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ABSTRACT Iris segmentation algorithms are of great significance in complete iris recognition systems,
and directly affect the iris verification and recognition results. However, the conventional iris segmentation
algorithms have poor adaptability and are not sufficiently robust when applied to noisy iris databases
captured under unconstrained conditions. In addition, there are currently no large iris databases; thus, the
iris segmentation algorithms cannot maximize the benefits of convolutional neural networks (CNNs). The
main work of this paper is as follows: first, we propose an architecture based on CNNs combined with
dense blocks for iris segmentation, referred to as a dense-fully convolutional network (DFCN), and adopt
some popular optimizer methods, such as batch normalization (BN) and dropout. Second, because the
public ground-truth masks of the CASIA-Interval-v4 and IITD iris databases do not include the labeled
eyelash regions, we label these regions that occlude the iris regions using the Labelme software package.
Finally, the promising results of experiments based on the CASIA-Interval-v4, IITD, and UBIRIS.V2 iris
databases captured under different conditions reveal that the iris segmentation network proposed in this
paper outperforms all of the conventional and most of the CNN-based iris segmentation algorithms with
which we compared our algorithm’s results in terms of various metrics, including the accuracy, precision,
recall, f1 score, and nice1 and nice2 error scores, reflecting the robustness of our proposed network.

INDEX TERMS CNNs, dense block, dense-fully convolutional network, iris segmentation.

I. INTRODUCTION
Iris texture plays an important role in national defense and
security because of its unique, stable, noncontact and anti-
counterfeiting characteristics. A complete iris recognition
system usually consists of the following steps: initially, iris
images are obtained by an imaging device. Then, the iris
regions of the eye images are located by iris segmentation
algorithms. Next, iris features are extracted by feature extrac-
tion algorithms. Finally, the extracted iris features are used
for iris verification or recognition. As shown in FIGURE 1,
with the exception of the iris regions, the iris images consist
of not only the iris regions but also other regions, i.e., pupil,
eyelid, eyelashes and sclera [1]. The non-iris regions degrade
the iris segmentation performance. Iris segmentation algo-
rithms are designed to eliminate the effects of the non-
iris regions and accurately segment the iris regions from
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the eye images. Iris segmentation algorithms are of great
significance in iris recognition systems. The accuracy and
robustness of the algorithms directly affect the subsequent
iris extraction, verification and recognition stages [2]. Under
ideal conditions—i.e., the iris regions are not occluded by the
eyelids or eyelashes, the iris images are clear, and users are
absolutely cooperative; thus, most existing iris segmentation
algorithms can accurately segment the iris regions. However,
under nonideal conditions, it is still challenging to design
robust iris segmentation algorithms that accurately segment
the iris regions despite the effects of eyelids, eyelashes, light,
and user cooperation.

II. RELATED WORKS
Current iris segmentation algorithms consist of the following
types:

1) Iris segmentation algorithms based on image gradients:
Okokpujie et al. [4] proposed an iris segmentation algorithm
that replaces integro-differential operators with the Hough
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FIGURE 1. Samples of iris images under ideal and nonideal conditions. (a) Ideal iris images. (b) Iris images slightly occluded.
(c) Iris images severely occluded.

transform, which increases the segmentation accuracy of the
algorithm. Umer et al. [5] proposed a restricted Hough trans-
form algorithm, which reduces the parameter search space of
the traditional Hough transform algorithms, and the algorithm
spends less time during the segmentation process and obtains
higher accuracy. Roy et al. [7] proposed an improved algo-
rithm based on the Daugman model, which can better elim-
inate noise, i.e., noise from eyelashes and eyelids, and more
quickly segment the iris regions. Iris segmentation algorithms
based on image gradients usually obtain good results under
ideal conditions. However, under nonideal conditions, these
algorithms are not sufficiently robust. On the one hand, such
algorithms essentially locate the boundaries relying on the
changes in the gray values at the edge or boundary of the iris.
However, under nonideal conditions, high contrast among the
eyelashes, light spots and iris exists, which makes it more dif-
ficult to accurately locate the iris boundaries. To solve these
problems, it is necessary to eliminate the impact of eyelashes,
eyelids and light spots before locating the iris boundaries.
The iris segmentation framework proposed by Zhao et al. [9]
is based on the total variation formula using L1 regulariza-
tion, which robustly represses noise from the non-iris regions
and increases the segmentation accuracy. On the other hand,
the circularity of the iris boundaries also influences the seg-
mentation accuracy. Some early iris segmentation algorithms
achieved good results by assuming that the iris region is circu-
lar, but not all iris regions are circular. To accurately segment
the iris regions, it is necessary to fill the iris boundaries.
Uhl and Wild [10] first used an adaptive Hough transform
algorithm to estimate the approximate position of the iris
center. Then, a polar coordinate transformation was adopted
to detect the first elliptical boundaries or the pupil boundaries.
Finally, the elliptical polar coordinate transformation was
adopted to find the second boundary according to the result
of the first elliptical boundary. In summary, iris segmenta-
tion algorithms based on image gradients are not sufficiently
robust in terms of the impact of eyelashes, eyelids, illumina-
tion and deformation. These algorithms need to preprocess
iris images according to prior knowledge before or during
the location of the iris boundaries, which undoubtedly
increases the complexity of the algorithms. In addition,
the correlated segmentation steps and the various thresholds

that need to be determined both make the algorithm very
complex.

2) Iris segmentation algorithms based on pixels:
Radman et al. [11] adopted a circular Gabor filter to
roughly estimate the pupil center and used the live-wire
algorithm to find the upper and lower eyelid boundaries.
Sahmoud and Abuhaiba [12] adopted the k-means algorithm
to extract the expected area of the iris and then used the
circular Hough transform algorithm to determine the iris
radius and center. Hu et al. [8] improved the iris segmentation
algorithms in several aspects. First, the segmentation results
of different segmentation methods and models were com-
bined to increase the segmentation accuracy. Then, histogram
of gradient (HOG) features were used as the circle features of
the iris regions. Finally, the support vector machine (SVM)
method was used for classifying the iris and non-iris regions.
Radman et al. [13] adopted a circular Gabor filter to classify
the iris and non-iris regions. Radman et al. [14] adopted HOG
as features and SVM was used to perform the automatic
segmentation of iris. Barra et al. [6] adopted region of interest
(ROI) detection and normalization via the Hough transform
and iris clustering performed by means of simple linear
iterative clustering (SLIC). Susitha et al. [41] detected the
eyelids and pupil regions of eyes by performing parabolic and
morphological operations. Similar to the iris segmentation
algorithm based on image gradients, the iris segmentation
algorithms based on pixels are also easily affected by eye-
lashes, eyelids, etc., which leads to a decrease in segmentation
accuracy. These algorithms are also not adequately robust.

3) Iris segmentation algorithms based on CNNs: In recent
years, CNNs have benefited from the excellent learning
ability of convolution kernels and the data available in the
era of big data; these frameworks have exhibited excellent
performance in the fields of computer vision [15] [16].
CNNs also outperform traditional algorithms in the fields
of semantic segmentation and instance segmentation. Fully
convolutional networks (FCNs) [17] adopt pretrained mod-
els, such as AlexNet and VGGNet, for transfer learning
and chang the fully connected layer structures in the CNNs
for adopting transpose convolution to achieve the goal of
semantic segmentation.Moreover, the segmentation accuracy
was increased by 20%. Since then, SegNet [18], U-net [19]
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TABLE 1. Comparisons of previous studies on iris segmentation.

and other algorithms have continuously improved the net-
work structures or convolution methods for improving the
performance. In different fields, such as medical and road
condition image processing, these CNNs have shown the
advantages relative to traditional algorithms. In the field
of iris recognition, Marra et al. [20] adopted CNNs to
classify iris images acquired by different image devices.
Ribeiro et al. [21] proposed two deep learning structures for
iris recognition: stacked auto-encoders (SAEs) and CNNs.
Furthermore, the results of experiments reveal the supe-
riority of deep learning structures. Al-Waisy et al. [22]
proposed a shallow CNN for iris recognition, in which the
features of the iris and face are combined to obtain excellent
results. However, in the field of iris segmentation, only a few
articles have proposed iris segmentation algorithms based
on CNNs. Jalilian and Uhl [23] proposed three iris segmen-
tation network structures based on FCNs and named them
fully convolutional encoder–decoder networks (FCEDNs),
and the results of their experiments show that FCEDNs are
superior to all of the traditional algorithms. Liu et al. [24]
proposed two CNNs: hierarchical convolutional neural net-
works (HCNNs) and multi-scale fully convolutional net-
works (MFCNs) to solve the problem of the performance
degradation of traditional iris segmentation algorithms under

nonideal conditions. Moreover, MFCNs are more robust than
HCCNs, and the segmentation accuracy of MFCNs increased
by 25.62% and 13.24% compared with that of HCCNs on the
adopted datasets. Shabab et al. [42] designed optimized deep
neural networks for iris segmentation under unconstrained
capture conditions, which obtained promising performance
on lower quality datasets. Arsalan et al. [43] proposed a
segmentation network that uses the complete image without
prior preprocessing and named it IrisDenseNet, which can
determine the true iris boundary even with inferior-quality
images by using improved information gradient flow between
the dense blocks. Arsalan et al. [44] proposed iris segmenta-
tion models based on the residual skip connection.

Based on the analysis of the above literature, on the one
hand, traditional iris segmentation algorithms are not suffi-
ciently adaptive and robust under nonideal conditions. How-
ever, current iris segmentation algorithms based on CNNs
have not yet fully taken advantage of deep CNNs. Therefore,
this paper proposes a robust architecture based on CNNs
combined with dense blocks [25], termed dense-fully con-
volutional network (DFCN), which adaptively segments out
the iris regions of iris images. Comparative analyses of our
proposed method with other iris segmentation methods are
summarized in TABLE 1.
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FIGURE 2. The FCN architecture.

FIGURE 3. Dense block composed of 3 convolutional layers.

The remainder of this paper is organized as follows:
Section 3 describes in detail the proposed adaptive DFCN and
the training strategies of the structure model. The details of
the public iris image databases employed and corresponding
ground-truth masks are represented in Section 4, and the eval-
uation metrics are also described. The experimental results,
comparisons with state-of-the-art methods, and a discussion
are presented in Section 5. Section 6 summarizes this study.

III. THE PROPOSED ARCHITECTURE FOR IRIS
SEGMENTATION
A. OVERVIEW OF FCNS AND DENSE BLOCKS
As shown in FIGURE 2, FCNs include an encoder and a
decoder. In the encoder, image features are extracted, and
downsampling operations are performed. The encoder is a
pretrained AlexNet or VGGNet in most FCNs, which extracts
features of the adopted databases by means of transfer learn-
ing. In the decoder, upsampling operations are adopted for the
features by means of transpose convolution, and the output
prediction masks are obtained. FCNs change the structures
of conventional CNNs. Conventional CNNs consist of only
an encoder, which outputs the distribution of probabilities
in the fully connected layers. However, FCNs change the
fully connected layers to 1×1-sized spatial structures, aiming
to obtain prediction masks from the decoder via transpose
convolution.

Deep CNNs extract more discriminative features than shal-
lowCNNs because the former have a superior learning ability.
However, deep CNN training has limits for iris segmentation.
First, there are no large iris databases at present for training
deep CNNs, and the small iris databases lead to overfitting.
In addition, gradient vanishing degrades the accuracy for deep
CNNs. Therefore, dense blocks are adopted as the fundamen-
tal structure of the proposed architecture in this paper.

As demonstrated in FIGURE 3, the top convolutional lay-
ers connect the later convolutional layers, and each convo-
lutional layer is followed by the rectified linear unit (ReLU)
layers and batch normalization (BN) layers. Assuming there
are L convolutional layers, the conventional CNNs have
L connections, but there are connections in the CNNs based

on the dense block. The dense blocks alleviate the overfitting
and gradient vanishing effectively, which add the larger fea-
ture value of the bottom layers to the small feature value of
the top layers.

B. THE PROPOSED ARCHITECTURE AND TRAINING
STRATEGIES
An FCN architecture based on dense blocks is proposed in
this paper. This architecture is named DFCN.

As shown in FIGURE 4, the encoder of DFCN is given in
the left half and is named the Dense-encoder, and the decoder
of DFCN is given in the right half and named the Dense-
decoder. The convolutional layers are labeled to ‘Conv’, and
the dense blocks are labeled to ‘DB’. The pooling layers
are labeled to ‘PL’. The transpose convolutional layers are
labeled to ‘Conv_t’. The processing layers are labeled to
‘Pro_L’. The details of DFCN are summarized in TABLE 2.

As can be observed from TABLE 2, in the Dense-
encoder, the input images are first convolved by Conv1,
which consists of 64 convolutional kernels with a 3×3 size
and stride 1. Conv1 is followed by 5 dense blocks, which
are named Denseblock1, Denseblock2, Denseblock3, Dense-
block4 and Denseblock5. The dense blocks are composed of
two 3×3 convolutional layers with 48 kernels and a step size
of 1, and 96 channels of feature maps are added through a
dense block. The convolutional layers of the dense blocks are
followed by the BN layers and ReLU layers. Pooling layers
follow after each dense block and are referred to as Pooling
layer 1, Pooling layer 2, Pooling layer 3, Pooling layer 4 and
Pooling layers 5. The pooling layers perform the average-
pooling operation over a 2×2 window with stride 2. The last
pooling layer is followed by Conv6, Conv7 and the score
layers. Conv6 is composed of 4096 kernels with 7×7 size and
step 1. Conv7 is composed of 4096 kernels with 1×1 size
and step 1. The score layer is composed of n kernels with
1×1 size and step 1, where n is 2 in this paper, namely,
the iris pixels and non-iris pixels. In the Dense-decoder, the n
channel feature maps obtained from the Dense-encoder are
sampled by the transpose layers Conv_t1, Conv_t2, Conv_t3,
Conv_t4 and Conv_t5, and the output prediction masks are
obtained. The pixel values of the prediction masks are 0 or 1,
where 0 denotes the non-iris pixels and 1 represents the
iris pixels. Except for Conv_t5, all transpose convolutional
layers fuse the same size output of the pooling layers in the
Dense-encoder by adding the pixel values of the featuremaps,
i.e., Fuse1, Fuse2, Fuse3 and Fuse4, with 3×3 kernels and
step 2. Additionally, all fuse layers are followed by processing
layers, referred to as Pro_L1, Pro_L2, Pro_L3 and Pro_L4 in
FIGURE 4. The process layers are composed of two succes-
sive convolutional layers. The first one consists of double
numbers of previous layers kernels with 3×3 size and step 1.
The second one consists of half numbers of previous layers
kernels with 1×1 size and step 1. All convolutional kernels
are padded with zeros.

At the end of the Dense-decoder, the cross entropy func-
tion is adopted as the cost function. The cost function J is
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FIGURE 4. The DFCN architecture.

as follows, where, f̃j (z) denotes the desired label probabilities
of the training image and fj (z) denotes the actual network
output:

J (θ ) =
1
m

∑m

i=1

∑c

j=1
f̃j(z) log

[
fj(z)

]
(1)

For optimization, we adopted the mini-batch Adam
algorithm [29] to minimize the cost function. The iris images
are composed of mostly non-iris regions and a few iris
regions, which lead to the adoption of the standard stochastic
gradient descent (SGD) algorithm, which obtains many non-
iris features and ignores the iris features. That is, the iris
features are sparse, and the non-iris features are common.
However, the Adam algorithm increases the learning rate
for sparse data and decreases it for common data, and it
updates quickly for sparse features and slowly for common
features. The Adam algorithm computes the learning rate η
for every parameter θi at each time step t based on the previous
gradients of the same parameter as follows:

_mt =
mt

1− µt
(2)

_nt =
nt

1− vt
(3)

θ t+1i = θ t+1i −

_mt√
_nt + ε

∗ η (4)

where mt = µ∗mt−1+ (1−µ)∗gt is the estimate of the first-
order moment, nt = v∗nt−1 + (1 − v)∗g2t is the estimate of
second-order moment, and gt = ∇θJ (θ ) denotes the gradient
of the cost function. In addition, µ and ν are the exponential
decay rates of mt and nt , respectively, which are assigned a
constant value, and ε is a small constant to avoid division by
zero.

Initially, we set the learning rate to 0.001. Moreover,
the maximum iterative step is set to 30000, and the batch size
is set to 2. The learning rate decreases by a factor of 10 every

10000 steps. The weights of all convolutional kernels are
initialized as a truncated normal distribution with a standard
deviation of 0.01, and the bias of all convolutional layers is 0.
The values of µ and ν of the mini-batch Adam algorithm are
set to 0.9 and 0.99, respectively. Finally, the saved model in
the 30000 steps is used for prediction. Notably, pretrained
models are not adopted for the Dense-decoder. Importantly,
we train the DFCN from scratch.

IV. EXPERIMENTAL CONFIGURATION
A. DESCRIPTION OF THE IRIS IMAGE DATABASE
To evaluate our proposed architecture, we adopted three
public iris databases collected under different conditions:
the CASIA-Interval-V4 [26], IITD [27] and UBIRIS.V2 [31]
iris databases. The CASIA-Interval-V4 iris database is pro-
vided by the Institute of Automation, Chinese Academy of
Science andwhich includes 2639 images of 249 different sub-
jects. All images from the CASIA-Interval-V4 iris database
were captured with a self-developed close-up iris camera.
The IITD iris database is provided by the IIT Delhi, New
Delhi, India and which contains a total of 2240 images of
224 different subjects. All images of the IITD iris database
were captured using three different cameras: JIRIS, JPC1000,
and digital complementary metal–oxide–semiconductor
(CMOS) cameras, and each subject included 5 left iris
images and 5 right iris images. The UBIRIS.V2 iris database,
provided by Department of Computer Science, University
of Beira Interior, has 11102 images from 522 irises of
261 different subjects taken in an unconstrained environ-
ment. All images in the UBIRIS.V2 iris database were
captured with a Canon EOS 5D camera. Moreover, these
images were captured under unconstrained conditions,
i.e., on-the-move, off-axis, occluded, with reflections and
glasses, at distance and under several realistic lighting
conditions. Notably, the CASIA-Interval-V4 and IITD iris
databases were taken under near-infrared illumination (NIR);
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TABLE 2. The architecture details of DFCN.
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TABLE 3. The characteristics of the adopted iris image databases.

FIGURE 5. Image samples from the adopted iris databases.
(a) CASIA-Interval-V4. (b) IITD. (c) UBIRIS.V2.

nevertheless, the UBIRIS.V2 iris database was captured
under visible illumination. Importantly, we did not adopt
any data augmentation methods to enhance the adopted iris
databases.Moreover, all images from the CASIA-Interval-V4
and IITD iris databases were adopted for training and test-
ing. 2250 iris images from UBIRIS.V2 iris databases were
adopted for training and testing. The basic characteristics of
these three databases are summarized in TABLE 3.

As shown in FIGURE 5, on the one hand, the images
of the CASIA-Interval-V4 and IITD databases consist of
complete iris regions and iris regions occluded by eye-
lashes, etc. On the other hand, the images from the
CASIA-Interval-V4 database were captured from individuals
of Chinese origin, and the eyelashes are relatively fine and
sparse. Nevertheless, the images from the IITD database
were captured from individuals of Indian origin people with
relatively thick eyelashes. Such problems make designing an
iris segmentation algorithm more difficult. In addition, most
iris images of the UBIRIS.V2 iris database were captured
under unconstrained environments. As shown in FIGURE 5,
the two iris images ofUBIRIS.V2were captured on-the-move
and with less illumination. Therefore, iris segmentation tasks
using the UBIRIS.V2 iris database are challenging.

The ground-truth masks of the UBIRIS.V2 iris database
are provided by WaveLab of the University of Salzburg and
are named Irisseg-ep [30]. However, the UBIRIS.V2 ground-
truth masks of Irisseg-ep are not complete; the database
contains only 2250 ground-truth masks from 50 subjects.
FIGURE 6 shows some samples of the ground-truth masks
of UBIRIS.V2.

FIGURE 6. Samples of the UBIRIS.v2 ground-truth masks. (a) Original iris
images. (b) Ground-truth masks.

FIGURE 7. The process of labeling using Labelme.

Nevertheless, two different corresponding ground-truth
masks of CASIA-Interval-V4 and IITD are adopted in
this paper. The first ground-truth masks are provided by
Irisseg-ep, which includes the corresponding ground-truth
masks of CASIA-Interval-V4 and IITD. However, the noise,
such as eyelashes, was not labeled in Irisseg-ep. To evaluate
DFCN robustness, we adopt Labelme [28] for labeling the
iris regions and the noise regions occluding the iris regions.
FIGURE 7 shows the process of labeling. First, we label the
outer ring of iris as ‘_iris_’. Second, the inner ring of iris is
labeled as ‘_background_’. Finally, the eyelashes occluding
the iris area are labeled as ‘_background_’. The other regions,
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TABLE 4. The characteristics of the adopted iris image databases after splitting.

FIGURE 8. Samples of two different ground-truth masks. (a) Two different
ground-truth masks of CASIA-Interval-V4. (b) Two different ground-truth
masks of IITD.

i.e., sclera and eyelids, in the images are labeled as ‘_back-
ground_’. For the UBIRIS.V2 iris database, it is very difficult
to label the noise regions due to the low quality of iris images.
Therefore, we did not label the UBIRIS.V2 iris database.

FIGURE 8 shows the samples of two different ground-
truth masks. The first row demonstrates the samples of public
ground-truth masks, and the second row demonstrates cor-
responding samples whose eyelashes are labeled. It is more
difficult to accurately segment iris regions on the ground-
truth masks whose noise regions are labeled.

In all of our experiments, the iris datasets are divided into
two parts, training sets and test sets, which are split according
to a ratio of 8:2. As presented in TABLE 4, the training set
of CASIA-Interval-V4 contains 2111 iris images, and the test
set contains 528 iris images. The training set of IITD consists
of 1792 iris images, and the test set consists of 448 iris
images. The training set of UBIRIS.V2 includes 1800 iris
images, and the test set includes 450 iris images. We adopt
the open-source deep learning framework TensorFlow [45]
to implement our architecture. Furthermore, our experiments
were performed on an Inter Core i9-7900x CPU with 32 GB
memory and an NVIDIA 1080ti GPU with 11 GB memory.

B. METRICS AND MEASUREMENTS FOR EXPERIMENTS
To assess the performance of DFCN and compare it with
that of other iris segmentation algorithms, we adopt a vari-
ety of evaluation metrics. In this context, we consider the

nice1 segmentation error score, which is widely accepted for
the evaluation of iris segmentation. The nice1 segmentation
error score calculates the average proportion of correspond-
ing disagreeing pixels by performing the logical exclusive-or
operator over all images of the test sets as follows:

nice1 =
1

n× c× r

∑
c′

∑
r′

O(c′, r′)⊕ C(c′, r′) (5)

where n is the number of test sets, c and r denote thewidth and
height of test iris images, andO(c′, r ′) andC(c′, r ′) are pixels
of the prediction and the ground-truth masks, respectively.
The values of nice1 are bounded in the [0,1] interval, and
1 represents the worst value, while 0 is the optimal value.
Moreover, to solve the disproportion between the prior prob-
abilities of iris and non-iris pixels in the images, the type-I
and type-II error score nice2 is calculated as follows:

FPR =
FP

FP+ TN
(6)

FNR =
FN

TP+ FN
(7)

nice2 =
(FPR+ FNR)

2
(8)

where FP (false positive) and FN (false negative) denote the
misclassification number of non-iris pixels and iris pixels in
test images, respectively. TP (true positive) and TN (true neg-
ative) denote the recognition number of iris pixels and non-
iris pixels in test images, respectively. The values of nice2 are
bounded in the [0,1] interval, and 1 represents the worst
value, while 0 is the optimal value. Moreover, the accuracy,
precision, recall and f1 score are also adopted for evaluation.
The accuracy represents the correct segmentation pixels and
is calculated as follows:

acc =
TP+ TN

TP+ FN+ FP+ TN
× 100% (9)

The precision gives the average proportion of the correct
classification number of iris pixels in all pixels that are clas-
sified as iris pixels. The precision is calculated as follows:

p =
TP

TP+ FP
(10)

The recall denotes the average proportion of the correct
classification number of iris pixels in all pixels that belong
to iris pixels. The recall is calculated as follows:

r =
TP

TP+ FN
(11)
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FIGURE 9. Some segmentation results of the CASIA-Iris-V4 iris database. (a) Original iris images. (b) Ground
truth masks. (c) Segmentation results.

The F1 score is the harmonic mean of the precision and the
recall and is calculated as follows:

f1 =
2rp
r+ p

(12)

The accuracy, precision, recall and f1 score are bounded in
the interval [1,0]. Different from nice1 and nice2, 0 represents
the worst values, while 1 represents the optimal values.

V. COMPARISONS WITH OTHER METHODS AND
DISCUSSION
To reflect the effectiveness and robustness of our proposed
architecture, we compare the experimental results with other
iris segmentation algorithms. First, we compare the results
with some conventional iris segmentation algorithms. More-
over, comparisons with the iris segmentation algorithms
based on CNNs are given in the section. Finally, the different

results in different ground-truthmasks are summarized. Some
segmentation results of adopted the three iris databases are
shown in FIGURE 9, FIGURE 10 and FIGURE 11.

FIGURE 9(a), FIGURE 10(a) and FIGURE 11(a) show
the original iris images of the adopted iris databases,
and FIGURE 9(b), FIGURE 10(b) and FIGURE 11(b)
show the corresponding ground-truth masks. Additionally,
FIGURE 9(c), FIGURE 10(c) and FIGURE 11(c) show the
segmentation results where the false positive and negative
errors are presented as green and red, respectively, and the
true positive case is shown as black.

A. THE COMPARISONS OF CONVENTIONAL IRIS
SEGMENTATION ALGORITHMS AND DFCN
A series of conventional iris segmentation algorithms are
compared with our proposed architecture: A restricted Hough
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FIGURE 10. Some segmentation results of the IITD iris database. (a) Original iris images. (b) Ground truth masks.
(c) Segmentation results.

transform algorithm was adopted by Umer et al. for locat-
ing the boundaries of iris [32]. Wild et al. [33] combined
different iris segmentation algorithms to improve the seg-
mentation accuracy. An integro-differential constellation fol-
lowed by a curvature fitting model to find the iris area was
proposed by Tan et al. [34]. Gangwar et al. [35] adopted a
coarse-to-fine strategy to localize different iris boundaries.
Zhao et al. [9] utilized the total variation (TV) model to
overcome the problem of low contrast and noise interference
in eye socket images. In addition, comparisons with state-
of-the-art methods such as the generalized structure ten-
sor (GST) [36], contrast-adjusted Hough transform (CAHT)
[37], Osiris [38], iterative Fourier-based pulling and pushing
(IFPP) [39] and Masek [40] methods are also given. The
details of the comparisons are summarized in TABLE 5.

For the CASIA-Interval-V4 iris database, it can be obs-
erved from TABLE 5 that the accuracy of DFCN is 99.05%,
which is greater than that of the other conventional iris

segmentation algorithms. The precision, recall and f1 score
with values of 0.9827, 0.9829 and 0.9828 are greater than
those of conventional iris segmentation algorithms. More-
over, the values of the nice1 and nice2 error scores are
less than those of conventional iris segmentation algorithms,
which are 0.0094 and 0.0118, respectively. For the IITD iris
database, TABLE 5 indicates that the accuracy of DFCN
is 98.84%, which is also greater than that of the other con-
ventional iris segmentation algorithms. The precision, recall
and f1 score with values of 0.9818, 0.9806 and 0.9812 are
greater than those of conventional iris segmentation algo-
rithms. In addition, the values of the nice1 and nice2 error
scores are less than those of conventional iris segmentation
algorithms, which are 0.0115 and 0.0137, respectively. For
the UBIRIS.V2 iris database, the highest accuracy of 99.47%
is obtained; in addition, the precision, recall and f1 score with
values of 0.9592, 0.9620 and 0.9606, respectively, are greater
than those of conventional iris segmentation algorithms.
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FIGURE 11. Some segmentation results of the UBIRIS.V2 iris database. (a) Original iris images. (b) Ground truth
masks. (c) Segmentation results.

On the one hand, the results demonstrate that the effective-
ness of DFCN is better than the conventional iris segmen-
tation algorithms on all metrics. On the other hand, we did
not adjust any of the parameters on different iris databases,
reflecting the adaptability of DFCN. In addition, the types of
parameters used in training DFCN are far less than those of
conventional iris segmentation algorithms. Moreover, there
are many complex steps in conventional iris segmentation
algorithms.

B. THE COMPARISONS OF IRIS SEGMENTATION
ALGORITHMS BASED ON CNNS AND DFCN
Acomparison of iris segmentation algorithms based onCNNs
and DFCN is presented in this section. Jalilian and Uhl [23]
proposed three CNN architectures for iris segmenta-
tion, which are named FCEDNs-Original, FCEDNs-Basic
and FCEDNs-Bayesian-Basic. The encoder of FCEDNs-
Original contains 5 blocks and 44 layers, and the decoder

contains 5 corresponding blocks and 44 layers. The
FCEDNs-Original consists of 88 layers. Some convolutional
layers of FCEDNs-Basic are removed; thus, the encoder
and decoder of FCEDNs-Basic both contain 16 layers.
FCEDNs-Basic consists of 32 layers. Based on FCEDNs-
Basic, the encoder of FCEDNs-Bayesian-Basic is added to
two dropout layers on the end, and the decoder of FCEDNs-
Bayesian-Basic is added to the two corresponding dropout
layers. Thus, FCEDNs-Bayesian-Basic consists of 36 layers.
The MFCN and HCNN models proposed by Liu et al. [24]
consist of 22 layers and have mainly been used on low-
quality iris images. Different results were reported by
Shabab et al. [42], which were obtained from different mod-
els: FCDNN-original, FCDNN-Segnet and FCDNN-tuning.
The best result was obtained from FCDNN-tuning, which
was initially trained on NIR images and later tuned on
additional datasets derived from visible images. The results
are summarized in TABLE 6.
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TABLE 5. Comparison of DFCN with conventional algorithms on the three iris databases.

From TABLE 6, in terms of all metrics, the results of
DFCN outperformmost of the other methods based on CNNs.
On the CASIA-Interval-V4 iris database, the highest accuracy
of 99.05% is obtained from DFCN. In addition, the high-
est precision and F1 scores of 0.9827 and 0.9828 and the
lowest nice1 and nice2 errors of 0.0094 and 0.0118 are
obtained from DFCN. However, the recall of 0.9829 obtained
from DFCN is less than the value of 0.9910 obtained from
the FRED-Net [44]. Similarly, on the IITD iris database,
the highest accuracy of 98.84% is obtained from DFCN.
Besides, the highest precision and F1 scores, 0.9818 and
0.9812, respectively, and the lowest nice1 and nice2 error,

0.0115 and 0.0137, respectively, are obtained from DFCN.
Nevertheless, the recall of 0.9806 obtained from DFCN is
lower than that of 0.9968 obtained from the FRED-Net. For
the UBIRIS.V2 database, the highest accuracy of 99.47%
is obtained from DFCN. Moreover, the highest precision,
0.9592, and the lowest nice1 and nice2 error, 0.0052 and
0.0204 are obtained from DFCN. However, the recall and
F1 scores of 0.9620 and 0.9606 obtained from DFCN are
less than the values of 0.9852 and 0.9630 obtained from
FRED-Net. Our results are similar to those of FRED-Net with
the residual skip connection, which is also an excellent archi-
tecture. However, DFCN still has a competitive advantage,
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TABLE 6. Comparison of DFCN with algorithms based on CNNs on the three iris databases.

that we do not adopt any data augmentation method, unlike
the other methods based on CNNs.

As mentioned above, the deeper architectures obtain better
performance. However, the number of images in the adopted
iris databases is small, and blindly adding convolutional
layers for small databases leads to overfitting. As can be
observed fromTABLE 6, FCEDN-Original exhibits the worst
performance and consists of 88 layers, which is far more than
the other networks. Moreover, FCEDNs-Original consumes
more computer resources and time. However, the shallower
architectures, e.g., FCEDNs-Bayesian-Basic, cannot obtain
more robust performance. The dense blocks adopted for
DFCN effectively alleviate the overfitting and gradient van-
ishing. Moreover, DFCN balances the computational expense
and robustness. Hence, the addition of convolutional layers to
DFCN still obtains promising results.

C. THE COMPARISONS ON DIFFERENT GROUND-TRUTH
MASKS
Comparative results on different ground-truth masks are
given in this section. In contrast, we trained DFCN on the

databases that contain only labeled iris regions, i.e., not only
the iris regions but also the noise occluding the iris regions.
We present the results in TABLE 7.

As TABLE 7 indicates, because noise characteristics,
such as eyelashes, eyelids and light spots occlude the iris
regions, which were not labeled, DFCN performs better
on the public ground-truth masks. For the public ground-
truth masks of CASIA-Interval-V4, the nice1 and nice2 error
scores are 0.0094 and 0.0118, respectively, which are less
than those of the proposed ground-truth masks in this paper
with values of 0.0120 and 0.0148, respectively. In addi-
tion, the precision, recall and f1 score of the former are
0.9827, 0.9829 and 0.9828, respectively, which are greater
than those of the proposed ground-truth masks with values
of 0.9818, 0.9806 and 0.9812, respectively. Regarding the
public ground-truth masks of IITD, the nice1 and nice2 error
scores are 0.0115 and 0.0137, respectively, which are less
than those of the proposed ground-truth masks in this paper
with values of 0.0168 and 0.0184, respectively. Moreover,
the precision, recall and f1 scores of the former are 0.9818,
0.9806 and 0.9812, respectively, which are greater than
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TABLE 7. Comparison of different ground-truth masks.

FIGURE 12. The segmentation results for the proposed CASIA-Interval-V4 ground-truth masks. (a) Iris images. (b) Ground-truth masks. (c) Predicted
masks. (d) Segmentation results.

FIGURE 13. The segmentation results for the proposed IITD ground-truth masks. (a) Iris images. (b) Ground-truth masks. (d) Segmentation results.

those of the latter, 0.9685, 0.9774 and 0.9729, respectively.
FIGURE 12 and FIGURE 13 demonstrate the performance
of DFCN for the proposed ground-truth masks.

As shown in FIGURE 12 and FIGURE 13, the 4 columns
represent the iris images, the corresponding ground-truth
masks, the prediction masks and the segmentation result

images (the false positive and negative errors are presented
as green and red, and the true positive case is shown as
black). The noise regions cannot be effectively recognized,
especially on the images from the IITD iris database. Based
on our overall analysis, we suggest some possible reasons: On
the one hand, it is more difficult to recognize our proposed
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FIGURE 14. The segmentation results for the proposed IITD ground-truth masks. (a) Iris images. (b) Ground-truth masks. (c) Predict masks.
(d) Segmentation results.

ground-truth masks. On the other hand, during labeling the
databases using Labelme, the lines that labeled the eyelashes
are not coincident with the true regions of the eyelashes.
Above all, in the IITD iris database, the eyelashes of iris
images are thick and severely occlude the iris regions. In other
words, the iris pixels are labeled as non-iris pixels, which
lead to a misclassification of the iris pixels to the eyelash
pixels. Nonetheless, the features learned by DFCN are robust,
as shown in FIGURE 14. The 4 columns of FIGURE 14
present an iris image of the IITD iris database, the corre-
sponding proposed ground-truth masks, the corresponding
prediction masks and the added images of the prediction
masks and iris images (the white pixels of prediction masks
are labeled red). The area marked by the red circle in the iris
images does not belong to the iris, which is labeled as iris
pixels in the ground-truth masks, yet it is classified as non-
iris pixels in the prediction masks. In other words, although
DFCN cannot recognize all noise occluding the iris regions,
the shape of the noise recognized is more similar to the real
shape, which demonstrates the effectiveness and robustness
of DFCN.

VI. CONCLUSION
Iris segmentation algorithms play an important role in iris
recognition systems and directly affect the accuracy of iris
verification and recognition. We proposed an iris segmen-
tation architecture based on CNNs combined with dense
blocks, referred to as DFCN. The encoder of DFCN con-
sists of dense blocks, and the decoder of DFCN obtains
the output prediction masks via transpose convolution.
To evaluate the performance of DFCN, we adopted three
public iris databases captured under different conditions,
namely, CASIA-Interval-V4, IITD and UBIRIS.v2, with the
corresponding ground-truth masks. Moreover, we labeled
the eyelash regions occluding the iris regions of the
CASIA-Interval-V4 and IITD iris databases using the
Labelme software package, which is also used for training
and testing. To reflect the superiority of DFCN in terns
of many aspects, we adopted a variety of metrics used for
evaluating the iris segmentation algorithms, i.e., the accuracy,
precision, recall, f1 score, and nice1 and nice2 error scores.
In addition, we compared some conventional and CNN-based
iris segmentation algorithms. The results of the experiments
reveal that the iris segmentation architecture proposed in

this paper outperforms most of the other algorithms, which
demonstrates its superiority and robustness. Nevertheless,
the performance of DFCN on the public ground-truth masks
is better than that on our labeled ground-truth masks; this
finding is related to the adopted public iris databases and
the method of labeling. Thus, more attention is needed in
the future for the design of more robust iris segmentation
algorithms for iris databases under nonideal conditions and
for more effective ways of labeling.
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