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ABSTRACT In this mathematical study, the time-independent, incompressible, magneto-hydrodynamic
nanofluid flow over a vertical stretching surface has been investigated. The impact of gravitational body
forces along with convective boundary condition has also been a part of this study. The viscous effects
of nanofluid are assumed to be temperature-dependent and in this context, the Reynolds exponential
viscosity model has been employed. It is also assumed that the base fluid contains a uniform suspension
of nanoparticles. The Buongiorno model comprising the thermophoresis and Brownian motion effects have
been taken into account. For the sake of solution, the Runge-Kutta-Fehlberg method has been selected and
the resulting outcomes have been compared with the previously published data.Moreover, the graphical plots
illustrating the impact of various emerging entities on the momentum, mass, and heat transfer properties have
also been provided. It has been noticed that the nanofluid viscosity parameter decelerates the fluid velocity,
however, a reversed phenomenon has been achieved for the temperature and the concentration profile. Also,
an augmentation in Nusselt number has been noted with the increased thermal and species Grashof numbers.

INDEX TERMS Buoyancy, convective boundary condition, thermophoresis, MHD flow, Brownian motion,
Runge-Kutta-Fehlberg scheme, numerical results.

I. INTRODUCTION
In recent years, an active research work related to the perfor-
mance and heat management characteristics of nanomateri-
als has been conducted in various fields of engineering and
applied sciences. The main objective of these research work
is to fulfill the demands for the compact design of energy
efficient devices, which can be found in numerous fields
of engineering including chemical, electrical, aerospace,
biomedical, and mechanical engineering. The aim of these
steps is to enhance the effective cooling properties of
microsystem cooling devices. Among the variety of nano-
materials, nanofluids have gained considerable attention.
Nanofluids, introduced by Choi [1], [2], has a significant
impact on the thermal as well as the convective heat exchange
properties as compared to the traditional host fluid like air,
ethylene glycol, water, etc. The synthetic composition of
nanofluids involves a variety of nano-meter sized particles
including metallic (copper, silver, alumina) or non-metallic
(graphene, carbon nanotubes) into the host fluid. The inno-
vative features of nanofluids can practically be applicable
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in solar cell development [3], cancer treatment [4], [5],
anti-bacterial structures [6], [7], and coolants in various
mechanical and electrical devices [8]–[10]. In this con-
text, Buongiorno [11] presented a comprehensive model that
incorporates the variety of nanofluids and unveils the all
possible thermal as well as the convective features that can
hardly be found in common fluids.

The flow of boundary layer nature, due to the practi-
cal applications like manufacturing of glass fiber, produc-
tion of rubber and polymer surfaces, etc., have caught the
sight of worldwide scientists in the recent past decades.
In this regard, a rudimentary work has been delivered by
Khan et al. [12], where nonlinear radiation effects on MHD
flow of nanofluid over a nonlinearly stretching/shrinking
wedge. Later on, by incorporating the nanofluids, some
tangible results were obtained by various researchers,
see [13]–[17]. After the pioneering work, considerable
research work has been presented by several authors. Some
of these can be found in [18]–[20] and references therein.

The magneto-hydro dynamics phenomenon has found
potential applications in numerous engineering and industrial
processes. By employing the magnetic field effects, the fluid
velocity along with the convective thermo-magnetic current
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can be easily controlled, which then enable us to adjust the
rate of flow and heat exchange processes [21]. The behavior
of nanofluid, under the impact of an externally applied mag-
netic field, towards an elastic expanding surface, have been
investigated by many scientists like Akbar et al. [22], [23].
Recently, several authors have investigated the flow problems
of boundary layer nature along with the convective surface
auxiliary condition. In this context, Aziz [24] presented a
pioneering work by considering the thermal boundary layer
flow together with convective auxiliary condition towards a
flat stretching surface. By employing the Sakiadis as well
as Blasius flows, Bataller [25] extended Aziz’s work [26],
by incorporating both radiative effects and convective bound-
ary condition. Furthermore, the reader can find the most
relatable studies in [27]–[30].

The objective of this study is to explore the magneto-
hydrodynamic nanofluid flow over a vertical expanding sur-
face. The impact of gravitational body forces along with
convective auxiliary condition have also a part of this study.
Moreover, the viscous effects of nanofluid are assumed to
be temperature-dependent and in this context, the Reynolds
exponential viscosity model has been considered. Shoot-
ing method accompanied by Runge-Kutta-Fehlberg scheme
has been employed, for the sake of solution. Furthermore,
the graphical plots along with a comprehensive discussion
related to the velocity as well as temperature and concentra-
tion profiles, under the impact of several meaningful entities,
have also been presented.

II. MATHEMATICAL MODEL
An incompressible, time-independent, laminar and magneto-
hydrodynamic viscid flow of a nanofluid, towards a vertical
expanding surface, have been under consideration, where
(x, y) is chosen as a coordinate system, with the assump-
tion that the surface is aligned with the x− axis. Moreover,
a cross magnetic field, with strength B0, is applied in the
transverse direction. The nanofluid, under consideration, is
a homogenous dilute mixture, in which the nanomaterials are
equally dispersed. The surface is supposed to be stretchable,
with the linear stretching velocity u (x) = bx, with b > 0
is a constant. The temperature of the surface is due to the
convective process of heating, which can be characterized by
the coefficient of heat transfer hf and the temperature of the
fluid kf . Under the aforesaid assumptions, the conservative
equations for mass and momentum together with energy
and nanocomposite diffusion are mathematically expressed
as [23]: (
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where, u is the velocity constituents along the x− direc-
tion and v along the y− direction. B0 denote the magnetic
field strength, while C and T are concentration and tem-
perature of the nanofluids, respectively. Moreover, δ =
(ρc)p / (ρc)f , which indicate the ratio of effective heat capac-
ity of nanocomposites to the heat capacity of host fluid.

The related auxiliary conditions are given as:

for y = 0, u = uw (x) = bx, v = 0,

C = Cw, kf
∂T
∂y
= hf

(
T − Tf

)
, (5)

as y→∞, u, v→ 0, C → C∞, T → T∞. (6)

The dimensionless variables and the similarity transforma-
tions are defined as [23]:

u = bx
d
dζ

f̃ (ζ ) , v = − (bv)0.5 f̃ (ζ ) ,

ζ =

(
b
v

)0.5
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,

θ̃ (ζ ) =
T − T∞
Tw − T∞

(7)

The viscosity of the fluid, in Eq. (2), is temperature dependent
that may vary exponentially (Reynolds exponential model for
viscosity) [30]. Mathematically:

µ (T ) = µ0e−H(T−T∞). (8)

where, the strength dependency among T and µ (T ) are
denoted by H . µ0 indicates the viscosity of the fluid at the
reference temperature T∞. Using the similarity transform
defined in Eq. (7) and then taking the Maclaurin’s expansion,
we get the following expression [30]:

e−λθ̃ = 1− λθ̃ + O
(
λ2
)
. (9)

Now, by using the similarity transforms (Eq. (7)), the follow-
ing dimensionless system has been achieved,(
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The transformed auxiliary conditions are given as under:

At ζ = 0, f̃ (ζ ) = 0, φ̃ (ζ ) = 1,
d
dζ
θ̃ (ζ ) = −Bi

(
1− θ̃ (ζ )

)
,

d
dζ

f̃ (ζ ) = 1, (13)

As ζ → ∞, θ̃ (ζ ) = φ̃ (ζ ) = 0,
d
dζ

f̃ (ζ ) = 0. (14)

The dimensionless numbers, arising in the set
of Eqs. (10)-(14), are defined as:
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,
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where,M is the magnetic Hartmann number, λ is the variable
viscosity parameter, Pr is the Prandtl number, Rex is the
local Reynolds number. Moreover, the local thermal Grashof
number is symbolized byGT , while,Nt is the thermophoresis
parameter. BT is the local concentration Grashof number,
Nb is the Brownian motion parameter, Sc is the Schmidt
number, Br and Gr are concentration and thermal Grashof
numbers.

The physical quantities like the coefficient of skin friction
and the local rate of heat transfer (Nusselt number) along with
local rate of mass transfer (Sherwood number) are character-
ized as:

Cf =
1
ρ

τw

u2w
,
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,
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, (16)

where,
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,

qw = −k
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,

qm = −D
∂C
∂y
. (17)

Therefore, the dimensionless forms for the coefficient of skin
friction, local heat flux rate, and Sherwood number are given
below:
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1
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) d2
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f̃ (0) ,
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1
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d
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1
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d
dζ
φ̃ (0) . (18)

III. SOLUTION PROCEDURE
An efficient numerical scheme, the Runge-Kutta-Fehlberg
technique has been employed to solve the system of nonlinear
ordinary differential equations (Eqs. (10)-(12)). The given
boundary value problem (10)-(12) can be transformed into
an initial value problem, by means of Shooting algorithm.
Moreover, ζmax have been selected in such a way that the
convergent solution exists for different values of emerging
entities. The convergence criteria have been set up to the fifth
decimal place.

IV. RESULTS AND DISCUSSION
This segment is prepared to investigate the performance
of dimensionless axial velocity component f̃ ′ (ζ ) and
temperature distribution θ̃ (ζ ) together with the concentra-
tion φ̃ (ζ ) profile, under the impact of numerous emerging
entities like viscosity parameter λ, Hartmann number M ,
thermal Grashof number Gr , thermophoresis parameter Nt ,
concentration Grashof number Br , Brownian motion param-
eter Nb, Biot number Bi and Schmidt number Sc. Moreover,
the acquired results for local Nusselt number as well as the
coefficient of skin friction have been compared with the
existing results of [23] and presented in the form of tables.

Figures 2-4 have been designed to see the impact of viscos-
ity parameter λ, species (concentration) Grashof number Br ,
Hartman numberM , and thermal Grashof number Gr , on the
axial component of velocity. In all the cases, a maximum
velocity profile have been attained near the wall (ζ = 0) and
gradually exhibit a nonlinear decaying behavior. Moreover,
in all the upcoming figures, the magnitude of velocity profiles
have been provided for two distinct viscosity parameter (λ)
values: (i) constant viscosity parameter i.e., λ = 0 (displayed
as solid black lines) and (ii). exponentially increasing vis-
cosity parameter i.e., λ = 0.5 (displayed as dashed black
lines). From Figure 2, it has been observed that the velocity
exhibit a diminishing behavior with the growing values of the
viscosity parameter. The reason behind is the enhancement in
the viscous effects with larger viscosity, which consequently
decelerates the fluid flow. Further, an enhancement has been
perceived in the thickness of the momentum boundary layer.
Similarly, one can observe a retardation in the velocity behav-
ior with the rising effects of the magnetic field (see Figure 2).
This is due to the Lorentz forces, which act as a resistive
forces and consequently opposes the fluid movement. Thus,
the transversal imposition of the magnetic field successfully
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FIGURE 1. Geometrical analysis of the current flow situation.

FIGURE 2. Axial velocity f̃ ′ (ζ ) behavior as M and λ varys.

control the fluid flow. In Figure 3, one can noticed an augmen-
tation in the velocity profile with the growing species (con-
centration) Grashof number. However, the thickness of the
momentum boundary layer has been declined. For Br = 0,
the buoyancy forces related to nanoparticles species in
Eq. (10) diminishes i.e. φBr → 0. However, the non-zero
values of Br depicts an overshoot in the velocity profile and
this has been recorded near the stretching wall. Figure 4
demonstrates the patterns of axial velocity constituents, under
the impact of thermal Grashof numberGr . The thermal buoy-
ancy force, appearing in Eq. (10), has been vanishes, when
Gr = 0. However, a progressive increment in the thermal
buoyancy force has been noticed for Gr = 1, 3, 5. Moreover,
for Gr = 5, an overshoot in the velocity profile has been
observed nearby the wall, which cannot be recorded for the
lesser thermal Grashof numbers. This, in turn, develops the

FIGURE 3. Axial velocity f̃ ′ (ζ ) behavior as Br and λ varys.

FIGURE 4. Axial velocity f̃ ′ (ζ ) behavior as Gr and λ varys.

FIGURE 5. Temperature θ̃ (ζ ) behavior as M and λ varys.

momentum inside the boundary layer and thus, leads to an
increment in the fluid velocity. Furthermore, from both the
figures (3 and 4), the increment in the viscous parameter
opposes the fluid motion and therefore decreases the fluid
velocity and enhances the thickness of momentum layer.

Figures 5-9 reveals the temperature θ̃ (ζ ) patterns
for varying values of viscosity parameter (λ), Hartman
number (M), thermal Grashof number (Gr), concentration
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FIGURE 6. Temperature θ̃ (ζ ) behavior as Gr and λ varys.

FIGURE 7. Temperature θ̃ (ζ ) behavior as Br and λ varys.

FIGURE 8. Temperature θ̃ (ζ ) behavior as Nt and λ varys.

Grashof number (Br), thermophoresis parameter (Nt) and
Biot number (Bi). For distinct values of λ (viscosity param-
eter): (i) λ = 0, i.e., constant viscosity parameter and (ii).
λ = 0.5, i.e., exponentially increasing viscosity, the tem-
perature depicts a different behavior as compared to velocity
profile, i.e., the temperature rises with the growing viscosity
parameter. Moreover, the thickness of the thermal boundary
layer also increases. The impact of the Hartmann number on

FIGURE 9. Temperature θ̃ (ζ ) behavior as Bi and λ varys.

FIGURE 10. Concentration φ̃ (ζ ) behavior as λ and Nt varys.

the temperature distribution, has been illustrated in Figure 5.
The temperature elevates as the Hartmann number increases.
Since the growingmagnetic field enhances the friction effects
within the boundary layer regime, which consequently heat
up the fluid and therefore, the temperature of the fluid rises.
Behavior of temperature, under the impact of thermal and
species Grashof numbers, are portrayed in Figures 6 and 7,
respectively. The temperature exhibit a decreasing behavior
with the growing thermal Grashof number (Gr) and species
Grashof number (Br). The reason behind is the decrement
in the thermal diffusive process (within the boundary layer
regime) with the growing values of thermal as well as the
concentration buoyancy forces. The thickness of the ther-
mal boundary layer decreases with the increasing values
of both Grashof numbers. In Figure 8, the increment in
the thermophoresis parameter (Nt) display a remarkable
enhancement in the temperature distribution and this has
been recorded throughout the boundary layer. The ther-
mophoretic force, under the steady temperature gradient, pro-
duced by the Brownian motion of the particle. The molecules
from the hotter region of the boundary layer, migra-
tes towards the cooler area and as a result, the temperature
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TABLE 1. Numerical outcomes of coefficient of skin friction, local Nusselt number, and Sherwood number, by assuming
Bi = 0.2,Sc = 10,Nt = 0.2,Nb = 0.5 and Pr = 6.2.

FIGURE 11. Concentration φ̃ (ζ ) behavior as λ and Nb varys.

of the fluid elevates. The influence of varying values of Biot
number (Bi) on the temperature distribution, has been dis-
played in Figure 9. The temperature exhibits an augmentation
with the growing values of Biot number, which is caused by
the higher fluid temperature. Moreover, from all the figures
(6-9), an upsurge in temperature has been witnessed with the
growing values of viscosity parameter λ.

Figures 10-12 have been sketched to see the influence of
thermophoresis parameter (Nt), the Schmidt number (Sc),
viscosity parameter (λ), and the Brownian motion parameter
(Nb) on the dimensionless concentration profiles. For distinct
values of λ (viscosity parameter): (i) λ = 0 i.e., constant
viscosity parameter and (ii). λ = 0.5, i.e., exponentially
increasing viscosity, the concentration profile depicts a ris-
ing behavior. The variation in concentration profile, due
to varying thermophoresis parameter, have been displayed
in Figure 10. With the growing thermophoresis parame-
ter, the concentration profile depicts a strong diminishing
behavior at and nearby the wall, however, far away from the

FIGURE 12. Concentration φ̃ (ζ ) behavior as λ and Sc varys.

stretching surface, the concentration profile displays a certain
rising behavior. On the other hand, the impact of Brownian
motion parameter (Nb) behaves quite differently as com-
pared to thermophoresis parameter (Nt) (see Figure 11). The
magnitude of the concentration profile depicts a declining
behavior with the rising values of Nb. Physically, the larger
values of Nb is due to the smaller size of the nanocomposites.
This results in, an enhancement in the macro-convection and
thermal conductive processes alongwith the diffusion process
of nanoparticles species, which seems to be dominant in the
region beyond the stretching wall. Thus, the rising values of
Nt augments the concentration profile along with the thick-
ness of the concentration boundary layer, however, a reversed
behavior has been noticed against the rising values of Nb.
Figure 12 elaborates the deviation in the φ̃ (ζ ) for varying
values of Sc (Schmidt number). The concentration profile
reveal a decreasing behavior with growing Schmidt number.
Physically, this is due to the growing rate of viscous diffusion
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TABLE 2. Numerical outcomes of coefficient of skin friction, local Nusselt number, and Sherwood number, by assuming
Bi = 0.2,Sc = 10,Nt = 0.2,Nb = 0.5 and Pr = 6.2.

TABLE 3. Numerical assessment of the outcomes of coefficient of skin friction with the published data [23], for Bi = 0,Sc = 10,Nt = Nb = 0.5 and
Pr = 3.97.

effects as compared to the rate of mass diffusion. Therefore,
for the least values of Schmidt number, one can found a
maximum concentration of nanocomposites. Moreover, with
the rising Schmidt number, the thickness of the concentration
boundary layer descends.

Tables 1 and 2 have been designed with the numerical
outcomes of the coefficient of skin friction, by assuming the
cases of conducting as well as non-conducting nanofluids,
respectively. Moreover, the results related to rate of heat flux
(Nusselt number) along with the mass flux rate (Sherwood
number) has also been provided. From these tables, one can
notice an augmentation in the skin friction coefficient with
the growing values of viscosity parameter (λ), concentration

Grashof number (Br) and thermal Grashof number (Gr),
however, a quite opposite behavior has been recorded against
Hartman number (M). Moreover, the local heat flux rate as
well as the Sherwood number displays a rising behavior with
increasing values of Br and Gr , while a decreasing attributes
have been achieved with the growing values of viscosity
parameter (λ) and Hartman number (M).

For the sake of comparison between the obtained results
and the previously published data, Tables 3 and 4 have been
provided. The procured numerical outcomes for the local rate
of heat transfer together with the coefficient of skin friction
have been compared with the previously existing results [23].
The results have been displayed by taking the Bi = 0 and
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TABLE 4. Numerical assessment of the outcomes of the local Nusselt number with the published data [23], for Bi = 0,Sc = 10,Nt = Nb = 0.5 and
Pr = 3.97.

for both M = 0 and M = 1. The numerical outcomes
are in excellent agreement with the previously published
data [23].

V. CONCLUSION
This article comprises the study related to the magneto-
hydrodynamic nanofluid flow, towards a vertical stretching
surface along with the temperature dependent viscosity and
the buoyancy effects. The impact of gravitational body forces
together with convective boundary condition has also a part
of this study. Runge-Kutta-Fehlberg scheme has been opted
to solve the subsequent nonlinear boundary value problem
and the resulting outcomes have been compared with the
already published results. Moreover, the graphical pictures
illustrating the impact of various emerging parameters on the
momentum, mass and heat transfer properties have also been
provided. The following are the main findings of this research
work.

• The fluid flow decelerates with the growing values of
Hartmann number, while the momentum boundary layer
thickness increases.

• The thickness of the momentum boundary layer reduced
while increasing the species as well as the thermal
Grashof numbers. However, an accelerated flow has
been perceived for the same parameters.

• Temperature elevates with the growing values of ther-
mophoresis parameter, Hartmann number, and Biot
number.

• A reduction in temperature has been detected with the
growing values of thermal as well as concentration
Grashof number.

• The concentration profile depicts a decline with the
elevation of the Brownian motion parameter and the
Schmidt number.

• The increment in the thermophoresis parameter aug-
ments the concentration distribution.

• The increasing values of viscosity parameter decelerate
the nanofluid velocity magnitudes, however, enhances
both the concentration and temperature distributions.

• The Nusselt number drops, while the temperature dis-
tribution rises, by means of increasing the Biot number
and Hartmann number.

• An augmentation in the rate of heat flux has been
noted with the increased thermal and species Grashof
numbers.
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