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ABSTRACT Molecular communication (MC) system is an emerging technology for nanoscale networks.
Therefore, there is a requirement to develop a new end-to-end MC model, which may deliver new perceptions
into the aspect of these nanoscale networks. This paper aims to implement the MC framework as an end-
to-end deep reinforcement learning (DRL) auto encoder (AE). The technique enables training of the MC
system without any information about the actual channel (medium) model. For training the receiver and
transmitter, the proposed techniques are supervised learning and DRL, respectively. The results show that
the performance of the DRL autoencoder (AE) based system achieves nearly the same performance as the
traditional modulation and demodulation methods in term of bit-error-rate (BER) under the Gaussian noise
channel but with less complexity. The proposed technique can also be joint with the other coding methods

to improve their performance.

INDEX TERMS Molecular communication (MC), deep reinforcement learning (DRL), auto encoder (AE),

bit-error-rate (BER).

I. INTRODUCTION
Molecular communication (MC) is a bio-inspired technique
in which molecules are used for encoding, transferring and
receiving information, similar to the way living organs com-
municate [1]. Due to its bio-compatible, energy-efficient
and robust use in biological environments, the MC finds
importance in vivo biomedical applications [2], for example,
health care monitoring by using the Internet of Bio-Nano
Things (IoBNT) [3], empowered bio-Nano sensors, etc.
Currently, the most critical issues in the MC system are
how information is reliably transmitted from one end trans-
mitter 7, to another end receiver Ry [4]. During the trans-
mission, the signal suffers from distortion and noise due to
the implicated channel state. In the MC, modeling the whole
system is optimized in a divide and conquer perspective [5].
Massive research has focused on the optimization of each
module for the different channel environments and applica-
tion demands. According to the data processing theorem [6]
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in information theory, the optimization of sub-modules for
communications cannot assure the global optimal, though
it is uncertain if these intelligent modules are adequate to
support the greatest probable performance and the efforts to
cooperatively optimize these are difficult to be applied [7].
This problem motivates the utilization of Deep Learn-
ing (DL) [8] to allow optimization of the MC as an end-to-
end system [9]-[14]. In deep learning based communication
systems, it is possible to jointly optimize the transmitter
and receiver with the structure of an autoencoder [15]-[18]
instead of artificially introduced block schemes [19], [20].

DL techniques enable us to design the MC as an end-
to-end system because of their ability to estimate any non-
linear function. This kind of scheme, which is built as a
full framework learning, precludes the conventional modular
arrangement since the scheme is utilized as a single deep
neural network and has the promise of accomplishing the
optimum end-to-end performance.

This method aims to obtain an input message at each
layer of the system. Essentially, this permits a communication
system to be adjusted for transmitting information through
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a different environment. In this paper, we focus on further
exploring the application of an autoencoder in the physical
layer. Our main contribution is to identify a structure based
on a Deep Reinforcement Learning (DRL) Auto Encoder that
can jointly optimize the 7, and R, design which has the
next feature, the property of using supervised learning and
DRL for training the receiver and the transmitter, respectively.
Based on the performance evaluation and analysis, we con-
clude that the proposed technique achieves the same perfor-
mance as the traditional molecular communication modeling.

Notations: the lower letters and bold upper letters indicate
column vectors and matrices, respectively. The sets of real
and complex numbers are described as R and C. The Jacobian
and gradient operator w.r.t and the group of parameters 6 are
both indicated as Vg; (.)7 is the transpose operator.

Il. RELATED WORK

In previous studies, such as the MC, pheromone signaling,
calcium signaling, microtubules, and the bacterium based
communication have been proposed. Between these schemes,
MC via diffusion is the most effective and energy efficient
scheme [21].

An autoencoder end-to-end communication-based system
was developed by [22] and (MIMO) has been produced, both
of which demonstrate the versatility of this technique [23].

In [24] and [25], the authors described the use of an autoen-
coder as an end-to-end system. It was proposed to inter-
pret end-to-end communication systems as autoencoders,
where Ty, and R, are implemented as (DNNs). The main
drawback of this is theoretically the need for a mathematical
channel model to perform the training. This makes its appli-
cation to real channels of practical interest challenging [26].
The first approach to avoid this problem consists of training
the system using a medium model and at the same time, fine-
tuning the receiver with measured data. A shortcoming of this
approach is the sub-optimal training of the transmitter, which
makes it not totally satisfactory [27].

Moreover, other solutions studied by multiple authors con-
sist of learning a differentiable channel computational model
in the form of a (GAN), which can then be used for super-
vised autoencoder training. However, it still needs to be
shown that this approach works for practical channels [28].
Lastly, the receiver is not actually trained and detects symbols
through clustering. Another model-free approach is devel-
oped based on simultaneous perturbation methods. Much
research has focused on the optimization [29], [30], although
all of these methods do not necessitate any knowledge of the
channel and can be directly performed with real hardware.

Ill. MOLECULAR COMMUNICATION SYSTEM MODEL

The essential components of an MC system are a transmitter,
receiver, and channel. The transmitter is a point placed at
a distance (d) from the midpoint of the receiver. It releases
molecules that freely and individually diffuse from each other
via Brownian motion. To be precise, the molecules randomly
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FIGURE 1. The CDF output of Gaussian model.

diffuse over the channel, and the gesture of a molecule is not
dependent on the gesture of any additional molecules [31].
For each information particle, the hitting ratio is stated as

follows:
Ty d
Ryuir (1) = erfc 1
hlt( ) d + ry f [\/m] ( )

where r, D, and d indicate the radius of the receiver, the
diffusion coefficient and the distance between T and R,.

The arrival of molecules is a binomial process in its
nature. When considering a single emission of N* molecules
att =0, Nle is expressed as a binomial random variable
stated as follows:

N~ B (N Py) @)

where P; denotes the predictable amount of molecules
absorbed by the receiver node through the initial symbol
period, the binomial distribution with n success and the trail
probability p is indicated by B (n; p).

For a broad circumstance with several emissions in a
period, the number of received molecules is affected by the
existing and prior emissions. Hence, we get

i
NE o~ 3B (NP Pk ) 3)
k=1

where Nka indicates the number of emitted molecules in the
k™ symbol duration.

Due to the complexity of the binomial random vari-
ables, the computational model is mostly approached by the
Gaussian model [32] given as follows:

i i
N~ R (Z NEPigyr, Y NFPiga (1 — Pik+])>
k=1 k=1
“)

The N in values are used to evaluate the CDF Fyr«(x) for the
Gaussian model using the following equation: t

Fyre(x) = PINF < x) o)

where P(.) refers to the event probability. Fig.1 illustrates the
CDF output of Gaussian model.
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Nin is influenced by the present time and the prior emissions
which are being processed by the transmitted bit values with
the continuous transmission of bits. In our study, for anal-
ysis of the error rate, we use the binary concentration shift
keying (BCSK) modulation. In BCSK, bit-0 indicates no
emission, and the demodulation is done through simple
thresholding. The demodulation function & (0) receives the
input N®* and the demodulated bits output according to the
following equation:

ifNin < e

R
A RN
I

Q)

where N®* and Y; indicate the number of received molecules
and the demodulated symbol in the i symbol period,
although ¢ indicates the threshold value for the demodulation.

The error probability of bit-1 for the Gaussian model, using
BCSK for the modulation and thresholding with ¢ for the

demodulation is as follows:
PS =P (N™ (t1.11 +1) <e¢)
le Pt1+ts —¢
= Q dl
\/fo ANIO Y AN

where o(.) refers to the o-function.

N

A. NOISE MODEL

Because of other nano-machines, background molecules and
apart from a possible molecular reaction, the channel noise
occurs. During demodulation, the gain and calculating conse-
quence molecules could be observed as noises. Gain redun-
dant molecules from other nano-devices called positive noise
and the molecules which were collected by other nano-
devices are called negative noise [33]. In our study, Additive
White Gaussian Noise (AWGN) was used and stated as,

Nuoise(m) ~ % (0,7) ®)

In MC, the noise proceeds as discrete values, though, for
interpretation, its distribution function is estimated as (8).
Here, The noise power is described as the variation in the
Gaussian distribution.

IV. PROPOSED TECHNIQUE

A. END-TO-END DRL AUTO ENCODER BASED MC SYSTEM
The MC system transmission blocks include a transmitter 7Ty,
receiver R, and channel as a whole end-to-end DRL over
the Gaussian noise model. We now describe in detail all the
components of the transceiver as well as the propagation
medium. The fully connected end-to-end DRL system is
shown in Fig.2.

An end-to-end MC system is comprised of two nodes
whose purpose is to reliably exchange information through
the medium. The medium operates as a stochastic model,
in which output y and the order probability distribution
requirements being met by its input x. The transmitter goal
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FIGURE 2. DRL auto encoder based end-to-end MC system.

is to send the transmitter 7y information (m) coming from

a finite digital set {1, ..., M}, while the goal of the receiver
R, is to identify the referred information from the received
signals.

Herein, 7, and R, implemented as two distinct parametric
functions which were cooperatively optimized to meet the
application particular performance desires. 7 is stated as
fg(TT):M — CN, where the number of medium uses is N, and
the set of parameters is 7. The receiver R, is applied as

M
fe(f):CN — {P € Rﬁ_’[ | > P; = 1} where 6 is the group of

factors and p is a probla 1ility vector through the messages.
The aim of R, is to predict m given y by approximating the
binomial distribution function. This is completed by learning
the conditional log-like hood estimator [34].

O = argg,min L(OR) )
where L indicates the cross-entropy (CE) shown as

vao =13 e ([ ()],,) 0o

=

o)

Which consider that the training examples are identically and
independently distributed (i.i.d.), the size of the training set
is S and training set m” is the i training example, the per
example loss indicated by /' and the received signal is YV,

B. TRAINING PROCESS
In the Fully Connected (FC) training process, the sequence
of training examples m(lT) ,i = 1,2,..... have access to
the transmitter and receiver due to pseudorandom number
generators set with a similar order. The DRL autoencoder
iteration (training techniques) is done through R, and 7. This
process is to keep working until the stop measure is fulfilled.

The perception of this procedure is that, at every iteration,
R, is enhanced for the fixed 07, then the T, is enhanced
for fixed 6. The end-to-end MC system should enhance by
iteratively doing this procedure.

The fHTT) and fg(:) are differentiable parameters that are
adapted over the SGD on the loss function. SGD is the most
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FIGURE 3. (A) Training of the receiver R, and (B) block model.

popular algorithm which is used to do this task [34], which
iteratively updates the factors as follows:

00D =90 — yv,u L) (11)

The learning rate is 7 > 0 and an estimation of the loss

function gradient isVyL. Through the SGD, the (training

dataset) is tested for each iteration to establish a mini-batch,

and the gradient of L is estimated with this mini-batch. SGD is

applied in both training techniques to adjust the parameters of
the 7, and R,.

C. TRAINING RECEIVER (Rx)
Training R, is contacted to the information (m) referred for
training. Fig.3 (A) describes the process of the receiver R,
training step by step, and the block model of receiver R, is
shown in Fig.3 (B). The T, produces a minibatch of size (Bg)
of m, which encodes the individual training information into
the (N) channel and transfers the mini-batch through the
channel. The complex matrix (X) is a (Bg-by-N) matrix which
comprise the individual sample of the mini-batch and the
related composite information demonstration.

The R, achieves the new message (y) and produces
for the individually training sample a binomial distribution
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through (M). Lastly, an optimization stage is accomplished
by SGD (or a variation) on the (CE) loss function.

D. TRAINING TRANSMITTER (Ty)

The transmitter T, goal is to produce a message that reduces a
scalar loss provided by the receiver Ry. This schema relates to
a DRL technique. The (M) function is to the state space, and
(CN) is a function of the action space. Moreover, to enable
exploration, a random zero-mean perturbation vector (W) is
added to the output of the training transmitter (x), and the
obtained random vector (X)) follows the distribution (7 )
of the mean (fe(TT)) which constitutes the stochastic DRL
process. The parameter vector (1) contains (67) as well as
possible additional parameters specific to the distribution of
the added perturbation vector, which is only significant at
the time of training. The end-to-end performance is indicated
by the Loss function (L) and is determined by the dynamics
of the channel. (L) is recognized only over the received per
example losses 1 eq (10) delivered by the R, through an extra
trustworthy channel which is required by the procedure of
the training. Training samples establishing a mini-batch (mr)
of size (Br) are first encoded into the channel message (X)
to which a perturbation (W) is added to make the perturbed
channel message (Xp) . The perturbed channel messages are
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FIGURE 4. DRL (A) Training process and (B) block model of the transmitter 7y.

directed through the channel, the receiver achieves the new
perturbed (Y) and produces for each training example a
probability distribution through (M). The per example losses
(Le RB7) are then calculated based on these distributions and
the directed messages (my). Losses are then directed to the
T, over a trustworthy channel, existing only in the training
process. Lastly, SGD or a variant [35] is used to perform an
optimization step, where the loss gradient is approximated by

~ 1 Br . . .
— @) ® @)
Vyd (mr, LXP)_E E o I''vy log (711/, (sz | (mp ))
(12)

The training process stops when no more progress is
detected. Fig.4. (A) shows the flow chart of the T, train-
ing and Fig.4 (B) shows the DRL model of the T, training
process.

E. TRANSMITTER Ty AND RECEIVER Ry MODEL SYSTEM

In our training technique, we perform fg(TT) and fe(,f)’ as DNNG.
A feedforward DNN of K™ layers is a parametric function
fo : RN — RNk which maps an input vector rg € RN
to an output vector rx € RVK through succeeding K layers.
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Every layer calculates an intermediary result or activation
vector.

"k = fok Ky, k=1,.....K (13)

where f3,, k — RN is the computation assembled by the
K™ layer, and 6 is the group of parameters for this layer.

The combination of all the layers is the set of parameters
of the all the DNN parameters 6 = {61, ...... ,0k}. The
model of T, and R, can take several forms. However, in the
context of MC, compound baseband messages are transferred
through the MC medium (channel) and the T, must guarantee
the control limitations. The last layer executes normalization,
which guarantees that the average energy per message is one.
The penultimate layer T, changes the real outputs of the prior
layer into an N -dimensional compound-valued vector, and
the T, model is clearly presented in Fig. 5 a.

The receiver recreates the message directed by the 7 from
the received signal, and fg(f) makes a soft detection by pro-
ducing a distribution probability p through M, thereafter, hard
decoding is completed through selecting the message with a
maximum probability.
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FIGURE 5. Models of (a) transmitter 7, and (b) receiver R,.

The R, initial layer changes the received N compound-
valued vector y into 2N real scalars, which are given to a
sequence of layers that can be randomly selected.

The fg(f) latest layer is a soft max layer that performs a
probability distribution P over M. Lastly, the message with
the maximum probability is selected as a rebuilding of the
directed message as in Fig.5b.

F. DEEP REINFORCEMENT LEARNING BASICS
An agent in a state is shown by s € S, which proceeds the
action a € A due to policy m [36]. When compelling the
action, the agent gets a per example loss /. DRL is used to
enhance the mechanism of the agents that interconnect with
an environment by taking actions to reduce the loss.

The predictable per-example loss given by a state and

action is indicated by L(s, a), i.e, L(s,a) = E lfs, al. L is

presumed to be hidden, and the role of the agent is to discover
a policy that reduces the per-example loss.

Through the agent’s DRL autoencoder training, the policy
7 is classically selected to be stochastic, i.e.,w (.|s) is a
probability distribution above the action space A uncertain
of the state s. Using a stochastic policy, which allows an
investigation of the agent’s location, is essential in the DRL.
Certainly, training in the DRL is like a try-and-fail procedure;
the agent takes an action selected like its state, then recovers
its policy as like to the loss acquired from the location. Using
a stochastic policy, the agent goal is to reduce the loss J (s, )
defined as

J (s, 7) = / 7 (a| $)L (s, a) da. (14)
ac A

Policy gradient techniques are utilized in our paper,
in which the agent, which adjusts the parametric policy my;,
Y is a group of parameters. The agent adjusts the policy using
the gradient descent on the loss J due to ¥, which involves
approximating the gradient of J with respect to y:

VyJ (s, y) = /

ae

L (s,a) Vymy (al|s)da
A

- / 7y (al$)L(s.a) Vy log(my (| s))da
ace A

= Eg, [L (s, a) Vy log (mp (als)| s)] (15)

where the second equality tracks from V log (1) = %.
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TABLE 1. The range of parameters used for the analysis.

Parameter value
Diffusion coefficient (D) 79.4 (um)?/s
The radius of the receiver

(1) 10 um
Distance (d)
0 {1~10} um
NT* 7+ {1~10} um
Detection threshold (&) {2~200,1000}molecules
{o~NT}
4 Figures - - 0 X

file Edit View Inset Tooks Debug Desktop Window Help v

=

1 i
100 200 30 400 500

Ng|om BDHEO
. Figure 1: AWGN altemating training
DRL Autoencoder training
L T T T =T = 1
|¢
o8 ¢ 08
s |4
g 067 ¢ 08
: 04" .' 04
5 N,
02} "y, 02
’ L iy TT)
L i) -!!J!l]ll
0

|terations

FIGURE 6. BER duration initial five hundred training iterations systems.

V. NUMERICAL RESULTS & DISCUSSION

A. NUMERICAL RESULTS

In this section, we train the DRL autoencoder model illus-
trated above, and we discuss the error probability simply
as BER. Moreover, we evaluate the BER performance over
a range of SNRs and compare the performance of the MC
system calculated from (7) with those derived from the DRL
autoencoder.

We used Matlab for the MC system performance that uses
the BCSK modulation, and a simple threshold demodulation
technique and these results are stated as the theoretical result.

In the DRL, the autoencoder evaluation is performed over
a Gaussian channel. We design T, and R, as the feed-forward
DNNs that leverage only the FC layer. The K layer is
described as

r = g(Wyre—1 + br) (16)

where W, € RNk-1 x RNk is the weight matrix, by eRM is
the NN bias vector and g: R — R is the activation function.
The trainable parameters of the fully connected layer are
xx = {Wg, by}. The activation function is generally selected
to be nonlinear that is essential to achieve DNNs which can
estimate an extensive variety of functions.

The BER evolutions of the proposed technique during the
initial five hundred training iterations are described in Fig.6,
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FIGURE 8. The BER of DRL autoencoder vs. the analytical method.

normally over two hundred seeds. After approximately four
hundred training iterations, no significant recital difference
is observed. Also, we noticed that the convergence of the
training is not very fast.

In Fig.7 training by epoch using DRL (five hundred
Iteration) and crosee entropy are shown.

Fig.8 displays the SNR vs. BER outcomes for both the
theoretically and DRL autoencoder. For the initial results,
we achieved the slightly same performance for both meth-
ods at the low SNR and better performance from the DRL
autoencoder over 7dB. We are confident with the extra hyper-
parameter tuning and longer training times at each SNR
level; we can similarly achieve the same performance as an
analytical technique for lower SNR values.

B. DISCUSSION

We successfully optimized MC as an end-to-end system with-
out any knowledge about the channel model by using the
DRL autoencoder that is capable of combating the prob-
lem of a missing channel gradient. In our case, the channel
and the receiver are considered as the environment while
the transmitter is considered as an agent. The traditional
MC system depends on models and theories from channel
modeling to information theory. These traditional models
have serious issues, mainly in increasing the MC complexity.
Recently, the field of machine learning has revealed that
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DRL can accomplish effective performance for several tasks,
for example, automatic speech recognition and image clas-
sification [37]. Besides, it can be applied in the real-world
application such as games, manufacturing, and healthcare.
Therefore, the benefit of our result is that using the DRL
autoencoder has many advantages:

1) Using the DRL shows its ability to optimize the per-
formance of MC systems as end-to-end by learning
methods instead of using mathematical models.

2) The use of the DRL in the MC system makes the
communication system faster for the reason that the
DRL comprises numerous phases and some computing
processes that work in parallel. These guarantee speed
in computing, capacity and data rates.

3) The use of the DRL in an MC system accom-
plishes enhancements in the performance of the system
because the DRL attempts to optimize the performance
for the end- to- end system without knowledge of
the MC channel that helps to detect the free space
molecular signal.

So, a joint scheme of DRL and MC would achieve a useful
framework with the trade-off that optimizes BER perfor-
mance or complexity.

VI. CONCLUSION

In this article, we used a system Intel® Xeon®Processor
CPU E5-2678 v3 @2.50GHzx48, Os type 64-bit, Memory
62.8GiB for evaluating the efficiency of the DRL autoen-
coder to achieve joint optimization transceivers techniques to
implement the MC systems. We designed the actual compu-
tational framework for the MC which relies on the ideal infor-
mation of the complete channel model. Based on this, we have
optimized the BCSK modulation and the threshold demodu-
lation, to reduce the error rate (BER). By using known learn-
ing techniques and by training a DRL autoencoder, we have
discovered that the proposed technique achieved the same
performance as the theoretical result on low SNR and better
performance on high SNR. In future works, it should be pos-
sible to use advanced reinforcement learning techniques with
our introduced technique to extend a new level of intelligent
and increase the speed of convergence.
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