespan of each
possible position is calculated. After that the position with the
minimum makespan is selected as the final position. Finally,
the maximum completion time of all factories is referred
to as the makespan of the distributed flowshop scheduling
problem.

E. CROSSOVER OPERATOR
Two-point crossover operator is used in the canonical BSO.
To enhance the performance of the algorithm, we propose
a new crossover operator for the BSO algorithm based on
the Partial-Mapped Crossover (PMX). The best individual of
each cluster is selected as parents. Here is a simple exam-
ple with ten jobs, five factories. The crossover procedure is
shown as follows:
Step 1: Randomly select two segments from two parents

(two segments are chosen in the same place of two parents as
is shown in Fig. 4 (a)).
Step 2: Swap two selected segments (see Fig. 4 (b)).
Step 3: Do conflict detection. Firstly, creating a mapping

relationship based on selected segments of two parents (see
Fig. 4 (c)). Next, all genes that conflicted with the selected
segment are mapped to other genes (see Fig. 4 (d)).

F. PROCEDURE OF THE HBSO
With the above research and design, the procedure of the
proposed HBSO algorithm is shown as follows:

Step 1: Initialize the population and calculate the fitness
of each individual with the DNEH constructive
heuristic.

TABLE 6. Comparisons of HBSO_NCR and HBSO_CR.

Step 2: Cluster the population into K clusters with the
K -means method and select the best individual in
each cluster as the cluster center. The distance cal-
culation method proposed in Section III Part B is
involved in K -means method.

Step 3: Randomly select a cluster center by the formula (12)
and replace it with a randomly generated individual.

Step 4: Update all individuals. The four ways to update
individuals are detailed as follows:
(1) Randomly select a cluster center by the

formula (12) and add a random perturbation to
generate a new individual.

(2) Randomly select a cluster by the formula (12).
In the selected cluster, an individual is randomly
selected, and a random perturbation is added to
generate a new individual.

(3) Randomly select two cluster centers. The
crossover operator proposed in Section III Part
E is adopted to generate new individuals.

(4) Randomly select two clusters. In each selected
cluster, an individual is randomly selected
to generate new individuals by the proposed
crossover operator.

Step 5: Stop if the specified threshold is satisfied, otherwise
go to step 2.
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FIGURE 8. Means and 95% LSD intervals for HBSO_NCR and HBSO_CR
(p = 1.69× 10−2).

IV. EXPERIMENT ANALYSES
A. EXPERIMENTAL INSTANCES
To solve theDHFS problem and verify the effectiveness of the
HBSO algorithm, we randomly generate twenty large-scale
test instances for the DHFS problem based on the realistic
production data. The number of the identical factory for each
test problem is randomly generated from Unidrnd (2, 5). The
test instances set are classified into four categories according
to the number of jobs. In addition, to test the effective-
ness of the HBSO algorithm in the environment of different
complexity, each category is divided into five sub-problems
with diffident number of stages. For instance, the notation
instance_50_2 means a problem consists of 50 jobs and
2 stages.

B. EXPERIMENTAL PARAMETER ANALYSIS
In order to effectively set the system parameters, we carried
out preliminary experiments. The key parameters included in
the experiment are as follows. (1) The population size (Ps),
which is the total number of individuals in an experiment.
(2) The probability of crossover (Pc), which determines
the possibility of crossover-operation for each individual.
(3) The coefficient Cn. The number of clusters is equal to
Cn multiplied by the population size. There is no fixed for-
mula or method to select the optimal number of clusters,
which needs to be specified manually. It should be noted that
choosing a larger number of clusters can reduce the error of
data but will increase the risk of over-fitting. According to
preliminary experiments, the levels of three critical parame-
ters are given in Table 2.

These three key parameters affecting the performance of
the proposed algorithm are analyzed by using DOE Taguchi
method. For three key parameters, select the orthogonal
array L16(43). The proposed algorithm runs 30 times for each
parameter combination independently. And then, we calcu-
lated the average RPI value obtained by the comparison algo-
rithm as the response variable which is presented in Table 3.
The factor level trend of the three key parameters is shown
in Fig. 5.

As can be seen from Fig. 5, the proposed algorithm can
achieve better performance by selecting the following three
key parameter levels: (1) Ps with the level 4; (2) Pc with
the level 2; and (3) Cn with the level 2. In addition, it can

TABLE 7. Comparisons with the canonical BSO.
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TABLE 8. Calibrated parameters of two comparison algorithms.

FIGURE 9. Means and 95% LSD intervals for CBSO and HBSO
(p = 2.42× 10−4).

be seen from Fig. 5 that the proposed algorithm can achieve
better performance with the increase of the population size.
However, the larger the Ps value, the more computing
resources will be consumed during the exploration process
and the exploitation capability of the proposed algorithm
will decrease. Therefore, in order to balance the exploration
and exploitation ability of the proposed algorithm, the upper
bound of the Ps value is limited to 200. The suitable values
for Ps, Pc, and Cn are set to 200, 0.3 and 0.1, respectively.

C. EFFECTIVENESS OF DNEH CONSTRUCTIVE HEURISTIC
In order to verify the effectiveness of the DNEH con-
structive heuristic, we present a detailed comparison of the
two methods, i.e., the HBSO algorithm with the proposed
DNEH method (HBSO_DNEH for short), and the HBSO
algorithm without the DNEH method, hereafter denoted
HBSO_NO. For experimental credibility, the two comparison
algorithms are run independently 30 times with the same
twenty test instances. The experimental results are shown
in Table 4.

Table 4 consists of seven columns. The instance name
is presented in the first column. The second column shows
the size of the instance. The following column provides
the optimal value of each instance. The fourth column
presents the experimental results of the HBSO_NO algo-
rithm, and the experimental results of the HBSO_DNEH
algorithm are shown in the following column. In order to
intuitively compare the quality of solutions obtained by two
contrast algorithms, we calculate the percentage deviation
with formula (16), and results are presented in the last two
columns.

The following information can be obtained from Table 4:
(1) the HBSO_DNEH algorithm obtains 17 optimal solutions

of 20 test instances, while there are only 3 optimal solutions
calculated by the HBSO_NO algorithm; (2) as shown in the
last line, the average makespan and the average percentage
deviation of HBSO_DNEH algorithm is much smaller than
that of HBSO_NO algorithm.

Furthermore, to determine the statistical superiority of
the BSO_DNEH algorithm, we conduct the Analysis of
Variance (ANOVA) on experimental results. Fig. 6 presents
the means and 95% intervals for HBSO_NO algorithm
and HBSO_DNEH algorithm. It is obvious that there are
significant differences between HBSO_NO algorithm and
HBSO_DNEH algorithm. As mentioned above, it is obvi-
ous that HBSO_DNEH algorithm is superior to HBSO_NO
algorithm.

dev =
Cmax − Cbest

Cbest
× 100% (16)

D. EFFECTIVENESS OF THE DISTANCE METHOD
To verify the validity of the distance calculation method
proposed in Section III Part B, we compared the two methods
of calculating distance in theHBSO algorithm, i.e., the HBSO
algorithm with the Euclidean distance method (HBSO_D-I
for short), and the HBSO algorithm with the proposed dis-
tance calculation method (HBSO_D-II for short). For the
reliability of the experiment, the two comparison algorithms
are run independently 30 times with the same twenty test
instances. The experimental results are given in Table 5.

Table 5 consists of six columns. The instance name is
shown in the first column. The second column presents the
optimal value of each instance. The third column details
the experimental results of HBSO_D-I, and the experimental
results of HBSO_D-II is shown in the following column.
In order to present the quality of the solutions of the two
methods intuitively, we calculate the percentage deviation
of solutions, and the results are presented in the last two
columns.

Table 5 has shown that: (1) HBSO_D-II obtains 15 optimal
solutions of 20 test instances, while there are only 5 opti-
mal solutions calculated by HBSO_D-I; (2) as shown in
the last line, HBSO_D-II obtains a smaller average max-
imum makespan and average percentage deviation than
HBSO_D-I. Moreover, to investigate the statistical supe-
riority of HBSO_D-II, we conduct the Analysis of Vari-
ance (ANOVA) on experimental results. Fig. 7 presents the
means and 95% intervals for HBSO_D-I and HBSO_D-II.
It can be observed from Fig. 7 that there are significant differ-
ences between HBSO_D-I and HBSO_D-II. In conclusion,
it is safe to say that HBSO_D-II is superior to HBSO_D-I.

E. EFFECTIVENESS OF THE CROSSOVER OPERATOR
To verify the performance of the crossover operator proposed
in Section III Part E, we conducted controlled experiments,
i.e., the HBSO algorithm with the proposed crossover opera-
tor (HBSO_CR for short), and the HBSO algorithm without
the proposed crossover operator (HBSO_NCR). Two-point
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FIGURE 10. Means and 95% LSD intervals for comparison algorithms. (a) Means and 95% LSD intervals for GA and HBSO (p = 4.64 ×10−4).
(b) Means and 95% LSD intervals for SS and HBSO (p = 7.82 ×10−4). (c) Means and 95% LSD intervals for GA_DNEH and HBSO (p = 1.01× 10−2).
(d) Means and 95% LSD intervals for SS_DNEH and HBSO (p = 2.07× 10−2).

crossover operator is used in theHBSO-NCR. For the reliabil-
ity of the experiment, the two comparison algorithms are run
independently 30 times with the same twenty test instances.
The experimental results are given in Table 6.

The instance name is shown in the first column of the
Table 6. The second column presents the optimal value
of each instance. The third column details the experimen-
tal results of HBSO_NCR, and the experimental results of
HBSO_CR is shown in the following column. In order to
present the quality of the solutions obtained by two contrast
algorithms intuitively, we calculate the percentage deviation
of solutions, and results are presented in the last two columns.

It can be observed from Table 6 that: (1) HBSO_NCR
obtains 15 optimal solutions of 20 test instances, while there
are only 5 optimal solutions calculated by HBSO_CR; (2) as
shown in the last line, HBSO_CR obtains a smaller aver-
age maximum makespan and average percentage deviation
than HBSO_NCR. In addition, to investigate the statistical
superiority of HBSO_D-II, we conduct the Analysis of Vari-
ance (ANOVA) on experimental results. Fig. 8 presents the
means and 95% intervals for HBSO_NCR and HBSO_CR.
It can be observed from Fig. 8 that there are significant

differences betweenHBSO_NCR andHBSO_CR. Therefore,
the proposed crossover operator can improve the performance
of the proposed algorithm.

F. COMPARISONS WITH THE CANONICAL BSO
To investigate the improvement of the HBSO algorithm
proposed in this paper, we conduct a comparison with the
canonical BSO algorithm, hereafter denoted CBSO. Each
algorithm is run 30 times on the same computer with twenty
test instances. The minimum, maximum and average values
of each compared algorithm are shown in Table 7. The per-
centage deviation of each instance is presented in the last two
columns of the Table 7.

As can be seen from the Table 7: (1) the HBSO algorithm
works out 16 optimal solutions, while there are only 5 optimal
solutions obtained by the CBSO algorithm; (2) as shown in
the last line, the average makespan (the minimum, maximum
and average values) and the average percentage deviation of
the HBSO algorithm is smaller than the CBSO algorithm.
In addition, to confirm the statistical superiority of the HBSO
algorithm, we conduct the Analysis of Variance (ANOVA)
on average experimental results. Fig. 9 presents the means
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TABLE 9. Comparisons results of GA, SS and HBSO.

and 95% intervals for the CBSO algorithm and the HBSO
algorithm. It is evident from the Fig. 9 that there are obvious
differences between the CBSO algorithm and the HBSO
algorithm, with the p-value 2.24 × 10−4. In conclusion, the
proposed HBSO algorithm has statistical advantages over the
CBSO algorithm.

G. COMPARISONS WITH THE OTHER
EFFICIENT ALGORITHMS
To the best of our knowledge, this study is one of the first
work to solve the DHFS problem. There is none published
algorithms to make detail comparisons directly. In order to
investigate the effectiveness of the proposed HBSO algo-
rithm, we conduct a comparison with the scatter search (SS)
algorithm [13] and genetic algorithm (GA) [85]. The rea-
sons that the two algorithms SS and GA are selected as the
compared algorithm are as follows: (1) SS is the algorithm
for solving the distribute permutation flowshop scheduling
problem (DPFSP), which has been verified as one of the effi-
cient algorithms and be selected as the compared algorithm
bymany published literatures. The problem considered in this
study is the distributed hybrid flow shop problem, which can
also be considered as the special case of the DPFSP, with the
special constraint that in each factory there are several parallel
machines. Therefore, in this study, we recoded and modified
the SS algorithm to solve the considered problem in this
study; and (2) the GA algorithm proposed in [85] is to solve
the hybrid flow shop scheduling problem. The problem in this
study can also be considered as one special case of the hybrid
flow shop problem, with the special constraint that there are
several factories in the production horizon. Therefore, the two
selected compared algorithms are taken from the very related
literatures, and these two algorithms have also been veri-
fied as the efficient algorithms for solving the corresponding

problems. Based on the analysis, we select and recode the
two compared algorithms and make detailed comparisons to
verify the efficiency of the proposed algorithm.

The time complexity of the proposed HBSO algorithm is
O(M× N2), whereM and N are the number of iterations and
the number of individuals, respectively. From the literature
of the two compared algorithms, we found that the time
complexity of GA is O(M × N2), where M and N are the
number of iterations and the number of individuals, respec-
tively, and the time complexity of SS is O(M × b × l × n),
whereM , b, l and n are the number of iterations, the number
of best solutions, the number of vectors and the number of
jobs, respectively. However, these two algorithms should be
recoded to solve the DHFS problem, and the time complexity
of the two compared algorithms for solving the considered
problem in this study are all ofO(M× N2). It should be noted
that the time complexity of SS has changed. The main reason
is that in solving the distributed flowshop, the proposed rapid
fitness computation method in the SS can be used, but it
cannot be used for solving the DHFS problem directly.

To enable GA and SS to solve DHFS problems, we have
modified the two algorithms and adopted strategies proposed
in the two papers. In order to confirm that the parameters in
these papers are suitable for DHFS problems, we carried out
calibration experiments. These numerical levels parameters
affecting the performance of the two comparison algorithms
are analyzed by DOE Taguchi method with the factors and
levels taken from the two original papers. The calibrated
parameters of the two comparison algorithms are presented
in Table 8. In SS, the controlled factors b, l, a and the number
of iterations (ITRN) are set to 10, 10, 40 and 450 respectively.
In GA, the population size (Psize) is set to 110, the crossover
probability (Pc) is set to 1, and the mutation probability (Pm)
is set to 0, the restart level (Gr ) is set to 30, the local search

66890 VOLUME 7, 2019



J.-H. Hao et al.: Solving DHFS Problems by a HBSO Algorithm

TABLE 10. Comparisons results of GA_DNEH, SS_DNEH and HBSO.

FIGURE 11. The Gantt chart for ‘‘Inst1’’.

frequency (Gl) is set to 10 and the local search intensity factor
(intls) is set to 1.

Every algorithm runs 30 times on the same computer with
twenty test instances. The comparison experiment results
are shown in Table 9. The instance name is shown in the
first column. The second column presents the best value of
each instance. The following three columns detail the best
values obtained by each comparison algorithm. To intuitively

compare the quality of solutions obtained by three contrast
algorithms, we calculate the percentage deviation of solu-
tions, and the results are given in the last four columns.
It can be seen from Table 9 that: (1) the HBSO algorithm
obtains 13 optimal solutions, while there are only 2 and
5 optimal solutions found out by the GA and SS, respectively;
(2) as shown in the last line, the average makespan and the
average percentage deviation of the HBSO algorithm is the
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smallest of three comparison algorithms. Moreover, in order
to confirm the statistical superiority of the HBSO algorithm,
we conduct the Analysis of Variance (ANOVA) on experi-
mental results. Fig. 10 (a) and (b) present the means and 95%
intervals for the comparison algorithms. It is evident from
Fig. 10 (a) and (b) that the HBSO is superior to GA and SS.

In addition, we combine the DNEH method proposed in
this paper with two comparison algorithms, i.e., GA with
the DNEH method (GA_DNEH for short), and SS with the
DNEH method (SS_DNEH for short). Every algorithm runs
30 times on the same computer with twenty test instances.
The comparison experiment results are shown in Table 10.
We conduct the Analysis of Variance (ANOVA) on experi-
mental results. Fig. 10 (c) and (d) present the xmeans and 95%
intervals for the comparison algorithms. It is obvious that
HBSO is superior to GA_DNEH and SS_DNEH. In conclu-
sion, the above experimental results and analyses prove that
the HBSO algorithm is effective for solving DHFS problems.

Fig. 11 presents the Gantt chart for the best solution of
instance ‘‘Inst1’’, which illustrates the effectiveness of the
proposed HBSO algorithm.

V. CONCLUSIONS
With the trend of manufacturing globalization, distributed
multi-factories are becoming more and more common in var-
ious industries. In this paper, the distributed hybrid flowshop
scheduling (DHFS) problem is proposed, with the objec-
tive to minimize the maximum makespan of all factories.
Then, a hybrid brain storm optimization (HBSO) algorithm is
applied to solve the DHFS problem for the first time. In addi-
tion, a DNEH constructive heuristic is proposed for dis-
tributed flowshop scheduling problems. Moreover, we design
a new approach to calculate the distance in the procedure of
K -means discretization and propose a new crossover operator
to strengthen the BSO algorithm. Furthermore, to evaluate
the effectiveness of the proposed HBSO algorithm, a set of
test instances is generated. This paper broadens the scope
of research on distributed flow shop scheduling problems
and enables the BSO algorithm to be used for combinatorial
optimization problems successfully.

For future research works, the HBSO algorithm can
be adapted to other distributed flowshop scheduling prob-
lems or other combinatorial optimization problems, such as
the crowd evacuation simulation system [86] and the opti-
mization problem in wireless networks [87]. Besides, future
studies can consider more realistic factors for the DHFS,
such as heterogeneous factories. Finally, energy consumption
can be considered as a future research direction for DHFS
problems.
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