
Received April 18, 2019, accepted May 8, 2019, date of publication May 15, 2019, date of current version June 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917043

Improvement of the Dynamic Priority Scheduling
Algorithm Based on a Heapsort
SHANSHAN MENG 1, QIANG ZHU2, AND FEI XIA1, (Member, IEEE)
1School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2Shanghai Automation Instrumentation Co., Ltd., Shanghai 200230, China

Corresponding author: Fei Xia (xiafeiblue@163.com)

This work was supported in part by the National Key R&D Program of China under Grant 2017YFE0100900, and in part by the National
Natural Science Foundation of China under Grant 71690234 and Grant 71871160.

ABSTRACT The earliest deadline first (EDF) scheduling algorithm is a typical representative of the dynamic
priority scheduling algorithm. However, once the system is overloaded, the deadline miss rate increases and
the scheduling performance deteriorates sharply, which causes a reduction in system resource utilization.
To overcome this problem, we proposed an improved dynamic priority scheduling algorithm based on heap
sorting. The task deadline, task value, energy consumption, and other parameters were introduced. The
fuzzy analytic hierarchy process (FAHP) and the value density method were then used to determine the
comprehensive priority of tasks. A heapsort algorithm with a lower time complexity was used to sort
the comprehensive priority index so as to reduce the sorting overhead of the system. The system sorting
overhead was then introduced to improve the decision condition of the priority scheduling subset and
expand the schedulable range of the algorithm. The experimental results showed that the improved method
reduced the deadline miss rate by an average of 0.1789, which improved the scheduling performance of
the algorithm. The optimized scheduling algorithm can be applied to industrial control to improve system
efficiency, and reasonable resource scheduling can reduce data center costs.

INDEX TERMS Real-time operating system, EDF, FAHP, heapsort, value density.

I. INTRODUCTION
In recent years, the rapid development of network technology
has led to the widespread adoption of the real-time operating
system in various fields. The accuracy of real-time system
calculation depends not only on the logic of the algorithm but
also on the time it takes to obtain results. If the system cannot
meet the constraints, it can make mistakes [1]–[3]. Therefore,
the primary task of a real-time operating system is to use all
resources to control the tasks in real time.

Real-time tasks have their own task value, energy con-
sumption [4], task deadline [5], [6], execution time and other
reference factors. The choice of a real-time scheduling strat-
egy is critical to the real-time performance of the system [7].
Among them, the Rate Monotonic (RM) algorithm and
the Earliest Deadline First (EDF) scheduling algorithm are
typical representatives of a priority scheduling algorithms
[3]. In the dynamic priority scheduling strategy, when the
task workload is less than 1, the performance of the EDF

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Mehmood.

scheduling algorithm is superior to that of other algorithms.
However, the difference in task priorities can lead to an
overload of task scheduling. In this case, the EDF algorithm
tends to exhibit poor scheduling performance, most tasks tend
to miss their deadlines after overload [8]. Many tasks are
aborted due to the influence of other tasks in the process
of execution, which leads to a decrease in the task success
rate and a waste of system resources [9]. Therefore, how to
improve the scheduling performance in an overload scenario
has become an important issue.

The scheduling algorithm proposed byAnderson et al.[10]
has been shown to reduce the task delay rate and achieve good
scheduling performance. Similarly, Barbieru and Pop [11]
proposed a real-time job scheduling algorithm to solve
the uncertainty of a long task completion time. The algo-
rithm proposed by Wang et al. [12] effectively improved
the success rate of tasks and reduced the delay time of
soft real-time tasks by setting a task preemption threshold.
Moreover, the improved algorithm proposed by Dong and
Chen [13] has been found to effectively schedule dynamic
real-time tasks in heterogeneous systems and respond to

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

68503

https://orcid.org/0000-0003-3502-4822


S. Meng et al.: Improvement of the Dynamic Priority Scheduling Algorithm Based on a Heapsort

FIGURE 1. Theoretical framework of the improved task scheduling algorithm.

task requirements. Palopoli et al. [14] proposed a scheduling
algorithm based on a discrete-time Markov chain of wireless
state that could reduce the deadline miss rate of periodic
tasks in soft real-time systems.Likewise, He et al. [15] pro-
posed an adaptive multi-objective task scheduling (AMTS)
strategy based to reduce the task deadline miss rate. Biondi
and Sun [16] verified that the response time analysis tech-
nique was invalid and the global scheduling performance was
lower than the partition scheduling. The strategy of assigning
task priority dynamically, which was proposed by Wu [17],
improved the system revenue and reduced the energy con-
sumption of tasks. Sang et al. [18] introduced a value factor
and task deadline, which ensured the priority scheduling of
mission-critical tasks and reduced the failure rate of task
deadlines.

In summary, real-time system scheduling research
improved the success rate of task scheduling in terms of
task priority, schedulable decision conditions, preemptive
threshold scheduling, or hierarchical framework scheduling.
However, the system overhead generated by the scheduling
algorithm and sorting algorithm were neglected, as was the
influence of different load values on task priority. In addition,
when task priority was determined, no explicit source of
weight data was given. Therefore, on the basis of the EDF
scheduling algorithm, we first optimized the weight by using
the Fuzzy Analytic Hierarchy Process (FAHP), which made

the experimental results more reliable. Then, a heapsort was
introduced to solve the problem of high system overhead in
the priority index sorting part. The overloaded tasks were
optimized by combining the task load value with the task
priority, which increased the number of tasks scheduled and
improved the utilization rate of system resources. Finally,
the system overhead generated by the scheduling and sorting
algorithms was introduced to improve the decision condition
of the priority scheduling subset and enlarge the schedulable
range of the algorithm.

II. TASK SCHEDULING MODEL
The flowchart of the improved task scheduling algorithm in
this paper is shown in Fig. 1. It mainly includes the following
six steps.
(1) Determine whether the system scheduling task set is

overloaded. If the load of task set was less than 1,
the EDF algorithm was called to execute; otherwise,
the improved algorithm was used to schedule.

(2) Determine theweights of the indicators using the FAHP
and then obtain the priority of the tasks Pi.Since the
task scheduling was limited only by considering a
single indicator, we introduced three indicators: task
running time, task value, and task energy consumption.

(3) Calculate the comprehensive priority Pi′, using the
value density method, which combines the task load

68504 VOLUME 7, 2019



S. Meng et al.: Improvement of the Dynamic Priority Scheduling Algorithm Based on a Heapsort

value with the priority Pi. It not only guaranteed
the priority scheduling of high-priority tasks but also
increased the number of tasks to be processed and
reduced the deadline miss rate of the algorithm.

(4) Sort the comprehensive priority Pi′using the heapsort
algorithm because the time complexity of the heapsort
algorithm was low, and the system consumption pro-
duced by the sorting algorithm during actual scheduling
was reduced.

(5) Improve the conditions for selecting the priority
scheduling subset. Considering the actual situation,
the system sorting overhead 1t ′ was introduced to
ensure that the CPU utilization of all tasks in the subset
was less than 1− 1t ′

T .
(6) Schedule tasks in the priority scheduling subset using

the EDF algorithm. If there was idle time, tasks in the
non-priority subset were scheduled. Whenever a new
task was added to the task set, it was necessary to
redefine the priority of the task and refresh the priority
scheduling subset.

A. SCHEDULABLE CONDITIONS OF ALGORITHMS
In real-time systems, S = {t1, t2, · · · , tN } is defined as a
scheduling task set, where t1, t2, · · · , tN is the periodic tasks
in the task set, Ti is the period of the task ti, and Ci is the
worst execution time of task ti. Define 1 (Hypercycle)H is
the least common multiple of the real-time task period value.
Because the task runs the same in different cycles, only the
first hypercycle[0,H ]needs to be discussed. The maximum
number of task instances executed in a hypercycle is as
follows:

J =
N∑
i=2

H
Ti

. (1)

Define 2 (Periodic Task Set Load) The periodic load is
the average occupancy of the processor for one periodic task.
System Periodic Task Set Load is the sum of all Periodic Task
Loads [19], denoted as U, which can be expressed as follows:

U =
n∑
i=1

Ui =
n∑
i=1

Ci +1t
Ti

, (2)

where1t refers to the system overhead under the scheduling
of the EDF algorithm.

The EDF scheduling algorithm is used to schedule task
set S. If only the periodic task load U ≤ 1, the system is
in a low-load state, the performance of the EDF scheduling
algorithm is better. The algorithm can effectively schedule
tasks in the task set. However, when task load U > 1,
the system is overloaded and some tasks will miss deadlines.
At this time, the task set cannot be scheduled.

The traditional EDF scheduling algorithm relies on a single
indicator (deadline) to determine the scheduling order of
tasks; however, this is unreasonable in an actual situation,
it would also increase the deadline miss rate of task schedul-
ing. In order to solve the problem of the poor performance of

the EDF scheduling algorithm and the high deadline missing
rate under system overload, we introduced multiple related
indicators to obtain a more scientific and comprehensive
priority.

III. TASK INTEGRATED PRIORITY
Determining comprehensive priority is integral to reducing
the miss rate of deadlines. However, it is too one-sided to
determine the priority of scheduling tasks through a single
indicator. To solve this problem, Wang et al. [20] proposed
adding task value Vi, task running timeCi and the energy
consumption of task Ei, to determine the priority of the task.
Among them, ke, kc and kv are theweight values of parameters
such as the energy consumption of tasks, task running time,
and task value. The exact values of ke, kc and kv are calculated
by using the FAHP. In this study, the running time of tasks and
the energy consumption of tasks were inversely proportional
to priority; therefore, the task priority Pi was defined as
follows:

Pi = kv � Vi + kc �

N∑
i=1

Ci

Ci
+ ke �

N∑
i=1

Ei

Ei
. (3)

In order to reduce the deadline miss rate for task schedul-
ing, more tasks had to be processed in task centralization
so that the utilization rate of the CPU was close to 1. The
CPU utilization was also the load U of the periodic task set.
As shown in (2), the number of tasks that could be processed
by the scheduling algorithm was closely related to U . The
smaller the load value Ui of each cycle task, the more tasks
the CPU could handle. The task scheduling process based on
priority indicator Pi could only satisfy the priority scheduling
of the high-priority tasks, but it could not increase the number
of tasks scheduling or reduce the deadline miss rate of task
scheduling. Therefore, the periodic task load value Ui had to
be introduced into the calculation of task integrated priority
Pi′, as follows:

Pi′ =
Pi
Ui

, (4)

Pi′ =
(kv � Vi + kc �

N∑
i=1

Ci

Ci
+ ke �

N∑
i=1

Ei

Ei
)

Ui
. (5)

A. DETERMINING kv , kc AND ke BASED ON FAHP
1) ESTABLISHING THE HIERARCHICAL STRUCTURE MODEL
The established hierarchical model shown in Fig. 2, which
included the solution layer, the criteria layer and the target
layer, which were used to determine the values of targets kv,
kc andke. The target layer aimed to get reasonable kv, kc and
ke values. The criteria layer influenced the factor affecting
the deadline miss rate, which included task running time,
task value and task energy consumption. The solution layer
supplied five groups of kv, kc and ke for the five experts,
as shown in Table 1.

VOLUME 7, 2019 68505



S. Meng et al.: Improvement of the Dynamic Priority Scheduling Algorithm Based on a Heapsort

FIGURE 2. Hierarchical structure model diagram.

2) FUZZY CONSISTENCY MATRIX
Compared with the analytic hierarchy process (AHP),
the FAHP improved the solving process of the judgment
matrix, transformed the judgment matrix into the fuzzy con-
sistency matrix, omitted the process of a consistency check,
and overcame the inconsistency of the AHP [21]. First,
the relative scalar method of the AHP was used to construct
the judgment matrix A. In the relative scalar method, aij is the
important degree of index i relative to index j in the criterion
layer to the target and is expressed by the value of 0.1 0.9,
in whichaji = 1− aij(i, j = 1, 2, 3).

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = v
c
e

v c e0.50 0.01 0.95
0.99 0.05 0.01
0.05 0.01 0.5

. (6)

After the consistency transformation of formula ri =
n∑
i=1

aij

and rij =
ri−rj
2n + 0.5, the fuzzy complementarity matrix R =

(rij)n×n was obtained.
Based on the definition of the fuzzy complementary

matrix, the necessary and sufficient condition for a fuzzy
complementary matrix R = (rij)n×n to be a fuzzy consistent
matrix is that the difference between the two corresponding
elements of the arbitrarily designated two rows is constant
[22]. Eq. (7) shows that the matrix R satisfied the necessary
and sufficient conditions of the fuzzy consistent matrix and
conformed to the standard of people’s thinking and judgment;
therefore, no further consistency test was needed:

R =
v
c
e

v c e0.50 0.33 0.65
0.67 0.50 0.82
0.35 0.18 0.50

. (7)

In order to calculate the ranking vector ω(0), the power
method with a higher precision was used. The fuzzy com-
plementary matrix R = (rij)n×n was converted into a recip-
rocal matrix E = (eij)n×n using the conversion formula

eij =
rij
rji
. The ranking vector ω(0) was used as the initial

vector V (0), and the formulas V (k+1)
= EY (k) and Y (k)

=

V (k)/
∥∥V (k)

∥∥
∞
, k = 1, 2, · · · were used to iterate.

If
∥∥V (k+1)

∥∥
∞
−
∥∥V (k)

∥∥
∞

< ε and ε were given errors,
then

∥∥V (k+1)
∥∥
∞

was the maximum eigenvalue, and P =

[Vk+1,1/
n∑
i=1

Vk+1,i , · · · ,Vk+1,n/
n∑
i=1

Vk+1,i ]
T

was the sorting

vector; otherwise, the iteration would continue. Finally,
a high-precision sorting vector ω(k) was obtained.

Similarly, by comparing the effects of kv, kc and ke given by
the five experts to reduce the miss rate of the task deadlines,
three judgment matrices Bi(i = 1, 2, 3) were constructed and
transformed into a fuzzy consistency matrix Ri(i = 1, 2, 3).
Then, the high precision sorting vector ωi

(k)(i = 1, 2, 3) was
calculated.

3) COMBINATION WEIGHT OF FUZZY CONSISTENCY MATRIX
Local Weight ω(i) of Indicator Factors for Objects:

ω =
[
0.2726 0.5895 0.1378

]
. (8)

Local Weight ωi(k) of Experts for Indicators:

ωi=

w1
w2
w3

Exp1 Exp2 Exp3 Exp4 Exp50.2424 0.1394 0.0885 0.1278 0.4019
0.1139 0.2370 0.1164 0.1164 0.4162
0.0882 0.2021 0.2296 0.1216 0.3585

.

(9)

4) TARGET OPTIMAL SOLUTION
The comprehensive weights of the experts were obtained
through the local weights of the judgment matrix at the
criterion level and the scheme level, as follows:

Wk =

3∑
i=1

ω(i)ωi(k)

=

Exp1 Exp2 Exp3 Exp4 Exp5
[0.1454 0.2056 0.1244 0.1202 0.4044]. (10)

Experts gave specific values for kv, kc and ke, as shown
in Table 1. The optimal solution is shown in Table 2. The
weights were summed using the comprehensive weights and
the given values of kv, kc and ke.

The priority of different tasks was determined by using the
weight values of energy consumption, task running time, task
value and the optimal solution obtained by the FAHPmethod.

TABLE 1. kv , kc and ke values given by experts.

68506 VOLUME 7, 2019



S. Meng et al.: Improvement of the Dynamic Priority Scheduling Algorithm Based on a Heapsort

TABLE 2. Optimal solution of FAHP method.

FIGURE 3. Comparison of deadline miss rates after optimization.

Scheduling experiments were then carried out to verify the
deadline miss rate of the scheduling task set.

As shown in Fig. 3, the task weighting was calculated
using the parameter weight values given by experts 1–5,
the deadline error rate of the task set was 0.6667, 0.5000,
0.4833, 0.5833 and 0.5000 for the five experts, respectively.
The lowest was only 0.4833. However, the deadline miss
rate of the scheduling task set was 0.2833 after optimization
through the FAHP. Therefore, FAHP reduced the deadline
miss rate for task scheduling.

IV. SELECTING EXECUTION TASKS BASED ON HEAPSORT
A. HEAPSORT
After the comprehensive priority Pi′ was determined, it was
necessary to sort Pi′ using a reasonable sorting algorithm in
order to prepare for the selection of a task priority scheduling
subset. In the process of sorting, there would be system over-
head, which would affect the efficiency of task scheduling.
The heap sort algorithm selected in this study satisfied the
conditions of fewer comparisons, a lower time complexity
and less system consumption. It played an important role in
reducing the deadline miss rate.

1) THEORETICAL ANALYSIS
Heapsort is a sort algorithm based on heap data structure
design. It was created by Robert W. Floyd and J. Williams
in 1964. It first sets the top stack as the initial disordered
sequence (R1,R2, · · · ,Rn) and exchanges the top element
R1 with the last element Rn to obtain the new disordered
area (R1,R2, · · · ,Rn−1) and the ordered area Rn, satisfying

R1,2···n−1 ≤ Rn. Because the sorted new heap top R1
can potentially violate the heap nature, the disordered area
(R1,R2, · · · ,Rn−1) needs to be adjusted to the new heap.
Then, earlier operation and exchange of R1with Rn−1is
repeated to get the disordered area (R1,R2, · · · ,Rn−2) and
the ordered area (Rn−1,Rn), until the number of elements
in the last ordered area is n − 1. At this point, the task is
complete. In the worst case, heapsort can achieve optimal
results, it can easily achieve forward or reverse sorting. It also
has similarities with direct sorting, but heapsort can preserve
the results of a partial comparison in the form of a binary tree,
which can reduce the number of direct sorting comparisons,
the running time of programs and time complexity.

Concerning heapsort time complexity, the initial heap is
built on the basis of a binary tree and new heaps are created
repeatedly. The calculation of time complexity was cited in
[23]. The total time complexity of a heapsort is T (n)′ =
O(nlog2n) + O(n) + (n). In the worst case, the constant is
ignored, and only the higher order items are considered, so the
complexity of heapsort time is O(nlog2n).
In this study, the smaller the system overhead occupied by

the sorting algorithm in the process of prioritizing, the lower
the time complexity of the sorting algorithm and the higher
the superiority. Compared with the Shell sorting algorithm
[24], the time complexity of the heapsort was lower, as in
O(n1.5) > O(nlog2n), the system overhead was smaller
and the system sorting time was shorter. Experimental sim-
ulations were carried out to verify the superiority of the
heapsorting.

2) SIMULATION VERIFICATION
First, 100 random numbers with a numerical range of 0-100
were randomly generated, the sorting time of different algo-
rithms was monitored by a sorting algorithm. Because time
fluctuates by a small margin, we used 100 random numbers,
sorted them 20 times, obtained the average of the results and
then obtained a time comparison chart of the different ranking
algorithms.

In Fig. 4, the bubble sorting and insertion sorting time
curves are at the top, the sorting time for both curves was
substantially over 1.5 s, which was greater than that of the
other algorithms. The experimental data from the heapsort,
the select sort, the quicksort and the shell sort algorithms
were partially enlarged. As the figure shows, the sorting
time for the bottom overlap sorting algorithm was less than
0.02 s, the shortest sorting time was the heapsort. Therefore,
the heapsort was the preferred algorithm; it had a low time
complexity and low system overhead needed to meet the
needs of the study.

B. PRIORITY SCHEDULING SUBSET
After the tasks in the scheduling task set were sorted using
heapsort, it was necessary to determine the subset of task
priority scheduling. Tasks in the priority scheduling subset
had to be processed before the deadline to reduce the deadline
miss rate of the scheduling algorithm.

VOLUME 7, 2019 68507



S. Meng et al.: Improvement of the Dynamic Priority Scheduling Algorithm Based on a Heapsort

FIGURE 4. Sorting time of different algorithms.

In theory, when the priority scheduling subset is deter-
mined, all tasks in the subset satisfy the condition U ≤ 1.
However, in practice, in addition to system scheduling over-
head, there is system scheduling overhead 1t ′ in the case
of priority scheduling tasks, which affects the deadline miss
rate of a scheduling task set. Assuming that the total running
time of the task was C, the EDF algorithm could be sched-
uled only when the priority scheduling subset satisfied the
scheduling condition in the following equation; otherwise,
the phenomenon of task overload would occur:

U =
n∑
i=1

Ci +1t
Ti

≤
T −1t ′

T
= 1−

1t ′

T
. (11)

The heapsort algorithm was used to sort Pi′ in descending
order. Because the time complexity of the algorithm was low,
the sorting time was short, the system overhead 1t ′ of the
algorithmwas smaller than that of the Shell sorting algorithm.
As (11) shows, the heapsort algorithm relaxed the range of the
EDF algorithm execution. The smaller the heapsort algorithm
1t ′, the larger the range 1 − 1t ′

T . Moreover, the smaller the
load value Ui of each cycle task, the more tasks with priority
scheduling subset Q that were added. All tasks in the priority
scheduling subset had to satisfy U ≤ 1− 1t ′

T . Then, the tasks
in the priority scheduling subset were scheduled using the
EDF scheduling algorithm. If there was free time, other tasks
with a higher priority were processed.

V. PERFORMANCE ANALYSIS AND EXPERIMENTAL
RESULTS
We used the experimental data in [20], as shown in Table 3,
including task running time, task value, task energy consump-
tion and other parameters. In this study, the weight of the
parameters was obtained by using the FAHP, where kv =
0.1716, kc = 0.6560, and ke = 0.1724. The task priority val-
ues were calculated via (3), as shown in Table 4, the task com-
prehensive priority values were calculated via (5), as shown
in Table 5.

TABLE 3. Experimental task set.

TABLE 4. Task priorities Pi .

TABLE 5. Task comprehensive priority (value density) Pi
′ .

In order to verify the superiority of the improved algorithm,
we conducted a comparative analysis of two aspects: task
completion degree and task deadline miss rate.

A. TASK COMPLETION DEGREE
To study the scheduling performance of overload experi-
ments, the workload values of 2.35, 2.8 and 3.25 under over-
load conditions were randomly selected. The task set was
scheduled by the scheduling algorithm, and the performance
of the task execution is shown in Table 6. We found that
the order of the task completion from low to high was as
follows: based on the Shell sort EDF algorithm < based on the
heapsort EDF algorithm< improved Shell sort EDF algorithm
< improved heapsort EDF algorithm. Compared with the
first four algorithms, the improved heapsort EDF algorithm
exhibited superiority in scheduling performance.

B. TASK DEADLINE MISS RATE
In order to verify that the improved algorithm could effec-
tively reduce the task deadline miss rate, we compared the
common priority with the comprehensive priority separately.
The task deadline miss rate of the EDF scheduling algorithm,
the Shell sort EDF scheduling algorithm and the heapsort
EDF scheduling algorithm under common priority is shown
in Fig. 5. The task deadlinemiss rate caused by the scheduling
algorithm under integrated priority is shown in Fig. 6.

When the system was in an overload state, the deadline
miss rate of the EDF scheduling algorithm increased signifi-
cantly. It can be seen in Figs. 5 and 6 that the performance
of the EDF scheduling algorithm based on the Shell sort
algorithm under common priority was better than that of the
EDF scheduling algorithm when the workload was less than
2.7, but the deadline miss rate was higher when the workload

68508 VOLUME 7, 2019



S. Meng et al.: Improvement of the Dynamic Priority Scheduling Algorithm Based on a Heapsort

TABLE 6. Comparison of different scheduling algorithms.

FIGURE 5. Deadline miss rate under common priority.

FIGURE 6. Deadline miss rate under comprehensive priority.

was higher than 2.7. After the Shell sort algorithm changed
to the heapsort algorithm, the system overhead generated by
the sorting algorithm was reduced, the deadline miss rate of

FIGURE 7. Deadline miss rate curve.

task scheduling was significantly reduced, which improved
the scheduling performance of the system.

A comparative analysis of the composite priority and the
common priority is shown in Fig. 7. When the task load
was higher than 1.8, the deadline miss rate of the improved
shell sort and improved heapsort algorithm was significantly
lower than that of the previous ones. In the process of task
scheduling, in order to obtain better system scheduling per-
formance, it was necessary to select a subset of priority
scheduling tasks more simply and efficiently, the task priority
was not determined by a single indicator. The improved heap-
sort EDF scheduling algorithm was improved in the priority
index so that the number of tasks in the task scheduling
subset was increased, the tasks with higher priority were
scheduled in time and the deadline miss rate was the lowest.
In addition, the improved heapsort EDF scheduling algorithm
added the system sorting overhead and the system scheduling
overhead to the subset determining conditions, which made
the scheduling more realistic and the CPU resources better
utilized.

VOLUME 7, 2019 68509



S. Meng et al.: Improvement of the Dynamic Priority Scheduling Algorithm Based on a Heapsort

VI. CONCLUSION
In real-time systems, due to different task priorities, task
scheduling is often overloaded, which leads to a decrease in
the success rate of task scheduling and the waste of system
resources. The improved method proposed in this study not
only quickly selected the optimal scheduling subset from
the task set but also prioritized the high-priority tasks in
the system and improved the system resource utilization.
The experimental results showed that the improved heapsort
dynamic priority scheduling algorithm shortened the dead-
line miss rate of the task set by 0.1789, which improved
the scheduling performance of the algorithm and effectively
solved the problem of a low success rate in task scheduling
and a waste of system resources. In future research, we will
continue to study how to optimize the scheduling subset for
better system scheduling performance.

REFERENCES
[1] X. Lin, Y. Wang, N. Chang, and M. Pedram, ‘‘Concurrent task scheduling

and dynamic voltage and frequency scaling in a real-time embedded sys-
tem with energy harvesting,’’ IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 35, no. 11, pp. 1890–1902, Nov. 2016.

[2] H. E. Ghor and M. Chetto, ‘‘Overhead considerations in real-time energy
harvesting systems,’’ in Proc. Int. Conf. Pervasive Embedded Comput.
Commun. Syst. (PECCS), Feb. 2015, pp. 358–362.

[3] C. L. Liu and J. W. Layland, ‘‘Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,’’ J. ACM, vol. 20, no. 1, pp. 46–61,
1973.

[4] Y.-W. Zhang, ‘‘Energy-aware mixed partitioning scheduling in standby-
sparing systems,’’ Comput. Standards Interfaces, vol. 61, pp. 129–136,
Jan. 2019.

[5] G. Li, C. Deng, J. Li, Q. Zhou, and W. Wei, ‘‘Deadline and period
assignment for update transactions in co-scheduling environment,’’ IEEE
Trans. Comput., vol. 66, no. 7, pp. 1119–1131, Jul. 2017.

[6] J. Lee, ‘‘Real-time uniprocessor scheduling with fewer preemptions,’’
Computing, vol. 99, no. 12, pp. 1257–1270, 2017.

[7] N. Guan, ‘‘EDF in real-time calculus,’’ in Techniques for Building Timing-
Predictable Embedded Systems. Springer, 2016, pp. 209–225.

[8] G. Xie, G. Zeng, Z. Li, R. Li, and K. Li, ‘‘Adaptive dynamic scheduling
on multifunctional mixed-criticality automotive cyber-physical systems,’’
IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 6676–6692, Aug. 2017.

[9] J.-L. Xia, W.-L. Wang, Z.-H. Cao, and Z.-B. Han, ‘‘HP-OMS: Overload
management model for real-time systems,’’ Appl. Res. Comput., vol. 30,
no. 6, pp. 1678–1681, 2013.

[10] J. H. Anderson, J. P. Erickson, U. C. Devi, and B. N. Casses, ‘‘Optimal
semi-partitioned scheduling in soft real-time systems,’’ J. Signal Process.
Syst., vol. 84, no. 1, pp. 3–23, 2016.

[11] C. Barbieru and F. Pop, ‘‘Soft real-time hadoop scheduler for big data
processing in smart cities,’’ in Proc. IEEE 30th Int. Conf. Adv. Inf. Netw.
Appl. (AINA), Mar. 2016, pp. 863–870.

[12] W. L. Wang et al., ‘‘Dynamic scheduling strategy PT-stds based on pre-
emption threshold of soft real-time,’’ J. Chin. Comput. Syst., vol. 39, no. 5,
pp. 986–990, 2018.

[13] C. Dong and Y. Chen, ‘‘Real-time scheduling algorithm of dynamic
with fault-tolerant in heterogeneous distributed systems,’’ J. Syst. Simul.,
vol. 29, no. 5, pp. 1132–1140, May 2017.

[14] L. Palopoli, D. Fontanelli, L. Abeni, and B. V. Frias, ‘‘An analytical
solution for probabilistic guarantees of reservation based soft real-time
systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 3, pp. 640–653,
Mar. 2016.

[15] H. He, G. Xu, S. Pang, and Z. Zhao, ‘‘AMTS: Adaptive multi-objective
task scheduling strategy in cloud computing,’’ China Commun., vol. 13,
no. 4, pp. 162–171, Apr. 2016.

[16] A. Biondi and Y. Sun, ‘‘On the ineffectiveness of 1/m-based interference
bounds in the analysis of global EDF and FIFO scheduling,’’ Real-Time
Syst., vol. 54, no. 3, pp. 515–536, 2018.

[17] J. Wu, ‘‘Energy-efficient concurrency control for dynamic-priority real-
time tasks with abortable critical sections,’’ Comput. Informat., vol. 36,
no. 4, pp. 765–792, 2017.

[18] L. Sang, Y. Lu, and L. Yu, ‘‘Optimization of EDF scheduling algorithm
based on greedy policy,’’ Comput. Eng., vol. 41, no. 12, pp. 96–100, 2015.

[19] G.-L. Yu and M.-F. Zhang, ‘‘Optimization of edf scheduling algo-
rithm based on bucket sort,’’ J. Lanzhou Univ. Technol., vol. 39, no. 4,
pp. 110–113, 2013.

[20] R. Q. Wang, J. M. Zhao, and D. A. Li, ‘‘Dynamic priority scheduling
algorithm based on shell’s sort,’’ Video Eng., vol. 42, no. 5, pp. 57–59,
2018.

[21] A. Nikkhah, S. Firouzi, M. E. H. Assad, and S. Ghnimi, ‘‘Application
of analytic hierarchy process to develop a weighting scheme for life
cycle assessment of agricultural production,’’ Sci. Total Environ., vol. 665,
pp. 538–545, May 2019.

[22] F. Ahmed and K. Kilic, ‘‘Fuzzy analytic hierarchy process: A performance
analysis of various algorithms,’’ Fuzzy Sets Syst., vol. 362, pp. 110–128,
May 2019.

[23] L. Wei, J. Bin, D. Ming, X. Teng, K. Jian, and S. Xiaohua, ‘‘Equalization
optimization of modular multilevel converter based on heap sorting,’’
Electr. Meas. Instrum., vol. 55, no. 18, pp. 139–144, 2018.

[24] H. Zhipeng et al., ‘‘A capacitor voltage balancing strategy adopting prime
factorization method and shell sorting algorithm for modular multilevel
converter,’’ Proc. CSEE, vol. 35, no. 12, pp. 2980–2988, 2015.

SHANSHAN MENG received the B.Sc. degree
from the Jiangsu University of Science and Tech-
nology, in 2017. She is currently a Graduate Stu-
dent with the Shanghai University of Electric
Power. Her main research interests include embed-
ded systems and distributed control systems.

QIANG ZHU received the B.Sc. degree from the
Shanghai University of Science and Technology,
in 1993, and the M.Sc. and Ph.D. degrees from
Shanghai University, in 1996 and 2011, respec-
tively. He is currently with Shanghai Automation
Instrumentation Co., Ltd., as the General Manager
of DCS, the Minister of economic operations, and
the Deputy Chief Engineer of the National Tech-
nology Center. His main research interests include
power station automation, decentralized control

systems, embedded system hardware and software, nuclear power digital
systems, and functional safety systems.

FEI XIA received the B.Sc. degree from the
Shenyang University of Technology, in 2000,
the M.Sc. degree from the University of Poitiers,
France, in 2003, and the Ph.D. degree from Tongji
University, in 2017. He is currently an Associate
Professor with the Shanghai University of Elec-
tric Power. His main research interests include
machine vision, information security, and embed-
ded systems in clean energy systems.

68510 VOLUME 7, 2019


	INTRODUCTION
	TASK SCHEDULING MODEL
	SCHEDULABLE CONDITIONS OF ALGORITHMS

	TASK INTEGRATED PRIORITY
	 DETERMINING kv, kc AND ke BASED ON FAHP
	ESTABLISHING THE HIERARCHICAL STRUCTURE MODEL
	FUZZY CONSISTENCY MATRIX
	COMBINATION WEIGHT OF FUZZY CONSISTENCY MATRIX
	TARGET OPTIMAL SOLUTION


	SELECTING EXECUTION TASKS BASED ON HEAPSORT
	HEAPSORT
	THEORETICAL ANALYSIS
	SIMULATION VERIFICATION

	PRIORITY SCHEDULING SUBSET

	PERFORMANCE ANALYSIS AND EXPERIMENTAL RESULTS
	TASK COMPLETION DEGREE
	TASK DEADLINE MISS RATE

	CONCLUSION
	REFERENCES
	Biographies
	SHANSHAN MENG
	QIANG ZHU
	FEI XIA


