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ABSTRACT The influence maximization problem is defined by identifying the seed set that has the
most influence on other users in the network, which when selected, the cascading process reaches a large
number of users. We use a greedy algorithm and an epsilon-greedy algorithm from the MAB models in this
work, unlike prior works that used the MAB models to quantify the unknown propagation probability in
the diffusion models. In this paper, we did not also make any assumption regarding the diffusion models
and tries to learn to identify the most influential users based on designed reward function ‘‘hybrid edge
strength-similarity’’ using global centrality measures and by trying to find a tradeoff between exploitation
and exploration strategies. The new proposed reward function initializes the MAB algorithms using global
characteristics that quantify the strength of each arm (edge). The proposed reward will feed algorithms from
MAB models uses hybridization of edge betweenness centrality and Jaccard similarity measures with some
level of participation of each measure. Then, three algorithms are proposed for the extraction of relevant
influencers, namely: SRI-CGSS FEXPL-GREEDY) algorithm which almost exploiting the best arm; the
SRI_CGSS FEXPR-GREEDY which is almost exploring; and the SRI-MAB ε-GREEDY algorithm that
alternate between exploring and exploiting the best arms. We conduct extensive experiments on a large-scale
graph in terms of influence spread, efficiency performance in terms of running time and space complexity,
and how the reward parameters impact cumulative regret.

INDEX TERMS Influence maximization, relevant influencers, multi-armed bandits, semi-uniform
strategies, local metric, global measure.

I. INTRODUCTION
The social network entities and relationships that bound those
entities via different kinds of links include personal and
professional exchanges that are an integral process in the
daily life of each individual across the globe. The social
network is a set of connected individuals distributed across
different places in the world that was designed to facilitate the
exchange of information among these individuals for various
purposes and goals. Therefore, the process by which an infor-
mation is propagated and adopted by individuals has become
a popular research topic in recent years and addresses the
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problem of influence maximization using various techniques
and methods [1]–[4]. In ordinary daily life, each individual
is supposed to be connected in online platforms to their clos-
est friends, family members, colleagues, and even strangers.
Each individual within the social network determineswhether
to adopt new information (product) depending on their social
contacts and to what extent the individual is frequently in
touch with their social neighborhood.

To design an efficient viral marketing campaign, it is fun-
damental for companies to identify ‘‘relevant influencers’’
or the most influential users to select as initial spreaders
with the aim of influencing them to promote information
(product) and influence coverage across the network. Accord-
ingly, the problem of influence maximization can be defined
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formally by identifying a set of interconnected individuals
through different kinds of relationships represented by means
of a graph and thus determining the relevant influencers.
These influencers form the seed set that, when selected,
the influence propagation (cascading process) that follows a
given probabilistic diffusion model will yield a large-spread
coverage.

Noticeable and extensive efforts have been made recently
to improve the efficiency, scalability, and performance of
the influencemaximization problem. Domingos and Richard-
son [5], were the first to model the problem of influence
maximization as an arbitrary Markov random field. Then,
the influence maximization was formulated as an algorithmic
problem that provided the first approximation guarantees. In
addition, due to the good performance achieved by the greedy
algorithm [6], various scalable approaches based on a greedy
algorithm, including CELF [7] and CELF++ [8], have been
tried to improve the running time while providing a good
influence spread for the selection of relevant influencers.
These mentioned approaches concentrated mainly on running
useless and redundant Monte Carlo simulations for selecting
key influencers. However, despite the success in identifying
numerous individuals, they are still inefficient for perform-
ing effectively in large-scale graphs without considering the
considerable amount of time needed to simulate the spreading
process on large graphs.

In addition, there was a remarkable effort to deal with the
time-consuming issue of approaches based on greedy algo-
rithms. This motivated scientists to find approaches based
on heuristics that rely on local structural properties includ-
ing degree discount heuristics [9], RND d-hops, CPRND
d-hops [10], DERND D-hops and UERND D-hops [11],
while other approaches focused on the use of global struc-
tural properties such as PrKatz [12], PageRank [13] and oth-
ers [14]–[16], to extract themost influential users or ‘‘relevant
influencers’’. Unlike previously discussed approaches based
on greedy algorithms and heuristics, which assume that the
graph and influence probability are available as input, other
approaches seem to take another direction different to what
was discussed. These approaches learn influence probabil-
ities that cause the cascade process and assume that these
probabilities are unknown and that the individuals should
learn probabilities through interaction with the environment,
which is modeled through different multi-armed bandits’
algorithms [17]–[20]. Therefore, unlike what was done pre-
viously, our contribution falls between the use of global and
local structural heuristics and feeds the score values on multi-
armed bandit algorithms. We are seeking, more precisely,
in this work to answer some of the challenging issues encoun-
tered when dealing with maximizing the influence spread
inside the online community. Some of the classic and most
interesting challenges are which individuals should the mar-
keter target to maximize the profit. In the context of online
social communities, users are connected via links and the aim
is to identify which relevant influencers to select to maximize
the spread of influence, and thus, increase the revenue of the

marketer. Thus, all individuals interact in an online environ-
ment in which each of them is the most powerful to convince
a large number of users to adopt the promoted information
(products). Therefore, how can the marketer efficiently select
such relevant influencers? What is the strategy that should be
followed to attain an increase in profit?

Thus, we assume that some global and local structural
properties regarding the network should be known and
exploited, whereas we have no knowledge of what will be
the final output, in other words, the number of influenced
individuals who adopted the information. Our supposition
for initial selection is to characterize each edge (arm) by
the strength in terms of being between many individuals for
the flow of information which is quantified by a normalized
edge betweenness centrality with the preselected percentage
sample of the individuals in the network to reduce the compu-
tation time. In addition, we need to know to what extent two
individuals are similar in adopting the promoted information,
which is measured by the local edge similarity which is
introduced in section 3.

Presumably, a proper solution to the approached problem
requires two main steps. The first step characterizes the edge
score value that determines the strength and usefulness of
each link compared to other links. Then, the matrix value is
fed into a variant of an epsilon-greedy multi-armed bandit
algorithm to select the most performant edges that seem
to spread the information effectively. Second, the relevant
influencers that are supposed to increase the adoption of pro-
moted behaviors that maximize a certain objective function
are identified from the selected edges. We assume that in
our multi-armed bandit framework each individual chooses
arms (edges) that maximize a certain objective functions.
Generally, the multi-armed bandit problem encompasses a
necessary conflict set in all individual decisions. The selec-
tion between all available actions, ‘‘which arm to select’’,
provides an immediate reward of the chosen arms. Many
multi-armed bandit algorithms have been used in the context
of influence maximization, which focuses mainly on learning
the propagation probability in the diffusionmodels [19]–[21],
while our approaches use epsilon-greedy algorithms and feed
our algorithms with extra knowledge about the network struc-
ture without any feedback about the influence achieved. The
aim of our proposed approaches is to extract relevant influ-
encers by using full exploitation and full exploration with the
selection and use the classic epsilon-greedy algorithms.

In the proposed approach we investigate the identifica-
tion of key influencers while using some global and local
structural properties over edges by using a variant of the
well-known epsilon-greedy algorithm. The main contribu-
tions of the present work can be outlined as follows.
• Design a new function that characterizes the arm’s abil-
ity to spread the promoted behavior and high ability to
adopt the information by using a hybridization of edge
betweenness and local edge similarity.

• Introduce online algorithms based on a variant of the
epsilon-greedy algorithm from a multi-armed bandit
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framework, which seeks to achieve a tradeoff between
exploration and exploitation.

• Compare the proposed approaches against state-of-the-
art influence maximization algorithms on large-scale
graphs.

The rest of the paper is organized as follows. Section II
presents previous work related to our proposed approach,
followed by Section III & section IV, which introduce the
system model and a measure to quantify the arm strength and
how many arm members are similar to each other. Section V
presents algorithms for the identification of relevant influ-
encers and performance analysis of the proposed algorithms.
Then, Section VI outlines extensive experiment under the IC
and LT models to test the effectiveness and efficiency of the
proposed algorithms. Section VII discusses our results with
some analysis, and Section VIII concludes the paper with the
main findings and possible future research directions.

II. RELATED WORK
This section presents the closest related work to the proposed
approach, especially recent research on the influence maxi-
mization that makes the use of the MAB models and some
approaches based on centrality measures.

Carpentier et al. [21] proposed a bandit strategy called
BARE. They considered local influence, where a node can
influence only its immediate neighbors. The proposed strat-
egy did not consider any information regarding the graph
structure and that the information is gained in a sequen-
tial manner. During the influence process, each selected
node receives feedback for influencing the other nodes.
They demonstrated that a regret guarantee scales with the
detectable dimension, a problem dependent quantity that is
often much smaller than the number of nodes. They consid-
ered two important cases, knowing the immediate neighbors
by their identification and the second case of knowing only
the number of immediate neighbors. However, local influence
with one source with a cascading process was not presented.

Vaswani et al. [22] proposed a diffusion-independent learn-
ing algorithm DILinUCB, for semi-bandit influence maxi-
mization based on the maximum-reachability approximation.
It is a pairwise-influence semi-bandit feedback model that
demonstrated its effectiveness in terms of the regret bound
against existing work. They proposed a parametrization that
did not consider any knowledge about the environment for
the underlying diffusion model. They demonstrated that their
objective function is a good approximation of the original
influence maximization problem and provides their corre-
sponding monotone and submodular function.

Vaswani et al. [20] studied the problem of influence max-
imization when no cascade model is available with the aim
of estimating the influence probabilities as each seed set
is selected sequentially. They made use of a combinatorial
multi-armed bandit approach and used several algorithms
from the MAB framework to decrease the regret in terms
of influence spread caused by the lack of knowledge about

the exact spread ability of the nodes. Their approach was
evaluated on the real-world dataset.

Wen et al. [23] proposed and analyzed a computationally
efficient UCB-based algorithm IMLinUCB. They specifi-
cally addressed two challenging problems: the combinatorial
action space in which a seed set increases exponentially with
respect to the maximum number of the most influential users
considered and the limited feedback restricted to the portion
of the influence network. They dealt with these two issues
under the IC model with knowledge of edge semi-bandit
feedback that provides a linear generalization which is appro-
priate for large-scale world problems. Then, they proposed a
maximum observed relevance based on the network topology
and a non-decreasing activation probabilities function. Their
regret bounds were polynomial in all quantities of interest and
had near-optimal dependence on the number of interactions.
They showed through empirical results that their algorithm
has low regret in real-world online influence maximization
problems.

Lei et al. [19] attempted to maximize the influence spread
when only the social graph is known with a fixed budget. The
influence probability is unknown, and there is only an online
tradeoff between exploitation and exploration through an
iterative process over a number of rounds. The problem deals
with influence maximization with incomplete knowledge,
called online influence maximization since the agent learns
the influence probabilities when the cascade process occurs.
The approach proceeds through multiple rounds where some
seed sets are chosen based on existing influence information.
The cascading process starts by these selected seed sets, and
the user feedback updates their knowledge about the influ-
ence propagation. They designed an efficient incremental
algorithm that decreases the overload of the users’ feedback
and provides a more effective solution for influencing the
maximization problem under partial information.

Lagrée et al. [24] proposed a new formulation for the
problem of influence maximization called online influence
maximization with persistence ‘‘OIMP’’ that tries to target
a subpopulation from the graph without making any prior
assumption on the used diffusion model. Then, they pro-
posed an estimator method that can be reached from a given
influential node based on real Twitter data. Afterward, they
suggested a new algorithm GT-UCB based on upper confi-
dence bounds and demonstrated its effectiveness in terms of
influence spread in the simulated and real dataset.

Du et al. [25] suggested learning an influence function
from observation without any knowledge of the diffusion
model. They assumed a weighted average influence function
which should be a coverage functions. Thus, they introduced
a novel parameterization of such functions using a convex
combination of random basis functions. Their method needs
a strong technical condition for an accurate approximation to
the reachability distribution.

Kandhway et al. [26] modeled the influence maximization
problem as a susceptible-infected epidemic process and for-
mulated the problem of selecting the seed set to maximize the
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influence coverage for a period of time during a campaign
on a social network, where users are grouped based on their
centrality measure and each group of users is influenced by an
optimal control function. The purpose was to boost the influ-
ence spread bymaximizing a designed reward function which
is a combination of the overall infected users at the predefined
deadline and the cost of applying the advertising over a fixed
budget. The linear reward functionwas formulated by an opti-
mal control approach using Pontryagin’s maximum principle
and then solved using the forward-backward sweep method.
The formulation of the reward function includes local and
global centrality metrics to maximize the spread of promoted
information through an optimal control framework. They
found that a simple degree provides good results on some
social network graphs and that the central node is targeted
when the companies have insufficient resources (budget) and
non-central nodes should be targeted when the companies
have a large number of resources.

Riquelme et al. [27] presented an interesting survey by
collecting centrality metrics used recently on Twitter. They
were more interested in identifying the most critical nodes or
so-called most influential nodes in the network. They mainly
presented some centrality metrics including degree and close-
ness and showed how the influence could be processed based
on those traditional metrics from social network analysis.

Estevez et al. [28] addressed the problem of the choice
of seed sets with the overlapping neighborhood by the use
of a set covering a greedy algorithm by using the degree
centrality and discounting the shared neighborhood during
the cascading process.

Cataldi et al. [29] proposed a method based on page rank
to identify authority on Twitter graph data and analyzed its
effectiveness to determine important and recent topics in real
time. In the same direction, Bollen et al. [30] combined the
ISI impact factor used to rank journals and weighted page
rank to obtain a more effective metric. The weight relied on
the number of the citation with the aim to rank journal status.

Lü et al. [31] proposed LeaderRank, a new variant of page
rank, which strongly connects the network strongly due to
its methodology of adding a ground node and link to other
nodes in both directions. They showed its performance and
robustness in opposition to manipulations.

Serin et al. [32] introduced a social network sensitivity
method that permits locating the most important relation-
ships between a user and all other users in the network. The
proposed method used local and global centrality metrics
including degree, betweenness, and closeness to set up an
entropy measure centrality. Generally, the method assigned
a value to each user based on their impact in terms of the
quantity of change that occurred in the system entropy due to
their elimination. Then, three metrics were normalized, and
thus, their products were computed to achieve an aggregate
sensitivity for each user within the studied social network.

Mochalova and Nanopoulos [33] started with the assump-
tion that most central users can reach a large number of users
with the studied network. Their contribution was primarily

focused only on structural properties. Then, they included
other information about seed size and members’ attitude to
identify the most suited seed set for each case. From this,
they provided a comprehensive overview of centrality used
to quantify most important users within the network and per-
formed extensive experiments on real-world social network
data. Their results provided insight on how the studied cen-
trality metrics can affect and impact the attitude of users on
whether to adopt the promoted ideas, messages, and products.
However, the authors did not compare their approaches with
similar work that treated influence maximization with global
and local centrality metrics and other well-known algorithms
in the literature such as TIM, BCT, CELF++.

Bakshy et al.. [34] investigated the reposting of Twitter
URLs to measure the influence of Twitter reposting behavior
of users. They reported that Twitter URLs were reposted in
a way that the original user was not included. Then, they
designed a model for the total diffusion tree considered of
a given event with the aim of predicting user influence within
the Twitter data.

Weng et al. [35] introduced a new algorithm TwitterRank,
which is an extended version of PageRank, a measure that
quantifies the topic-sensitive influence of users on Twitter.
By suggesting this method, other factors were considered
such as similarity and homophily. Their study showed that
the presence of ‘‘reciprocity’’ can be explained by the phe-
nomenon of homophily. Their experiments demonstrated that
their algorithm performs better than other measures. Their
approach was based on latent Dirichlet allocation, which
makes their formulation questionable since known data are
sparse and the produced Twitter topics relies on terms instead
of concepts.

Namtirtha et al. [36] proposed a new algorithm for
weighted kshell decomposition that combined degree and
kshell with the aim of measuring the influenceability of users
within the network. The proposed algorithm demonstrated its
performance through experiments on real network data and
used the SIR model as a diffusion epidemic model in which
a user becomes infected if it is adjacent to a user holding
the information through a certain probability of infection.
They found that the introduced combination surpassed some
traditional centrality metrics including kshell decomposition
and degree. They argued that the proposed algorithm is only
dependent on the number of network edges, and thus, is cost-
effective on large-scale graphs; however, their algorithm was
tested on only ten thousand nodes, and the proposed method
also had a higher correlation with the SIR model than some
existing indexing methods. Additionally, the extraction of
such key users should be tested on other well-known diffu-
sion models such as the IC and LT models, which will be
interesting to present here to show more of the effectiveness
of such indexing metrics.

Al-garadi et al. [37] introduced a new method weighted
k-core that improves the results of k-core and strengthens its
weakness in terms that k-core considers links equally when
computing the influence ability of users and that interaction
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between users can efficiently quantify how likely the users
are to be willing to be influenced by each other. For this
purpose, tracking the dynamics of interaction in real-world
social networks can witness its performance in determining
most important users when compared with other centrality
based metrics such as degree, page rank and original k-core.

Ding et al. [38] presented the SpreadRand method that
relies on the PageRank metric. This method builds a network
that consists of user-retweets, where the edges have a weight
assigned as a unique retweet. The duration time of the retweet
is considered important in the design of the proposed method.
The computation of the edge weights is obtained by the ratio
of the number of retweets to tweets. Thus, they argued that
the faster that others retweet, the more the spread coverage
will be effective.

Unlike existing works on this subject that uses either MAB
models to infer the unknown propagation probabilities or
other related works that used some heuristics and algorithms
from global and local perspective properties. Our approaches
try to propose some efficient algorithms and that we try to
learn which set of nodes as potential influencers by using
some global and local properties without knowing the influ-
ence that will produce as final output.

III. PROBLEM FORMULATION
The problem of influence maximization (IM) is the process
by which a promoted behavior is adopted among a large num-
ber of users. The purpose of IM is to find the most influential
users or the ‘‘relevant influencers’’, known as the seed set,
so that when selected the influence will propagate as much
as possible in the network. This problem can be modeled
as a multi-armed bandit problem where users interact in the
network (environment), and after each choice, users receive
a reward as feedback. This problem can be formalized in our
setting by a tuple IMMB

Gp = (G, S,DM ), where G = (V ,E) is
a graph in which a set of users (individuals) n = |V | interact
with each other in the network through a set of relationships
m = |E|. We consider that each link is quantified by a
certain strength extracted from the global network structure
such as edge betweenness. Additionally, the users that are
members of such links are measured by a similarity metric
to test whether each pair of users is willing to share the
same ideas, opinions, information, and orientation. Let S refer
to the set of most influential users (i.e., seed set), which
is the main purpose of this work. Thus, to maximize the
profit, a number of users must have adopted the promoted
information. In addition, let the diffusion modelDM measure
the influence spread of such seed set S on graph G.
Basically, the IM can be defined in a multi-armed bandit

paradigm as a set of users |V | interacting with adjacent
users linked via different type of relationship |E| inside an
environment G. The process begins by selecting K < n seed
sets, which are chosen based on either a basic centrality mea-
sure or efficient heuristics that initiate the diffusion process
according to some diffusion models. In the MAB framework,
the marketer chooses a user as the seed set to initiate the

cascade process depending on its budget K according to
certain structural criteria, and then a reward is received as
feedback of the selected node. The reward received in our
setting is a combination of local and global structural proper-
ties. Then, each activated node will attempt to activate inac-
tivated nodes and the process proceeds according to the used
diffusion model. The main purpose of IM is to find the most
accurate and influential seed set S that maximizes the number
of users touched by the promoted behavior σopt (G, S,DM ).
where

σ = σopt (G, S,DM)′ S = {si, i ∈ |S|} = [s1s2, . . . ,s|S|(1)

where si is an element of seed set S.

S = argmax UMAB (Gs,Lstr )

= argmax
Si

σ (S) (2)

UMABU is a reward function that relies on global
Gs and local structural properties
Lstr and a node is selected if it satisfies some con-

straint. We propose three algorithms based on MAB that are
explained in detail in section V.
σopt is an unknown function, monotone and submodular.

IV. SYSTEM MODEL
In our system model, we consider a social network that
consists of a set of users (i.e., nodes) and a set of relationships
(i.e., edges) that links those users through distinct types of
interactions and activities. In this system, users concerned
with the exchange share as much information as possible and
make the information largely available to a large number of
users.
Each user in the network is conscious of its neighborhood,

so he knows only what his immediate neighbors are sharing.
Thus, each user knows and gathers certain information from
his neighbors, and thus, this user can use collected informa-
tion to his benefit and can decide intelligently within the net-
work. Themain purpose of the proposed algorithms is tomax-
imize the spread of influence by selecting a set of influential
users while keeping an acceptable running time as presented
in the problem formulation section. However, the identifica-
tion of such influential users is still an open research topic
since its first formulation by Richardson and Dominguos [5]
and Kemp et al. [6]. In this model, we assume that each pair
of users are linked through edges that are quantified with
the strength and how the members of each edge are similar
to each other. Therefore, the information collected by users
should help to find the most pertinent nodes that have the
greatest influence on other users in terms of adopting the
promoted behavior. Generally, the main issue is how can
themarketer efficiently determine which users to select? How
should each seed user be selected, knowing that the marketer
does not know exactly the reward that he will receive while
providing free samples to each seed set?
Therefore, we assume that the marketer has to decide

which users to select from the network as a seed set, with
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the goal of maximizing the influence spread. We assume that
each edge in the network can be evaluated by its strength
through the edge betweenness centrality metric and that the
pair’s member of each edge is tested in terms of how they
are similar. We assume that if two users are similar, they
are more likely to share the same interests and goals. Thus,
when identifying the most influential users, we assume that
the marketer has some knowledge about local and global
structural properties of the graph illustrated in our model as
the pair’s edge similarity and edge betweenness centrality.
However, the marketer does not know exactly how many
users will become potential customers.

Figure 1, shows an example of a considered scenario with
a network in which the users interact with each other. In the
figure, the marketer is responsible for choosing the seed set
based on some structural properties and the feedback received
as a reward when choosing a certain node as a seed set.
We assume that all users in the environment communicate
with each other and can know the degree of its neighbors.

FIGURE 1. General design of seed set selection.

In this paper, we assume that the user can take action in
discrete steps t = 1, . . . ,N . At every step, the user within the
network observes the environment and collects information
regarding edge strength and similarity that is presented in the
next section. All this information is conserved in the agent
database with the aim of helping them to select the seed set.

Therefore, the marketer has to decide at each time step
whether to pick a user within the network as a newmember in
the seed set, keeping inmind that he has only a limited budget.
Therefore, the choice of this influential seed set should be
selected carefully. In this work, we assume that the marketer
has some global knowledge about the graph that shapes the
network relationships and that, based on this knowledge,
he makes a decision and receive a reward that demonstrates
how fortunate the choice is in terms of the structural network
properties, but he does not know the influence that output the
chosen seed set. Thus, this situation can be modeled perfectly
via a multi-armed bandit framework [18], which is a class
of machine learning problem that deals with the exploitation
versus exploration dilemma. Themulti-armed bandit problem
can be described as a complex version of A/B testing [39]
that involves the choice between a variety of actions, with

unknown rewards. The main purpose here is to efficiently
determine the best and optimal actions through a series of
trials (rounds) that provide the highest reward.

A. MULTI-ARMED BANDIT FRAMEWORK
In this subsection, we recall briefly the multi-armed bandit
framework (MAB), which is used in this paper. We start by
presenting the basic concept and the state-of-the-art algo-
rithms used throughout this work.

The multi-armed bandit (MAB) is considered a classic
kind of reinforcement learning algorithm. It is a clever and
complex version of A/B testing. In a multi-armed bandit
formalism, each agent has the chance to choose among k arms
(actions), and according to the agent, the choice receives a
reward. The agent selects a single action over many rounds
with the aim of maximizing the reward function, which is
assumed in this paper as a hybrid strength-similarity based
on a graph topology.

Two principal parameters are investigated in this work, and
are the basic components of any algorithm from the MAB
framework.

1. The identification of the best arm, which is the main
purpose of this work in which the agent possesses a pre-
defined budget and should decide, after a fixed number
of rounds, to select the optimal arms that provide the
highest reward.

2. The cumulative reward maximization is equivalent to
cumulative regret minimization. Accordingly, at each
step, the agent decides which arms to select and
receives an immediate reward that is initialized with
some global structural properties. The agent gathers the
cumulative reward with the aim to maximize the sum of
the obtained reward, and thus, minimize the cumulative
regret.

The main goal of this setting is to reach an optimal tradeoff
between the exploration vs exploitation (Er-vs-Et).
• Exploitation: this strategy focuses on the choice of the

best arms that provide the highest rewards over several
rounds.

• Exploration: this strategy focuses on the choice of ran-
dom arms rather than selecting the best one that provides
the best reward over several rounds, which may reduce
the chances to choose other best arms.

Pure greedy: This approach relies on selecting each arm
and greedily choosing the arm with the highest reward. This
strategy corresponds to full exploitation, which is more likely
to miss the selection of the best arm.

Epsilon-Greedy Algorithm: This strategy chooses the
best arms mostly and occasionally selects arms at random.
This strategy provides a good reward outcome if we balance
between the exploration-exploitation strategies.

After a brief introduction of the multi-armed bandit con-
text, we recall some global network properties including
edge betweenness centrality and eccentricity from the global
centrality metric and the edge similarity based on the local
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neighborhood and the degree centrality from the local net-
work structure.

Starting from this point, we believe that the edge between-
ness centrality constitutes an effective metric to quantify edge
strength. The edge betweenness has been used in a variety
of research works and has demonstrated its effectiveness in
previous work in ‘‘identification of communities’’.

B. THE PROPOSED HYBRID EDGE STRENGTH-SIMILARITY
1) EDGE STRENGTH
The strength of the edge is a critical ingredient for analyzing
and characterizing the relationship inside the network and
the process that quantifies at which level users are interact-
ing with each other. Therefore, it is of pivotal importance
to quantify the tie strength globally inside the network to
identify which tie is willing to be a bridge that connects many
users and serves by excellence as a communication channel
between a large number of users. So, what is the network
centrality measure from network science that can effectively
measure the tie importance globally inside the network?

The edge betweenness centrality represents an excellent
measure that characterizes edge strength within the network
globally. E. J. Newman [40] extended Linton C. Freeman’s
betweenness centrality [41]–[42] from network nodes to net-
work edges, which attempt to identify the edges that fall
within other pairs of nodes in the network by introducing the
edge betweenness centrality (EBC) as the number of shortest
paths between pairs of nodes that go through the edge. This
centralitymetric demonstrates that edges can occur on numer-
ous shortest paths between other nodes (users) having higher
EBC than those that fall within fewer numbers of shortest
paths. Therefore, the edges with the highest EBC are more
likely to control and manage the total information flowwithin
the network.

We define the normalized edge betweenness centrality
EBCap(e) based on the EBC (e), introduced by [40], [43],
as follows:

EBCap(e) =
1
|E|

∑
u∈V

∑
v∈V

σu,v(e, sh =
|V |∗10
100 )

σu,v(sh =
|V |∗10
100 )

(3)

where u and v are two users within network G. Let
σu,v(e, sh =

|V |∗10
100 ) denote the number of all shortest paths

between two users u and v that run through 10%of the paths in
the graph that crosses edge e. In addition, let σu,v(sh =

|V |∗10
100 )

denote the number of all shortest paths between two users’ u
and v that runs through 10% of the paths in the graph.

2) LOCAL EDGE SIMILARITY
The local edge similarity measure is based on a number of
common local neighborhood for each pair of users over the
degree centrality of those users. So, formally, the local edge
similarity can be written as follows:

LES (u, v) =
neigcom(u, v)

deg (u)+ deg(v)
(4)

where neigcom(u, v) represents the number of common neigh-
bors of users u and v. In addition, deg(u) depicts the number
of neighbors of user u.

3) HYBRID EDGE STRENGTH-SIMILARITY METRIC
We introduce our proposed metric that relies on a combined
global topology-based edge strength and local topology com-
mon neighborhood edge similarity measure. The introduced
metric is supposed to determine edges that have the highest
score value in terms of EBCap(e) and LES(u, v).
The use of a combination of those two metrics efficiently

localizes any edge within the network, and each edge node
should be close to most other nodes within the network
and nodes of each edge should have high score similarity.
We account for both the strength of the edge and the similarity
of the node edge that is discounted with two discount param-
eters α and β, our proposed metric ‘‘hybrid edge strength-
similarity‘‘ for edge e = (u, v) can be written as follows:

ESShyb(u,v) = α ∗ EBCap (e)+ β ∗ LES (u, v) (5)

As discussed earlier, we assume that some structural proper-
ties are known and that the arms are selected first according to
a reward function that combines the individual arms’ similar-
ity and how likely it is that the arms are positioned between
other arms in the networks. This reward function plays the
role of the initialization for the MAB algorithm and assures
the choice of arms with the best score value. This score value
ranges from 0 to 1 and depends on another two discount
parameters namely, α and βthat shows the contribution of
each structural property in the reward function. Basically,
those parameters are introduced to see their impact on the
reward function and how it will improve the choice of seed set
S and increase the objective function σ on a graph according
to the diffusion models.

4) ECCENTRICITY OF VERTEX
The eccentricity of vertex u in a connected graph G can be
defined as the maximum shortest paths from the vertex u to
all other vertices in the network. The eccentricity quantifies
to what extent the vertex is central in the network. Formally,
the eccentricity of vertex udenoted ecc(u) can be written as
follows:

ecc (u) = max
∀v∈G

d (u, v) (6)

V. IDENTIFICATION OF RELEVANT INFLUENCER
ALGORITHMS BASED ON MULTI-ARMED BANDITS
SEMI-UNIFORM STRATEGIES
In this section, we present three algorithms for the identifica-
tion of relevant influencers, the following diagram (figure 2)
shows the proposed algorithms and the main steps performed
required.

So, firstly we propose a new algorithm to identify rel-
evant influencer-based global structural properties and full
exploitation with negligible exploration SRI_CGSS fexpl-
greedy (ε = 1), secondly, a full exploration with negligible
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FIGURE 2. Flowchart of the proposed algorithm for identification of relevant influencers.

exploitation SRI_CGSS fexpr-greedy (ε = 0) and finally an
SRI_CGSS epsilon-greedy algorithm (0 < ε < 1) that com-
bines the use of exploitation and exploration to provide better
results.

We have |E| arms that have been tried at least once and
obtained an initial initialization of the reward function. The
agent has to select the arms at each step t that varies from
1 to N and receive a reward. Each individual attempts to
maximize its reward and therefore minimize the regret.

The performance of MAB can generally be indicated by a
regret that is defined as the cumulative reward acquired by
choosing the best arm with the highest reward rewte∗ minus
the cumulative reward obtained with the chosen arms rewte.
The regret for the SRI_CGSS algorithms denoted RSRI_CGSS
can be written as follows:

RSRI_CGSS = max
s∈E

rewte∗ − rew
t
e; e
∗
= argmax

s∈E
rew (e) (7)

And

rewe ≡ rew(e)

RSRI_CGSS (N ) = E
[
r∗ (N )

]
− E [r (N )] (8)

where rew (e) represents cumulative reward to choose arm
e and e∗ is the optimal selected arm, and u, v ∈ V × V
E
[
r∗ (N )

]
is the expected regret when selecting the optimal

arm at round N. rnd refers to selection of random value
among a set of values, and rwrnd is the selected reward value

randomly. 
rnd (ESS_hyb (u, v))
rwrnd∼ ESS_hyb (u, v)
ESS_hyb ∈ [0, 1]

(9)

P (rwrnd ) is the probability of occurrence of a certain random
reward value rwrnd and n here presents the number of all
possible values that may be selected.

P (rwrnd ) =
{
P
(
rwnrnd

)
,∀n ∈ |rwrnd |

}
(10)

The edges and corresponding nodes are extracted according
to ESS_hyb and P (rwrnd ) values.

u, v = argmax
s∈E

ESS_hyb(e)

u1, v1 = argmax
s∈E

P(rwrnd )
(11)

In other terms, the reward of selecting an edge denoted θ (t),
and therefore, a node, can be expressed as follows:

θ (t) = (1− ε)
[∑N

t=1

t
n
ψEES (t)+

∑N

t=1

t
t1
ϕeccvtxs (t)

]
+ε[

∑N

t=1

t
n+ t1

P(rwrnd )(1+ φ
deg
vtxs (t))] (12)

Let ψEES = max ({ESS−hyb (u, v) , u, v ∈ V × V }) repre-
sents themaximal value of the hybrid edge strength-similarity
metric.
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Similarly, the reward score of selecting a vertex vtxs via
eccentricity denoted ϕeccvtxs and the reward value of selecting a
vertex vtxs via degree measure denoted φdegvtxs can be defined
as follows:

ϕeccvtxs =

{
ecc (u) , if ecc(u) ≥ ecc(v)
ecc (v) , Otherwise,

u, v ∈ argmax
s∈E

ESS_hyb(e) (13)

φ
deg
vtxs =

{
deg (u1) , if deg(u1) ≥ deg(v1)
deg (v1) , Otherwise

u1, v1 ∈ argmax
s∈E

P(rwrnd ) (14)

Algorithm 1, ‘‘ESBJ_Reward’’, computes the hybrid edge
similarity strength that quantifies each edge according to its
position within the network and how the members of the edge
are similar to each other. The algorithm takes a graph G,
a number of nodes that we use from the entire population of
the network, to compute the ECBap, and two parameters α, β
that control the contribution of the edge strength and edge
similarity.

Algorithm 1 Edge Strength ESBJ_Reward
Input: GraphG = (VE), nb_node_covered nb_c, α, β
Output: GS_Edge_Reward
1. EBC_ap is computed from eq 3
2. LES is computed from eq 4
3. GS_Edge_Reward ← 0
4. Selected_edge← ∅
5. For e in |E|
6. For i in |V |
7. For j in |V |
8. If i! = j
9. GS_Edge_Reward(e) = α ∗ EBCap(enbc)+ β ∗

LES(ij)
10. Selected_edge← Selectededge ∪ {(i, j)
11. End For
12. End For
13. End For
14. Return GS_Edge_Reward, Selected_edge

Algorithm 2 ‘‘MAB_Edge Selection’’ is designed to select
the edges according to multi-armed bandit algorithms. This
work makes use of the epsilon-greedy algorithm and its vari-
ant. Therefore, considering 0 <∈< 1, themain purpose of the
algorithm is to select edges and their corresponding reward
that is received depending on the structural properties. The
algorithm starts by initializing the reward and candidate edges
to be selected to an empty set (line 1). Then, the reward func-
tion and candidate edge are computed and selected according
to the GS_Edge_Reward value and the value of (1− ∈). The
algorithm alternate between the use of user eccentricity and
the number of user neighbors depends on the value of hybrid
edge strength-similarity and 1− ∈ value.

Algorithm 2MAB_ Edge Selection
Input: GraphG = (V ,E), εSelected_edge,

GS_Edge_Reward
Output: select_candidaterew_candidate
1. Initialization:rew_candidate←0,
select_candidate←[], select_op_vert← []
2. If (max(GS_Edge_Reward)>(1-ε)
3. indx=argmax(GS_Edge_Reward)
4. candidate_vert1, candidate_vert2←
Selected_edge[indx]
5. select_candidate←select_candidate∪

{candidate_vert1, candidate_vert2 }
6. If (is.connected(G))
7. Selected_op_vert1←EC(G, candidate_vert1)
8. Selected_op_vert2←EC(G, candidate_vert2)
9. select_(op_vert)←select_(op_vert)∪

{Selected_op_vert1, Selected_op_vert2}
10. END IF
11. Else
12. G_subgraph_cv1=connected_shortest_path(G,
candidate_vert1)
13. G_subgraph_cv2=connected_shortest_path(G,
candidate_vert2)
14. Selected_op_vert1←ECC_ECC

(G_subgraph_cv1, candidate_vert1)
15. Selected_op_vert2←ECC_ECC

(G_subgraph_cv1, candidate_vert2)
16. select_(op_vert)←select_(op_vert)∪

{Selected_op_vert1, Selected_op_vert2}
17. utility_ select_(op_vert)=max(select_(op_vert))
18. indx=argmax(utility_ select_(op_vert))
19. seed_sel←select_candidate[indx]
20. Return utility_ select_(op_vert), seed_sel
21. Else
22. Rnd_rew←random(GS_Edge_Reward)
23. Indx_rnd←gmax(Rnd_rew)
24. candidate_vert1, candidate_vert2←
Selected_edge[Indx_rnd]
25. select_candidate←select_candidate∪

{candidate_vert1, candidate_vert2}
26. Selected_op_vert1←len(graph[candidate_vert1])
27. Selected_op_vert2←len(graph[candidate_vert2])
28. select_(op_vert)← select_(op_vert)∪
{ Selected_op_vert1, Selected_op_vert2}
29. utility_ select_(op_vert)=max(select_(op_vert))
30. indx=argmax(utility_ select_(op_vert))
31. seed_sel←select_candidate[indx]
32. Return utility_ select_(op_vert), seed_sel

A. SELECTION OF RELEVANT INFLUENCERS BASED ON
THE MAB ε-GREEDY ALGORITHM
Algorithm 3, the ‘‘SRI_MAB epsilon-greedy’’ algorithm,
adjusts the randomness in the selection of arms via an ε value
that determines the probability of exploring new arms instead
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Algorithm 3 Select_Relevant_Influencer SRI-MAB
ε-greedy

Input: Graph G, α, β, ε, seed set size K, N
Output: Seed set S regret 9
1. Initialization: S = ∅,2 = [], 9 = [],8 = 0, θ = 0
2. ψ_EES, all_tried_arms =ESBJ_Reward (graph, αβ
3. n=size(graph_nodes)
4. t_1=size(all_tried_arms)
5. while (length(S)<K):
6. For t in 1: N
7. idx=argmax(ψ_EES(t))
8. ϕ_vtxsecc(t)vert_sel=MAB_ Edge

Selection(G,ε,ψ_EES(t)all_tried_arms)
9. Candidate_seed=vert_sel
10. if Candidate_seed not in S and len(S)<K:
11. S=SU{Candidate_seed }
12.

θ (t) = θ (t − 1)+ (1− ε)[
t
n
ψ_EES (t)+

t
t_1

ϕ_vtxsecc (t)
]

+ε[
∑

_t = 1N
t

n+ t_1
P(rw_rnd)(1+ φ_vtxsdeg (t))]

13. 2(t) = 2(t − 1)Uθ (t)}
14. ψ_EES(t) = removeψ_EES(ψ_EES(t)[idx])
15. If size9)<N:
16. 8 (t)= 8 (t-1)+max(2(t))−θ(t)
17. 9(t) = 9(t− 1)U{8(t)}
18. End if
19. Else if size9(t))>= and size(S)<K:
20. Candidate_seed = pick_rnd

(all_tried_arms)
21. if Candidate_seed not in S:
22. S=SU{Candidate_seed}
23. End if
24. End else
25. Return S, 9

of exploiting available arms. The epsilon-greedy-based algo-
rithm is a simple kind of multi-armed bandit algorithm that
requires no knowledge of the history of exploration. However,
it is hard to determine the ε value that assures the highest
expected reward and the optimal choice of arms, and thus,
the optimal key influencers. Therefore, the proposed algo-
rithm takes as input the graph, parameters that control the
computation of the strength-similarity edge score, the seed
set size and the number of rounds. The SRI-MAB proceeds
by initializing necessary variables and initializing the reward
function with the output of algorithm 1, then, the size of the
seed set is fixed, and the selection of the key influencers takes
place for N rounds in which the objective is to maximize
the reward and obviously, minimize the regret. After, that
the number of steps reaches N rounds, the selection of key
influencers is performed randomly, and then, a set of key

influencers of size K and the regret obtained over N rounds is
output.

B. REGRET ANALYSIS PERFORMANCE
In this section, we analyze the performance of the online algo-
rithms proposed for identifying a set of influencers within
the online social network. Thus, we derive an upper bound
of regret for the proposed algorithm. Thus, this bound can
be adapted to other proposed algorithms depending on the ε
value that has a certain impact on the exploration vs exploita-
tion tradeoff. Regret is an opportune strategy for determin-
ing whether an online algorithm is doing well. Obviously,
the regret quantifies how an algorithm is performing on
certain graphs. One of the classic methods is applying the
algorithm with the best optimal reward parameters on the
studied problem compared to the mean reward. More for-
mally, the cumulative optimal arm (seed set) selection reward
of the online algorithm is comparedwith the cumulativemean
reward, which can be written as

8(N ) = θ∗N −
∑N

t=1
θ (t) (15)

The quantity θ∗ refers to the reward for selecting the best
arm, and thus, the best seed set and θ̄ =

∑N
t=1 θ(t) is the

cumulative mean reward.
We focus on analyzing the regret of the SRI-MAB algo-

rithm
Therefore, by recalling the Hoeffding inequality, we have
Theorem 1 (Hoeffding Inequality): Let X1,X2, . . . ,XN

be independent random variables with mean θ̄ and Xi ∈
[a, b]withi = 1, 2, ..,N , so

P
(
|θ∗ (N )− θ̄ (N ) | ≥ t

)
≤ 2exp(−

2 Nt2

(b-a)2
)

Proof of Theorem 1: can be found in [44]
Theorem 2: Let 0 < ε < 1, and Lε 6= N and K > 0, and

the upper regret bound for our SRI-MAB algorithm is at most

N
N−Lε + O

(√
N

2 KLε log (N−L
ε)

N(N+Lε)

)
Proof of Theorem 2: Therefore, let θ∗a∗ be the average

cumulative reward for selecting the best arm and thus select-
ing the seed set a∗ ∈ S ⊂ n, |S| = K , and a∗ = argmax

a∈S
θ∗a

The main purpose is |θ∗(N ) − θ̄ (N )| < δ, wherein δ
should be a small quantity, which shows the level of regret
for not always playing the best arm. Therefore, considering
an unknown distribution of the reward function of the reward
obtained by selecting the best arm, and thus, a seed set that
falls within the range [0, 1], in which we suppose that we
have N cumulative rewards θ1, θ2, . . . , θN and considering
an interval [θ̄ − δ, θ̄ + δ]. Thus, by applying the Hoeffding
inequality to show how the cumulative optimal reward is near
the expected reward, Therefore, we have:

P
(
|θ∗ (N )− θ̄ (N ) | ≥ δ

)
≤ γ (16)
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By replacing the Hoeffding inequality in the term (16),
we obtain

2 exp
(
−2δ2N

)
≤ γ (17)

log 2− 2δ2N ≤ log γ (18)

Therefore,

δ =

√
1
2N

log
2
γ

(19)

Therefore, we obtain the confidence radius δ of our reward
function. Thus, assuming that our reward functions of θ
moves toward 1 as t → ∞ as all reward functions includ-
ing ψEES , ϕeccvtxs , andφ

deg
vtxs are normalized, so their maximum

value will be 1.
Therefore, we estimate the value of γ that represents that

the upper bound of the optimum of the cumulative reward
near the true expected value.

Therefore, let N be the time horizon in which the marketer
(user) determines which arm to select and let Lε represent
the number of times that the selection of arms follows the
(1− ε) strategy and that lε refers to the number of times that
the algorithm follows the ε strategy. Therefore, the first term
requires γ = nN

LεK +
Nm
LεK +

2 N (n+m)
(N−Lε )K =

N (m+n)(N+Lε)
LεK (N−Lε ) ,

Therefore, by substituting γ into δ, we obtain the following
formula

δ =

√
1
2N

log
2LεK (N − Lε)

N (m+ n) (N + Lε)
(20)

Thus, at the exploration phase, each arm is selected at
least once, contributing to the regret with N

N−Lε for all
tested arms. In addition, the exploitation phase requires
O
(

N
LεK

√
1

2 N log
2 LεK (N−Lε)
N (m+n)(N+Lε)

)
Therefore, our regret bound consists of two parts, m ≤

KLε and n ≤ KLε , since each arm and each vertex can return
at most KLε regret for choosing an arm, and thus, a seed set.

w (N )

= |θ̄
∗
(N )− θ (N ) | ≤ γ ∗ ≤

N
N − Lε

+O(
N
LεK

√
KLε

2N
log

2LεK (N − Lε)
N (m+ n) (N + Lε)

) (21)

≤
N

N − Lε
+O(

√
N

2KLε
log

2LεK (N − Lε)
N (m+ n) (N + Lε)

) (22)

≤
N

N − Lε
+O

(√
N

2KLε
log

2LεK (N − Lε)
N2LεK (N + Lε)

)
(23)

≤
N

N − Lε
+O

(√
N

2KLε
log

(N − Lε)
N (N + Lε)

)
(24)

C. THE GREEDY ALGORITHM FOR SELECTING RELEVANT
INFLUENCERS SRI_CGSS FEXPL-GREEDY: FULL
EXPLOITATION (ε = 1)
The SRI_CGSS fexpl-greedy algorithm is a version of the
ε-greedy algorithm with ε = 1, that prioritizes the exploita-
tion with a high rate compared to the exploration with neg-
ligible value. Therefore, the pure greedy algorithm for the
selection of relevant influencers is based on the previous algo-
rithms namely, algorithm 1, which feeds themulti-armed ban-
dit algorithm with the initial reward function and algorithm 2,
which determines the optimal arms, and thus, the optimal
‘‘relevant influencers’’ depending on the variation in the
obtained reward and the value of ε. In this case, we can
determine the steps for the selection of relevant influencers
SRI_CGSS fexpl-greedy from the pseudocode of algorithm 3
by setting ε = 1. The main difference here is that the
algorithm is primarily exploiting the best arms and exploring
at a low rate. Then, it selects some relevant influencers by
counting the local neighborhood, and the remaining steps are
performed by a global metric eccentricity to select all remain-
ing arms. Thus, with this strategy, the algorithm mostly uses
global structural properties to choose the candidate seed set.

D. THE GREEDY ALGORITHM FOR THE SELECTION OF
RELEVANT INFLUENCERS SRI_CGSS FEXPR-GREEDY:
ALMOST EXPLORING (ε = 0)
The second version of the ‘‘SRI-MAB ε-greedy’’ algorithm 4,
named ‘‘SRI_CGSS fexpr-greedy’’ is when the algorithm
primarily explores where the arms are selected randomly, and
the seed set is selected according to the number of neighbors.
Thus, the routine for the algorithm follows the same strategy
while putting ε = 0, and thus, extracts required relevant
influencers with the size of the seed set equal to K and regret
over N rounds.
Analyzing the algorithm consists of an essential part to

prove the efficiency and effectiveness in terms of required
tasks given an input and a series of instructions. In the follow-
ing subsections, we provide the time complexity and space
required by the SRI-MAB ε-greedy algorithm.

E. TIME COMPLEXITY
The time complexity for an algorithm expresses the total
amount of time required to complete the computation of the
problem described by the algorithm instructions. Therefore,
by analyzing the algorithm in terms of time complexity,
we can quantify to what extent the algorithm performs well
independent of resources and hardware. The first line 1 ini-
tializes five algorithm variables which requires at most O(5),
so the first line has a constant time complexity. The sec-
ond line calls algorithm 2 to output the initialization of the
reward matrix of the multi-armed bandit and corresponding
pulled arms (selected edges) that requires at most O(n2d +
n2 log n + mn + m) time. The first part of algorithm 3 from
line 1 to line 4 requires at most O(n2d + n2 log n + mn +
m) time to initialize the reward matrix of the multi-armed
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FIGURE 3. Influence spread under the IC model on Nethept data.

bandit algorithm and essential variables. Then, the remaining
instruction that follows while and the inner for loops requires
at most O((Nn (m log n+ 1) logK )) time.

Overall the time complexity required by the SRI-MAB
ε-greedy algorithm is O(n2d + n2 log n + mn + m +
Nn (m log n+ 1) logK ) to complete the computation of the
seed set of size K and regret 9 of size N .

F. SPACE COMPLEXITY
The space complexity of an algorithm can be seen as the
total memory required by the algorithm pseudocode to run.
It serves to assess how much pseudocode requires for storage
to run promptly. The SRI-MAB algorithm requires one unit of
storage for each variable for initialization (Line 1, lines 3-4).
The rest of the algorithm requires O(m + n2) of storage
to run. Knowing that most functions used by the algorithm
need at most O(m + n2) space including ψEES , ϕeccvtxs . There-
fore, the overall space complexity needed by the algorithm
is O(n2 + m).

VI. EXPERIMENTAL RESULTS
The main purpose of this section is to test the effective-
ness and performance of the proposed algorithms and thus
evaluate the selection of a seed set of size K and show
how regret varies with respect toN rounds. The major goal
here is to assess the three proposed algorithms based on
global structural properties and three variants of ε-greedy
algorithms against the state-of-the-art approaches in terms
of the influence achieved, running time required and the
necessary space complexity needed by each algorithm to
complete the selection and running the diffusion models.
Additionally, we are interested in showing the cumulative

TABLE 1. Data characteristics.

regret of our algorithms and the impact of using the greedy
strategy from the MAB algorithms and reward parameters
used for initialization. We also assigned different values to
ε to compare its impact on the influence spread under the IC
and LT models.

Table 1 represents characteristics of the dataset used
throughout the experiments section. All experiments are con-
ducted on a Linux server 28 CPU with 112 GB memory.

In this section, we present the experimental results for
three proposed algorithms based on the multi-armed bandit
including nearly full exploitation with negligible exploration,
nearly full exploration with insignificant exploitation and
the last algorithm is when the algorithm is exploring and
exploiting with a certain value ε. We fixed the number of
rounds to N = 100, and evaluated the proposed algorithms in
terms of the influence achieved compared with existing work
in which we fixed α = 0.9, β = 0.1(α = 0.1, β = 0.9) for
all algorithms and datasets. Thus, we compared its efficiency
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FIGURE 4. Influence spread under the IC model on Nephy data.

FIGURE 5. Influence spread under the IC model on Eu-Email data.

in terms of time complexity and storage space needed. There-
after, we conducted experiments for each algorithm in terms
of cumulative regret and influence spread under the ICmodel,
where the best parameters that provide the highest spread of
influence are selected.

We compare our proposed algorithms against some
well-known algorithms including degree discount heuris-
tic ‘‘DDH’’ [9], BCT [45], TIM+ [46], CELF [7], and
CELF++ [8].
In the following, for each algorithm, we present the influ-

ence achieved, time, and storage space required compared
with existing approaches. Next, for each algorithm, we vary
the multi-armed bandit initialization reward with different

values and see its impact on the influence achieved as well
as on the cumulative regret for each initialization reward
value.

A. THE GREEDY ALGORITHM (SRI-CGSS FEXPL-GREEDY)
ALMOST EXPLOITING (ε = 1)
1) INFLUENCE SPREAD UNDER THE IC MODEL ON THE
FOUR DATASETS
Figure 3, Figure 4, Figure 5, and Figure 6 represent the
influence spread achieved versus the seed set size under the
IC model. We can observe clearly in Figure 3, Figure 4,
and Figure 6 that the proposed algorithm outperforms all
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FIGURE 6. Influence spread under the IC model on Twitter data.

FIGURE 7. Influence spread under the LT model on Nethept data.

algorithms in terms of influence spread and is especially
better than the ’’DDH’’ algorithm by 0.0066% for NetHept
data. Likewise, the proposed algorithm for full exploitation
(pure greedy with negligible exploration ‘‘SRI-CGSS fexpl-
greedy’’ is better than all algorithms, especially when the
algorithm relies more on the similarity of the immediate
shared neighbors ‘‘β = 0.9’’that provide the best results in
terms of the number of touched users that surpasses the DDH

algorithm with 0.01% for the NetPhy data. Similarly, for the
Twitter data, the spread of influence is better overall than all
other algorithms with 0.810−5% which is a small difference
between our algorithm compared with the ‘‘DDH’’. However,
‘‘SRI-CGSS fexpl-greedy’’ performed better than other algo-
rithms except for the DDH algorithm for the Eu-Email data,
which is lower by 0.005%, which seems to be a small amount
that can be improved by adjusting the value of the reward
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TABLE 2. Time and space complexity under the IC model for seed set size K = 50.

function which will be discussed later in this section.

(ε = 1)

Table 2. shows the running time and space complexity
under the IC model for four studied datasets. As we can
observe in Table 2, our algorithm consumes more time com-
pared with some existing algorithms including DDH, BCT,
TIM+, but as seen from previous figures, it achieves a higher
influence spread. However, our algorithms require much less
time than CELF and CELF++. Also, compared with DDH
algorithm on big datasets such as Eu-Email and Twitter,
we can notice that the proposed algorithm require less time.
This increase in running time can be justified by the fact
that our method relies on global centrality measures that we
tried to optimize its running time and that the simulation of
selecting the seed set requires 100 rounds to complete the
identification of the seed set. Comparably we can see from
the above Table that the proposed algorithm required more
storage space than the existing approaches especially for the
Eu-Email and Twitter dataset and that it requires less storage
space for NetHept and NetPhy data compared with the TIM+
algorithm.

2) INFLUENCE SPREAD UNDER THE LT MODEL ON THE
FOUR DATASET
Figure 7, Figure 8, Figure 9, and Figure 10 report the influ-
ence spread achieved for the four datasets under the LT

model. We note that the proposed approach is designed pri-
marily for the IC model which operates differently than the
LT model. So, from the above figures, we can see that our
algorithm performed better than the DDH and BCT algo-
rithms on the NetPhy data. However, our approach needs
improvement in terms of tuning parameters to adapt it to the
LT model.

Table 3. presents the time and space complexity needed by
the proposed algorithm with full exploitation and negligible
exploration compared with existing approaches under the LT
model.We can deduce from the algorithm results that we have
the same time and space requirements for the selection of the
seed set over 100 rounds and then the LT is performed. From
this, we note the same behavior as the IC model, and thus,
the proposed approach consumes less time than CELF and
CELF++ and it requires less storage space than TIM+ for
the NetHept and NetPhy data. In addition, since the TIM+
algorithm is based mainly on a reverse reachable set that
attempts to determine the number of RR sets and then pro-
duces the sets that require less time and space, especially for
the large graph. In addition, BCT requires less time and space
than TIM+ since it already stores cost and benefit graphs,
which generate a reasonable sample which makes it more
scalable in terms of time and space on a large graph. However,
CELF and CELF++ is an improvement in time complexity
of the greedy algorithm [6], and despite the improvement in
running time, those algorithms cannot run on the large graphs
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FIGURE 8. Influence spread under the LT model on Netphy data.

FIGURE 9. Influence spread under the LT model on Eu-Email data.

that are depicted in our experiments and require a large time
to complete the computation of the seed set and the influence
achieved.

3) CUMULATIVE REGRET ON FOUR STUDIED DATASETS
This subsection concentrates on the study of the cumulative
regret when choosing arms over N = 100 rounds by taking
the optimal arms (i.e., edges). The main objective of this
subsection is to knowwhich values of the initialization reward
functionwill lead to less cumulative regret.More importantly,

we are interested to see how the followed exploitation with
negligible exploration strategy performed in terms of select-
ing the best arm, and thus, incurred the minimum cumulative
regret. So, specifically, here we present some experiments
regarding the proposed algorithm ‘‘SRI-CGSS fexpl-greedy’’
for the selection of relevant influencers with full exploitation
and insignificant exploration based on edge strength and
edge members similarity which assesses, at the same time,
two interesting aspects for the selection of relevant influ-
encers ‘‘seed set’’, which identifies the edges that are in the
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FIGURE 10. Influence spread under the LT model on Twitter data.

TABLE 3. Time and space complexity under the LT model for seed set size K = 50.

central position and how likely the edge members are similar.
As mentioned earlier we conducted various experiments to
determine which parameter fits best for the algorithm that
outputs a lower cumulative regret over four datasets presented
above.

Figure 11, Figure 12, Figure 13, and Figure 14 repre-
sent the cumulative regret over N rounds for the SRI-CGSS
fexpl-greedy algorithm with distinct parameter values for
reward initialization. We can clearly observe from the fig-
ures that the values of the reward parameters α and β of the
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FIGURE 11. Cumulative regret on Nethept data versus the number of rounds.

FIGURE 12. Cumulative regret on Netphy data versus the number of rounds.

algorithm that provides a low cumulative regret differ depend-
ing on the studied graph. More specifically, SRI-CGSS fexpl-
greedy algorithm provides low cumulative regret when edge
members have a certain tendency to be similar to each
other without addressing the edge position in the network
on the NetHept data. However, SRI-CGSS fexpl-greedy algo-
rithm provides satisfactory results manifested with the lowest
regret, when the algorithm selects over N round edges based
only on the positions of the edges on the Eu-Email. Addition-
ally, we notice that it is important to have a central position
for selected edges with a negligible consideration of themem-
bers’ similarity rate on NetPhy data. Unlikely, on the NetPhy

data, the algorithm performswell on the Twitter data when the
edges are selected according to edge members’ similarity.

4) IMPACT OF REWARD FUNCTION ON INFLUENCE SPREAD
In this subsection, we try distinct values of α and β and
observe its impact on the influence spread. More precisely,
we are interested in showing how the parameters of the
reward function of the multi-armed bandit algorithm impact
the decision of arms selection, and thus, nodes that maximize
the spread of promoted products and behaviors.

Figure 27, Figure 28, Figure 29, and Figure 30 display
the influence achieved under the IC model versus the seed
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FIGURE 13. Cumulative regret on Eu-Email data versus the number of rounds.

FIGURE 14. Cumulative regret on Twitter data versus the number of rounds.

set size when the selection of arms is performed by mainly
exploiting and exploring few times. We notice that the algo-
rithm performed very well on undirected graphs while the
directed setting required some adjustment to provide higher
influence coverage. We observe that our algorithm performed
very well on the NetHept data and increased the number of
touched users compared with the previous setting (α = 0.9,
β = 0.1), while it seemed promising that if adjacent users
were at some extent similar, it presented a high influence
spread on the NetHept data which confirmed that performing
the choice of seed set using the similarity rate was better and
provided less cumulative regret, which shows how we regret

the choice of wrong arms and thus, the seed set. Similarly,
on the results reported on NetPhy data, it can be seen clearly
that the influence was higher when selected edges are central
without focusing on how similar the edge members are. In the
same sense, the influence coverage is higher on the Eu-Email
data, and when choosing the seed set according to the edge
position, its cumulative regret is the lowest. Different than
undirected data, and Eu-Email, we notice in Figure 30 that
it gives good results when the seed set is selected based
primarily on the position of the edges, i.e., edges with a
central position ‘‘how edges are located among other edges
on Twitter data’’.
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FIGURE 15. Impact of varying α and β on influence spread on Nethept data.

FIGURE 16. Impact of varying α and β on influence spread on Netphy data.

B. GREEDY ALGORITHM (SRI_CGSS FEXPR-GREEDY):
ALMOST EXPLORING (ε = 0)
We concentrate here on presenting results regarding the
second algorithm, SRI_CGSS fexpr-greedy, which focuses
mainly on exploring with a selection of arms randomly, while
the difference is that the selection of relevant influencers is
chosen based on some centrality measures and exploiting
rarely the best arms with the highest reward.

Figure 19, Figure 20, Figure 21, and Figure 22 present
the influence achieved by our algorithm with the full explo-
ration and negligible exploitation ‘‘SRI-CGSS fexpr-greedy

‘‘compared with the previous algorithms on four studied
datasets under the ICmodel. From all figures, we observe that
‘‘SRI-CGSS fexpr-greedy’’ algorithm perform better overall
in terms of influence spread than all existing algorithms
on the NetHept, NetPhy, and Twitter data, whereas the full
exploration with few rounds of exploitation has lower per-
formance by 0.005% than the DDH algorithm on Eu-Email
data.

Table 4 reports the time and space complexity required
on the four datasets under the IC model. We notice that
the proposed algorithm requires less time than CELF and
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FIGURE 17. Impact of varying α and β on influence spread on Eu-Email data.

FIGURE 18. Impact of varying α and β on influence spread on Twitter data.

CELF++ on all datasets and less time than DDH on the
Twitter and Eu-Email data. In addition, the proposed algo-
rithm demonstrates that it requires more space storage than
TIM+ on two undirected graphs while it needs more storage
on a large directed dataset including Twitter and Eu-Email.
As per justification and as discussed earlier that each algo-
rithm requires certain conditions to be carried on as DDH
uses simple degree centrality with discount which makes it
a method based local centrality measure and thus requires
less computational complexity than our proposed algorithms.
However, sometimes DDH has a higher time complexity

when conducting experiments on large scale data than our
proposed algorithms, this may depend on graph structure
and how each algorithm needs to use graph properties. After
all, despite that, the DDH is a method based local network
topology provides a low spread efficiency on some datasets
compared with our proposed algorithms that are based on
global network properties. Additionally, ourmethods perform
very well on some graphs compared to all other algorithms
such as NetHept data and perform a little bit efficient on
all other datasets in term of influence spread and even has
a reasonable running time over N rounds.
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FIGURE 19. Influence spread under the IC model on Nethept data.

FIGURE 20. Influence spread under the IC model on Netphy data.

1) INFLUENCE SPREAD UNDER THE LT MODEL ON THE
FOUR DATASET
Figure 23, Figure 24, Figure 25, and Figure 26 depict the
number of influenced users on four studied datasets under
the LT model. We can see clearly from the figures that the

proposed algorithm performed better than theDDH algorithm
for NetHept data while is less in terms of influence achieved
than other algorithms. Similarly, our algorithm provided bet-
ter results in terms of the influence spread on the NetPhy data
than the DDH and BCT algorithms while it was lower than
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FIGURE 21. Influence spread under the IC model on Eu-Email data.

FIGURE 22. Influence spread under the IC model on Twitter data.

the rest of the algorithms. This can be enhanced by setting
parameters that mostly fit for the used diffusionmodels which
will be discussed later in this section.

Table 5 reports the time and space required to select the
seed set and measure the influence under the LT model on
the four studied datasets. It can be seen that the proposed

VOLUME 7, 2019 69729



M. Alshahrani et al.: Influence Maximization-Based Global Structural Properties: A Multi-Armed Bandit Approach

TABLE 4. Time and space complexity under the IC model for seed set size K = 50.

FIGURE 23. Influence spread under the LT model on Nethept data.

algorithm had lower runtime compared with CELF and
CELF++ on all the datasets and required less storage than
TIM+ on the NetPhy and NetHept datasets.

2) CUMULATIVE REGRET ON FOUR STUDIED DATASETS
We focus on the analysis of cumulative regret obtained
over N rounds on the four studied datasets. We are
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FIGURE 24. Influence spread under the LT model on Netphy data.

FIGURE 25. Influence spread under the LT model on Eu-Email data.

interested in showing how the reward parameters impact
the changes in cumulative regret. This part of the experi-
ment presents cumulative regret when the selection of arms
and thus, the seed set, is mostly exploiting and rarely
exploring.

Figure 27, Figure 28, Figure 29, and Figure 30 depict
cumulative regret on the four studied datasets over N rounds.
It can be seen that for the NetHept and Twitter datasets,
the selection of relevant influencers should rely mainly
on the similarity between adjacent users with a high rate
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FIGURE 26. Influence spread under the LT model on Twitter data.

TABLE 5. Time and space complexity under the LT model for seed set size K = 50.

while for NetPhy and Eu-Email it seems that the algo-
rithm performed well in promoting the product among
other users in the case in which the selected seed set

falls between many other edges. This changes the perfor-
mance in that the lowest cumulative regret differs from one
setting to another depending largely on the structure of the
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FIGURE 27. Cumulative regret on Nethept data versus the number of rounds.

FIGURE 28. Cumulative regret on Nethphy data versus the number of rounds.

studied graph and how the individuals are connected to each
other.

3) IMPACT OF REWARD FUNCTION ON INFLUENCE SPREAD
Figure 31, Figure 32, Figure 33, and Figure 34 present
the influence achieved versus the seed set size that can be
granted to select relevant influencers. We remark that the
choice of relevant influencers is affected by the initialization
of the multi-armed bandit reward that differs significantly
in terms of the number of individuals who adopted the
promoted product, and thus, we notice that for NetHept
and Eu-Email, the algorithm performed well in terms of

influencing many individuals when it rarely relies on the
selection of central users while focusing on how individ-
uals are similar to each other. However, for NetPhy data,
it seems that the proposed approach achieved better results
when most central edges are considered, and thus, seed sets
are selected accordingly and that ‘‘SRI-CGSS fexpr-greedy’’
provides promising results when there is a balance between
selecting most central edges and most edge members that are
similar to each other by sharing the same interest. From this,
we conclude that a preliminary study of the network structure
of data is of great importance considering the used diffusion
models. Another interesting remark is the low regret, and
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FIGURE 29. Cumulative regret on Eu-Email data versus the number of rounds.

FIGURE 30. Cumulative regret on Twitter data versus the number of rounds.

the best influence can be seen on the NetHept and Net-
Phy which confirm that the designed methodology is suited
for most for undirected graphs by the 90% rate. However,
it should be improved for undirected graphs that match
by 40%.

C. SRI-MAB ε-GREEDY ALGORITHM
This part of the experiment concentrates on the selection of
relevant influencers by using the epsilon-greedy algorithm
and by initializing the reward function by some centrality
measures that help to select a seed set that is relevant to spread
the influence as much as possible. The experiment takes place

over N rounds in online sequential decision-makingwhere the
selection made at each round is either in selecting the arms at
the exploitation phase with immediate reward rew should be
greater than 1 − ε or at the exploration phase with rew less
than 1− ε.
As in the previous section, we are interested in evaluating

the ‘‘SRI-MAB ε-greedy’’ algorithm regarding its perfor-
mance in terms of the achieved influence, time complex-
ity and storage needed compared with existing algorithms.
Then, we chose two parameterizations for each ε to deter-
mine its impact on both influence coverage and cumulative
regret.
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FIGURE 31. Impact of varying α and β on influence spread on Nethept data.

FIGURE 32. Impact of varying α and β on influence spread on Netphy data.

Figure 35, Figure 36, Figure 37, and Figure 38 represent
the number of influenced users under the IC model on the
four datasets. From the four figures above, we deduce that the
‘‘SRI-MAB ε -greedy’’ algorithm performs better by 0.125%
than the best existing algorithm ‘‘DDH’’ on NetHept and
is better by 0.001% on the NetPhy data and by 0.002% on
the Twitter data. However, the proposed algorithm provides
worse performance in terms of overall influence spread
for Eu-Email compared with the best algorithm, DDH, by
0.0027%. Therefore, the proposed algorithm performs very
well compared with existing approaches on three datasets and

is slightly lower only for Eu-Email which could be improved
significantly by adjusting initial reward function and thus fit-
ting the ε and finding an optimal balance between exploration
and exploitation.

Table 6, shows the time and space needed to select the
seed set and measure the influence spread under the IC model
for the worst case, which means that we have to choose the
K = 50 most relevant influencers. We clearly notice that
as with the previous algorithms, the introduced algorithm
required less time than CELF and CELF++ on all data and
also required less time than DDH on the Twitter data.
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FIGURE 33. Impact of varying α and β on influence spread on Eu-Email data.

FIGURE 34. Impact of varying α and β on influence spread on Twitter data.

Figure 39, Figure 40, Figure 41, and Figure 42 report the
influence spread on the four studied datasets under the LT
model. We notice that, as previously, our algorithm did not
provide the best influence under the LT model compared
with other algorithms including CELF++, TIM+, BCT,
and CELF. Additionally, even the existing algorithms did
not perform well on all data, since we notice that BCT is
the best algorithm on NetHept, Twitter and Eu-Email data,
TIM+ and CELF++ is more performant on the NetPhy
data.

Table 7 shows the time and space required on four datasets
under the LTmodel for selecting K = 50 relevant influencers.
We observe that the proposed algorithm required less time
than CELF and CELF++ on all the datasets and required
less space on undirected graphs namely, NetHept and NetPhy
data compared with TIM+. This indicates that the proposed
algorithms compute global structural properties on all the
graphs, which requiremore time and storage space to store the
data. Additionally, the algorithm ran over 100 rounds, which
increased the time for identification of the seed set.
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TABLE 6. Time and space complexity under the IC model for seed set size K = 50.

FIGURE 35. Influence spread under the IC model on Nethept data.

1) CUMULATIVE REGRET ON FOUR STUDIED DATASET
Figure 43, Figure 44, Figure 45, and Figure 46 show cumu-
lative regret on the four datasets over N rounds for the

‘‘SRI-MAB ε-greedy’’ algorithm. We note that the algorithm
has the lowest regret when ε = 0.1 and that the selec-
tion of the seed set affects a large number of individuals
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FIGURE 36. Influence spread under the IC model on Netphy data.

FIGURE 37. Influence spread under the IC model on Eu-Email data.

mostly when those selected seed sets are similar to some
extent to each other on the Twitter, Eu-Email and the
NetPhy data, and the lowest cumulative regret occurred

when the seed set was chosen according to its position
within the network among other individuals on the NetHept
data.
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FIGURE 38. Influence spread under the IC model on Twitter data.

FIGURE 39. Influence spread under the LT model on Nethept data.

2) IMPACT OF REWARD FUNCTION ON INFLUENCE SPREAD
Figure 47, Figure 48, Figure 49, and Figure 50 display the
influence spread achieved versus seed set size when we
apply the ‘‘SRI-MAB ε-greedy’’ algorithm to select rele-
vant influencers over N rounds. We notice that under the IC
model, the selected seed set through the‘‘SRI-MAB ε-greedy

algorithm achieved higher overall influence on all the datasets
when ε = 0.05 and that it is more efficient, especially
on the NetPhy and Twitter data to balance the choice of
α = 0.5 and β = 0.5 values between selecting edges
in a central position and edge members that are similar to
each other. In addition, we note that the selection of the seed
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FIGURE 40. Influence spread under the LT model on Netphy data.

FIGURE 41. Influence spread under the LT model on Eu-Email data.

set is more efficient on the NetHept data with the selected
arms, and thus, the seed set are selected by accounting for
the edge members’ similarity without considering the edge
positions among the other edges in the network. However,
the Eu-Email edge positions seem important for selecting
relevant influencers that maximize the number of infected
individuals.

VII. DISCUSSION
This work represents a step toward designing an effective
method for selecting the most relevant influencers by adopt-
ing the greedy family of multi-armed bandit algorithms and
is an attempt to find a tradeoff between exploitation and
explorationwith a selection of seed set. First, we focus on pre-
senting a seed set selection algorithm that fully exploits and
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FIGURE 42. Influence spread under the LT model on Twitter data.

FIGURE 43. Cumulative regret on Nethept data versus the number of rounds.

explores rarely with a selection of relevant influencers based
on position and similarity. Second, we concentrate on fully
exploring and rarely exploiting with seed set selection. Then,
a ε SRI-based MAB algorithm that balances exploration and
exploitation is introduced. The main challenge is to find the
exact value of ε that provides the best choice of seed set
that maximizes the influence spread. Mainly, we performed

extensive experimental results on the three algorithm versions
and concluded that the introduced algorithms are better in
terms of touching a large number of individuals when the
algorithms rely on reward initialization mostly on edge loca-
tions among other edges in the network and rarely use the
similarity of edge members. The proposed algorithms out-
perform all existing approaches on three datasets including
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FIGURE 44. Cumulative regret on netphy data versus the number of rounds.

TABLE 7. Time and space complexity under the LT model for seed set size K = 50.

NetHept, NetPhy, and Twitter data except for the Eu-Email
data that has less influence compared toDDH.Our algorithms
provide better results by adjusting values of ε, α, and β,

so a deep study of how these parameter values should be
considered for improving the selection of the best arms and
thus, seed set. In addition, sometimes random exploration
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FIGURE 45. Cumulative regret on Eu-Email data versus the number of rounds.

FIGURE 46. Cumulative regret on Twitter data versus the number of rounds.

with some deterministic selection of seed sets leads to the
choice of relevant influencers and sometimes performs better
than the ε exploitation-exploration strategy, that when fail-
ing the choice of the correct ε value that fits the studied
dataset may give lower results in terms of the spread of
influence.

Our proposed algorithms consume a little bit more time
than some existing algorithms such as BCT, TIM+, and DDH
on some datasets. This can be justified that the proposed
algorithms need to run over 100 rounds to complete the
selection as well as it relies on some global centrality measure
that we improved largely its running time and that some of

the existing approaches have somemarginal spread that could
not be improved under their proposal. However, our proposed
algorithms can improve the spreading efficiency largely by
adjusting the exploitation and exploration strategies and also
by adjusting the tuning parameters of the corresponding
reward function. Besides, the proposed algorithms run on a
reasonable time on a large scale graph and exceed in most
the spread efficiency under the IC model of all algorithms
we compared with including CELF and CELF++ which are
an improvement in time complexity of the original greedy
algorithms. In addition, the introduced methodology may fit
a large range of datasets which may not be the case for other
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FIGURE 47. Impact of varying α and β on influence spread on Nethept data.

FIGURE 48. Impact of varying α and β on influence spread on Netphy data.

algorithms and is a step forward to explore further how may
the reward function impact the results of spread on a MAB
framework, and that the time spent to search for best seed set
may be optimized later by parallelizing the computation of
reward function.

As the next step, we moved on to evaluate the cumu-
lative regret obtained by three proposed algorithms on all
studied datasets and we deduced that the cumulative regret
is the lowest on NetHept and Twitter data when the initial-
ization of the multi-armed bandit reward algorithms relied

more on the similarity of the selected edge members and
ignored the central position of the edges. In addition, ε =
0.1 in the third algorithm seems to provide good results
besides ε = 0.05 with the choice of adequate values
of reward parameters. Whereas, for NetPhy and Eu-Email
data, the cumulative regret is less when the reward of the
multi-armed bandit algorithms is based on selected edge
members that are more similar to each other. Thus, we note
that ‘‘SRI-CGSS fexpr-greedy’’ has the lowest regret com-
paredwith other proposed algorithms. In the last experiments,
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FIGURE 49. Impact of varying α and β on influence spread on Eu-Email data.

FIGURE 50. Impact of varying α and β on influence spread on Twitter data.

we attempted to test the best values that provide better influ-
ence and that efficiently select the seed set that maximizes
the spread under the IC model. We notice that the lowest
cumulative regret provided better influence spread, especially
for the ‘‘SRI-CGSS fexpr-greedy’’ and ‘‘SRI-CGSS fexpr-
greedy’’ algorithms that confirm that the lower the cumulative
regret, the better the selection of seed set that is made over N
rounds on the NetHept, NetPhy and Eu-Email dataset.

These results are based on two assumptions, including
that some global structural properties of the graph are
known and that in the exploitation and exploration is made
with a selection of seed sets with the help of central-
ity measures according to the designed algorithms. Fur-
ther investigation should be made regarding the analysis
of the designed algorithms’ behavior with respect to the
ε value.

VOLUME 7, 2019 69745



M. Alshahrani et al.: Influence Maximization-Based Global Structural Properties: A Multi-Armed Bandit Approach

VIII. CONCLUSION
We proposed newmethods for identification of relevant influ-
encers based on global and local centrality measures to feed
online learning multi-armed bandit algorithms. Additionally,
in contrast to existing research works that attempted to learn
the probability of diffusion models, and how to infer these
propagation probabilities, which is an important direction to
understand, analyze and study, our work serves as a rank-
ing method in online sequential decision-making algorithm,
where at each round, the individual may select an arm (i.e.,
edge), and thus, seed sets are selected according to some
centrality measures that quantify the best-selected individual.
We studied the proposed algorithms from various aspects
ranging from the influence spread achieved to the time and
space needed to compute the number of influenced individ-
uals. Our methods primarily addressed the selection of the
seed set by using exploitation/exploration to select relevant
influencers that have a greater tendency to impact their pairs
and further the information flow. We showed the impact of
the multi-armed bandit reward initialization on the selection
process and how the choice of ε may rank individuals as
potential spreaders differently. Additionally, we tried to adapt
proposed algorithms to a different dataset, so that this study
can be a benchmark for further study and analysis.

The proposed algorithms can be enhanced and further
analyzed to improve the selection of seed set by conducting an
in-depth study on multi-armed bandit reward parameters and
how it should be chosen to improve results of the selection
of arms and thus minimize the cumulative regret over all
dataset. Additionally, it is of some interest to consider that the
multi-armed bandit reward is unknown or partially unknown
where the marketer may have some information about the
network structure or no knowledge regarding the network
properties that will conform to real-world problems. Thus,
as an extension, we will test the approach under different
multi-armed bandit algorithms for further investigation.
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