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ABSTRACT Corns may be broken during corn mechanical harvesting. The ratio of broken corns measures
the quality of mechanical harvesting and should be monitored in real time. This paper presents a method of
detecting both broken and non-broken corns at the conveyor belt of a corn harvester based on the YOLO.
The network structure of the YOLO is adjusted here to obtain more robust features so that it can work well
in the open working space of the corn harvesting. Moreover, we improve the loss function to ensure that
the hard examples can catch more attention during training. As it is difficult to obtain many training data
of broken corns, the simulated broken corn images are generated from the real images of corns by a simple
synthetic method. The concerned corn detection network of the proposed YOLO-based method is first
trained with plenty of simulated samples and then fine-tuned with the real corn images. The experiments
on real corn data confirm that the proposed YOLO-based method can achieve good accuracy and fast speed
on the NVIDIA TX2.

INDEX TERMS Corn detection, YOLO, focal loss.

I. INTRODUCTION
Corn is a prime type of grain in China and widely planted.
So corn harvesting is of great importance. Recently, more
and more machines are implemented in harvesting corns.
In a corn harvesting machine, corns are usually stripped from
their stalks and then move through the header to the intake
conveyor belt. The header is one of the major components
of a corn harvesting machine and its performance directly
determines the quality of the corn harvesting. To improve the
harvesting efficiency, the header may be adjusted to collect
corns faster, which, however, may break corns. The ratio
of broken corns is required to lie below a tolerable bound.
In order to ensure the quality of corn harvesting, the ratio
of broken corns should be detected in real time, which is
exactly the main task of the present paper. To accomplish this
task, a real-time monitoring system is designed and shown
in Figure 1. That monitoring system consists of a camera and
a hardware platform, and is equipped with a corn detection
method to be designed. The camera captures the images of
corns, including both broken and non-broken corns, before
corns are sent to the peeling device.

The associate editor coordinating the review of this manuscript and
approving it for publication was Donato Impedovo.

FIGURE 1. A real-time monitoring system in a corn harvesting machine.
The camera is mounted on a fixed bracket above the conveyor belt to
collect images.

To monitor the broken corn ratio, the detection method
plays a critical role and needs to detect the numbers of broken
and non-broken corns, which are used to compute the bro-
ken corn ratio. The scene of the detection method, however,
is very complicated and confronts the following issues.
• As the corn harvester works outside, the sun light may
incur dramatic illumination change.

• Because corns are overwhelmed by a lot of weeds and
straws, occlusion becomes very serious.

• The background of corns changes very fast as the
conveyor belt moves.
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Due to the above issues, the traditional background
subtraction method cannot be simply implemented to detect
corns just based on color features. So we resort to object
detectors based on Deep Neural Networks (DNN), which
have made great progresses recently, can detect a large num-
ber of generic objects and are fast enough to work on mobile
devices [1]. In order to train such DNN-based detector, a lot
of image samples are required. Unfortunately, the number of
broken corn images is limited and much less than the number
required by DNN methods, which prevents from the imple-
mentation of modern DNN-based object detection methods.
To compensate the lack of broken corn images, we use a sim-
ple method to synthesize corn images for training, i.e., some
detected broken corns are attached to various backgrounds to
produce broken corn images. Then these generated synthetic
images can be used for training a corn detection network,
which detects broken corns in a given image. The large
number of synthetic images enables the training of the DNN-
based corn detection network. Of course, the trained corn
detection network will be further fine-tuned by real images
with broken corns.

The aforementioned corn detection network is
DNN-based and requires plenty of computations.
Unfortunately, it is impossible to equip hardwares with rich
computing resources, such as GPUs, on the corn harvester
due to power/space limitation. Instead, embedded computing
devices, such as NVIDIA TX2, may be implemented to fulfill
the above corn detection task. Then the limited computing
capability of these embedded devices has to be taken into
account of the design of corn detection methods. Although
YOLOv3 [2] can realize the real-time object detection on a
powerful GPU, it still remains very challenging for leveraging
this approach for real-time object detection on embedded
computing devices with limited computational power and
limited memory. Compared with YOLOv3, YOLOv3–tiny
is faster by using a neural network with fewer convolution
layers and fewer filters in those layers. Of course, the fast
speed of YOLOv3-tiny is achieved at the cost of reduced
detection accuracy. To further speed up the corn detection,
we modify YOLOv3–tiny to reduce the computational com-
plexity. To compensate the incurred loss of corn detection
accuracy, different scales of pooling operations are intro-
duced into the top hidden layer of the backbone network.
While training detectors, the imbalance between positive and
negative samples may seriously harm the detection accu-
racy [3]. Unfortunately, such imbalance may be unavoidable.
For example, we may have much more non-broken corn
images than broken corn images. To compensate that sample
imbalance and pay more attention to hard training samples,
a novel focal loss is proposed to reshape the standard cross
entropy loss and greatly enhance the importance of broken
corn images. The novel loss is dynamically scaled by using
a tunable factor, which automatically decays to down-weigh
the contribution of easy samples during training and mainly
focus on hard samples. With the obtained corn detection
network, corn images are processed to detect both broken and

non-broken corns. Then the ratio of broken corns is computed
and used to adjust the header of the corn harvester in real time.

The rest of this paper is organized as follows. The related
work is introduced in Section II. Section III presents the
overview of the proposed corn detection method. Two major
contributions of the proposed method, an improved loss func-
tion to further enhance the detection accuracy and a simple
method of generating broken corn images, are presented in
Section IV. Experimental results are demonstrated and ana-
lyzed in Section V. Some concluding remarks are placed in
Section VI.

II. RELATED WORK
Machine vision methods were implemented to measure the
quality loss of agriculture products, such as corn kernel
mechanical damage and mold damage [4], and efficient in
extracting profile shape features of grain kernels for clas-
sification and quality inspection [5]. Some machine vision
methods were developed for the detection of corn kernel
breakage and demonstrated excellent performance [6]. These
methods, however, cannot detect a corn on the conveyor belt
in Fig. 1 or determine whether that corn is broken. To achieve
our corn detection goal, we resort to image-based detection
methods.

Corn detection is closely related to the existing object
detection methods, some of which are compared and
analyzed here. Traditional object detection methods first
scan the whole image with a multi-scale sliding win-
dow, then extract some hand-crafted features, such as
SIFT [7], HOG [8] or Haar-like [9] features, and
finally input the extracted feature to a supported vector
machine(SVM) [10] or other classifiers to distinguish a target
object from all other categories. The extracted hand-crafted
features are critical for detection accuracy, but may not be
robust enough to describe objects in complex scenes [11].

To compensate the weakness of hand-crafted features,
modern object detection methods usually implement deep
neural networks to extract features. Modern methods can be
divided into two categories, including the two-stage detec-
tion methods, such as Fast-RCNN [12] and Faster R-CNN
[13], and the single-stage detection methods, such as YOLO
[14] and SSD [15]. Under the Faster R-CNN, detection is
performed in two stages. In the first stage, a region proposal
network is used to process images and predict box proposals
where objects may exist. In the second stage, these box pro-
posals are used to crop features from the intermediate feature
maps. Then these features are fed to the final layers to predict
a class and class-specific box refinement for each proposal.
The two-stage methods usually use more proposal regions
which help to obtain local optimal solutions and improve
detection accuracy at the cost of longer computational
time.

On the contrary, the single-stage detection methods are
usually faster and yield less desirable performance than two-
stage methods. YOLO is one typical single-stage detection
method. It divides the input image into regions and predicts

68282 VOLUME 7, 2019



Z. Liu, S. Wang: Broken Corn Detection Based on an Adjusted YOLO With Focal Loss

FIGURE 2. Network structure for corn detection. The backbone network, which is composed of convolutional layers and max pooling
layers, is used for feature extraction. Convolutional layers use 3× 3 filters. Max pooling layers are used for downsampling. The SPP
layer is composed of three different scale max pooling layers. The feature extracted by the SPP layer is sent to the feature pyramid
network (FPN). The detection layer will make prediction based on two scale feature maps which are 13× 13 and 26× 26.

bounding box coordinates and class probabilities for each
region [14], i.e., it transforms the object detection problem
into a regression problem, which can truly achieve end-to-
end detection. Now YOLO has developed to its third version,
YOLOv3 [2], which extracts features at different scales with
a feature pyramid network and makes use of anchor boxes in
the bounding box prediction. YOLOv3-tiny achieves a good
tradeoff between detection accuracy and speed, and will be
used in the present paper.

III. THE OVERVIEW OF THE PROPOSED CORN DETECTION
METHOD
A. NETWORK STRUCTURE
To resolve the corn detection issues mentioned in Section I,
the backbone network of YOLOv3–tiny is used for the fea-
ture extraction of corns, which is composed of convolutional
layers and max pooling layers. In order to stabilize training,
speed up the convergence and regularize the model, batch
normalization is used on all convolutional layers. The final
detection layer uses a linear activation function and all other
layers use a leaky rectified linear activation function [2],
[14]. Since the concerned backbone network is shallow, its
detection speed is fast. We add several layers to improve
its detection accuracy without significantly affecting its real-
time performance.

One spatial pyramid pooling (SPP) layer is added on the
top of the last convolutional layer of the backbone net-
work. As one of the most successful methods in computer
vision, it partitions the image into divisions from finer to
coarser levels and aggregates local features at all levels [16].
This multi-level pooling is robust to the variation of object

deformations and spatial layout. The above SPP layer consists
of several max pooling layers. The filters of these pooling
layers have the sizes of 5× 5, 7× 7 and 9× 9, and the stride
of 1. Through padding operations, all output feature maps
of these max pooling layers have the same size and can be
aligned. Then all these output feature maps are concatenated
and fed to the next convolutional layer using 1 × 1 filters
[17]. Since features of different spatial sizes are concatenated
together, the network can utilize more spatial information
through convolution operations. The features of the surround-
ings of the concerned object serve as the context information
to improve the detection accuracy. So the 1 × 1 convolution
filter realizes the information integration of cross-channel
feature maps, and introduces new parameters and new non-
linearity into the network, which help in improving the corn
detection accuracy. Moreover, the 1 × 1 convolutional filter
can reduce channel dimensions, and yield a more compact
network structure [18]. The detection layer predicts bounding
boxes of corns at 2 different levels. Furthermore, features are
extracted at those 2 scales using a similar concept to feature
pyramid networks (FPN) [19]. Among the extracted features,
the high-level semantic features are first upsampled, concate-
nated with the feature maps of the same size in the backbone
network, and processed by the convolution operations to yield
the low-level feature maps. These feature maps own stronger
feature expression capability and can efficiently cope with the
scale change of corns. On the prediction feature maps at each
level, 2 anchors are used in each cell by clustering. For the
task of detecting corns, this parameter setting is sufficient to
deal with corn scale changes. The network structure of corn
detection is illustrated in Figure 2.
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FIGURE 3. The main detection procedure.

B. THE MAJOR CORN DETECTION PROCEDURE
After training the corn detection network in Figure 2, we per-
form corn detection according to the procedure in Figure 3.
Now we explain the main operations.

First we have to adjust the input image size. Due to the
use of the full convolutional network andmulti-scale training,
the input image can be resized into any desired size. But the
larger the image is, the longer time the network prediction
takes. So the input image is resized into 416× 416 pixels. In
order to maintain the original aspect ratio of the input image,
it is necessary to perform padding on the short side of the
image.

Then the backbone network extracts features, downsam-
ples the image by the stride of 32, finally obtains the output
feature maps of the size of 13 × 13. Each cell of the output
feature maps predicts 2 bounding boxes based on anchor
boxes. The prediction is made at 2 scales, including 13× 13
and 26 × 26, for two classes (corns and non-corn objects).
1690 bounding boxes are produced. The network also pre-
dicts an objectness score (i.e., the likelihood for the box to
contain corns) and class probabilities (the probabilities for the
box to contain broken corns, non-broken corns or no corns)
for each bounding box.

In fact, the number of corns in an image is limited. So
there are a large number of invalid boxes among the obtained
bounding boxes. To eliminate duplicate detection results, post
processing in Figure 4 is implemented.

C. POST PROCESSING
As the post processing in Figure 4 is of great importance,
we provide its details here.

When the objectness score of one predicted bounding box
is less than a certain threshold, the object in the box is quite
possible the background and discarded by setting its score
to 0. The above objectness threshold is adjustable. In exper-
iments, we compared different thresholds and found that the
detection accuracy of corns is acceptable when the threshold
is set at 0.40.

Then the non-maximum suppression (NMS) is imple-
mented to merge detection results that belong to the same
object. NMS greedily selects detection results with high
scores and deletes close-by neighbours with low scores since
they are likely to cover the same object. So we first sort
the objectness scores of all boxes, and select the bounding
box with the highest score. Then the remaining boxes are
compared with the selected bounding box. When the overlap-
ping ratio between the selected bounding box and one of the
remaining boxes is greater than a certain threshold, e.g. 0.45,
that box has a large area overlappingwith the selected box and
should be deleted. If the class probability of one bounding box
is greater than a certain threshold, e.g., 0.50, it is predicted as
the corresponding class, broken corns or non-broken corns.
By iteratively performing the above operation, we can finally
obtain the numbers of broken and non-broken corns and their
locations.

IV. MAIN CONTRIBUTIONS
A. FOCAL LOSS
The parameter training of YOLOv3 is based on the following
binary cross entropy loss for each sample,

L(pt ) =

{
− log(pt ), yt = 1
− log(1− pt ) yt = 0,

(1)

where t is the sample index, pt is the predicted objectness
score, i.e., pt ∈ [0, 1] measures the predicted likelihood that
the t-th sample is an expected object (corn), and yt stands
for the ground truth. Particularly, yt = 1 means the t-th
sample really belongs to the class of objects (corns) while
yt = 0 means the t-th sample is outside of the class of corns.
By min

∑
t L(pt ), the parameters of YOLOv3 are trained.

The binary cross entropy loss in (1), however, confronts
the following challenges, which prevents from efficiently
parameter training of YOLOv3.

1) More emphasis should be placed on hard samples:
When the t-th sample really belongs to the class of
corns (yt = 1), its predicted objectness score pt should
be close to 1. But if pt is unexpectedly far from 1,
the current parameters are not appropriate, and the
t-th sample is a hard sample and should play a more
important role than others. On the other hand, when
the t-th sample does not belong to the class of corns
(yt = 0), pt should be close to 0. If pt is much larger
than 0, the t-th sample is a hard sample and should
also make more impact in training the parameters.
If a sample is not a hard sample, it is an easy sample.
Some hard and easy samples are shown in Figure 5.

68284 VOLUME 7, 2019



Z. Liu, S. Wang: Broken Corn Detection Based on an Adjusted YOLO With Focal Loss

FIGURE 4. Post processing.

FIGURE 5. Some corn images: (a) Easy samples (b) hard samples.

Due to the disturbance of corn leaves and stalks, it is
more challenging to detect corns in the hard samples
than in the easy samples.

2) Sample imbalance: In a corn image, most of the area is
background and the objects to be detected, i.e., (both
broken and non-broken) corns, only occupy a small
area. So the number of positive samples from corn
regions can be much less than the number of negative
samples from the background. Such serious imbalance
between positive and negative samples makes it quite
difficult for the positive samples to make impact in
training parameters so that the detection accuracy could
be poor.

To resolve the above two issues, we improve the original loss
L(pt ) in (1) with the following focal loss FL(pt ), which is
motivated by [3],

FL(pt ) =

{
−αt (1− pt )γ log(pt ), yt = 1
−αtp

γ
t log(1− pt ) yt = 0,

(2)

where pt is the predicted objectness score, γ is a tunable
constant (γ = 2 in our experiments) and

αt =

{
α, yt = 1
1− α, yt = 0,

(3)

where α is constant in the range of [0, 1] (α = 0.75 in our
experiments),
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FIGURE 6. The major operations of the simple synthetic method.

In (2), the modulating factor αt (1 − pt )γ is introduced
into the cross entropy loss of YOLOv3 and can efficiently
resolve the above issues regarding hard samples and sampling
imbalance. First we analyze its effects on the emphasis of
hard samples.
• When yt = 1, pt of an easy sample is close to 1 and
(1−pt )γ is even closer to 0 with γ > 1. On the contrary,
pt of a hard sample is far from 1 and (1 − pt )γ is much
larger than those of easy samples, which implies that the
hard sample has much more impact on the loss function.

• When yt = 0, pt of an easy sample is close to 0 and pγt is
even closer to 0 with γ > 1. On the contrary, pt of a hard
sample is far from 0 and pγt is much larger than those of
easy samples. We can similarly conclude that the hard
sample has much more impact on the loss function.

By choosing α > 0.5 in (3), positive samples (yt = 1) have
larger αt than negative samples (yt = 0). Our experiments
take α = 0.75, which yields the αt ratio of 3 between positive
and negative samples, and can greatly enhance the impact of
positive sample and well attenuate the sample imbalance.

B. DATA GENERATION
Detection methods based on convolutional neural networks
need a lot of labeled samples to train parameters. But in
general, a large amount of labeled real data may not be easy
to obtain [20]. In this task, the number of images containing
corns, particularly broken corns, is very small, which prevents
the parameter training of the concerned networks. To remedy
the lack of broken corn images, we propose a simple method
to generate broken corn images, which is introduced below.

This method fuse a background image and a foreground
image to generate a desired corn image. Hundreds of back-
ground images have been captured at the conveyor belt, which
contain straws, corn husks and dust. A foreground image is
a manually intercepted rectangular picture containing bro-
ken corns of different shapes, illuminations and postures.
For a given foreground image, the pixels belonging to the
background are first marked and removed by implementing
Gaussian filtering, binarization, closing operations, etc. Then
a certain area of the background image is randomly selected
and replaced with a processed foreground image to generate
a simulated image. The synthetic image is further processed
through motion blurring, down sampling, saturation transfor-
mation and adding Gaussian noise. The operations of this
simple synthetic method is shown in Figure 6 and some sim-
ulated images are shown in Figure 7. It is true that simulated

FIGURE 7. Simulated images by the simple synthetic method.

FIGURE 8. Average precision on VOC val2007 using different loss
function.

broken corn images still look a little different from the real
ones. For example, the position and boundaries of corns in
these simulated image is unusual compared to the ones in
real images. Fortunately, these simulated broken corn images
are still good for pre-training the corn detection network
in Figure 2. That pre-trained network will be further fine-
tuned by real corn images. As shown in experiments, such
pre-training based on simulated broken corn images does help
improve the corn detection accuracy.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. VERIFY THE EFFECTIVENESS OF THE FOCAL LOSS
THROUGH THE PASCAL VOC DATASET
In Section IV-A, focal loss is introduced. In order to quan-
titatively verify its effectiveness, we compare object detec-
tion with the focal loss and the one with the conventional
binary cross entropy loss on Pascal VOC 2007 and VOC
2012 dataset [21].We train the object detection networks with
the set of train2007 + trainval2012, and evaluate them on
val2007. Here train, val and trainval stand for training data,
validation data and training + validation data, respectively;
2007 and 2012 stand for VOC 2007 and VOC 2012, respec-
tively. Moreover, the object detection networked trained here
provide the pre-trained parameters for the corn detection
network in Fig. 2.

At the training stage, no-object loss is calculated by judg-
ing whether the objectness prediction is less than a certain
threshold. We use two thresholds of 0.5 and 0.7 to train the
networks. The average detection precision (AP) on 10 classes
of objects using the threshold of 0.5 is shown as Figure 8.
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TABLE 1. Mean average precision with different loss functions on VOC
val2007. The parameter of focal loss with α = 0.75 and γ = 2.0.

FIGURE 9. The training loss curve.

After using the focal loss training, the average precision
of each class has been improved. The mean average preci-
sion (mAP), particularly mAP50 and mAP75,1 is presented
in Table 1. Under focal loss, mAP50 can reach 68.78%;
Under the conventional binary cross entropy loss, we achieve
the mAP50 of 64.53%. So focal loss does help to improve
detection accuracy, which motivates the implementation of
focal loss in our corn detection.

B. TRAINING WITH THE SIMULATED AND REAL CORN
IMAGES
Here we introduce some experimental details for training
on the corn dataset. We initialize the first 13 layers of the
corn detection network using the weights pre-trained on the
Pascal VOC dataset. Then the whole training process on corn
detection is divided into two stages. The first stage is to
train the corn detection network with the simulated images
in Section IV-B. There are 4,000 simulated images generated
by the simple synthetic method. Although the number of
simulated images is large, they are created with particular
cases and a little far from the real images. So the second
training stage takes the real images to fine-tune the corn
detection network.

When the training loss of the network is reduced to a
small value at the first stage, the second stage starts by using
real images for network training. Due to fine-tuning the net-
work with real images, the corn detection accuracy is greatly
improved. The training loss is shown in Figure 9. It can be

1mAP50 stands for the mean average precision according to the criterion
that a detected result is accepted only if the overlapping ratio between the
detected bounding box and the true bounding box is above 50%. mAP75 is
similarly defined by requiring the overlapping ratio to be no less than 75%.

TABLE 2. Accuracy (%) on the test set of corn images.

TABLE 3. Corn detection accuracy under different α and γ . There are
189 broken corns and 241 non-broken corns in the test set. The accuracy
is defined as the total number of correct detected corns divided by the
total number of corns. The following broken column stands for the
number of correctly detected broken corns while non-broken for the
number of detected non-broken corns.

seen that when the second stage starts (at 3, 600-th batch),
i.e., real images are used for training, the training loss is
abruptly increased and then gradually decreases. That abrupt
loss increase comes from the difference between real images
and simulated images.

In order to evaluate the effects of the simulated images,
we train the original YOLOv3-tiny network with two types
of image combination. In the first one, simulated images and
real images are used as above mentioned. In the second one,
only real images are used for comparison. In order to evaluate
the performance of the trained networks, they are tested with
some real images which are not used in training. The test set is
made up of 143 images, which contain 189 broken corns and
241 non-broken corns. We have manually labeled location
coordinates and categories of the objects in these images.
The test results are presented in Table 2. We can see that the
simulated images do help to improve the detection accuracy.

C. PARAMETER SENSITIVITY OF FOCAL LOSS
According to (2), focal loss has two important parameters,
γ and α, which aim to enhance the importance of hard
samples and resolve the sample imbalance issue. Now we run
some experiments to demonstrate the effects of γ and α on
corn detection accuracy. For each γ , we find the best α, which
yields the highest corn detection accuracy under the given γ .
The corn detection results are presented in Table 3. The
accuracy is calculate by dividing the total number of correctly
detected broken and non-broken corns with the total number
of real broken and non-broken corns. By Table 3, too small
γ does not yield pleasant detection results because under
small γ , the importance of hard samples is not enhanced
enough. On the contrary, too large γ does not help detection
either due to over-emphasizing hard samples, which may hurt
the detection accuracy. We see that the best γ is 2.0, which

VOLUME 7, 2019 68287



Z. Liu, S. Wang: Broken Corn Detection Based on an Adjusted YOLO With Focal Loss

TABLE 4. Detection results of different methods.

FIGURE 10. Some detection result on the test set. We show some
detection examples with classification scores higher than 0.5. The green
and purple bounding boxes represent broken and non-broken corns,
respectively.

may appropriately enhance the importance of hard samples
and is also the best γ in [3]. Under γ = 2, the best α is
0.75, which yields the weight ratio of 3 between positive and
negative samples.

In order to show the efficiency of the proposed method,
we compare it with some state-of-the-art methods, including
YOLOv3, YOLOv3-tiny and SSD. We train YOLOv3 and
YOLOv3-tiny with the binary cross entropy loss on the set
of simulate + real, and evaluate them on the test set. The
backbone network of SSD is VGG16. The size of input
image is 416 * 416. The detection accuracy and speed on
NVIDIA TX2 are shown in Table 4. After using the focal
loss to train our detection network, the detection accuracy
of broken and non-broken corns is close to YOLOv3 and
better than SSD [2]. Although the accuracy of the proposed
method is lower than that of YOLOv3, the proposed method
is much faster than YOLOv3. Note that the developed corn
detection method has been on an embedded system, like the
NVIDIA Jetson TX2. Our detection speed can reach up to
10fps (frame-per-second) on TX2 and is about 3 times faster
than the standard YOLOv3 due to its tiny backbone network.
Compared with YOLOv3-tiny, our corn detection network
achieves the accuracy improvement of about 7% without any
speed loss. The major reason of the detection performance

improvement lies in the focal loss, which efficiently enhances
the hard samples.

Some test results are also visually illustrated in
Figure 10. We can see that the illumination may greatly
change, the background is complex and there may exist
serious occlusion. When there is no occlusion and corns are
well separated, the detection can be very accurate. Even in
the existence of illumination change, robust corn detection
can still be obtained. When corns, leaves and corn husk are
stacked together, too blurring boundaries and similar shapes
may lead to missing detection and false alarms. To further
reduce such missing detection and false alarms will be our
future research.

VI. CONCLUSION
This paper proposes a method to detect the broken and non-
broken corns on the conveyor belt based on YOLOv3-tiny.
It adjusts the network structure of YOLOv3-tiny to generate
more robust features for corn detection. By introducing the
focal loss, hard samples can be paid more attention to and
the detection performance is improved. In order to resolve
the issue of too few broken corn images, we implement a
simple synthetic method to generate simulated broken corn
images. With these simulated broken corn images, the corn
detection network is pre-trained. Then real corn images
are used to further fine-tune the corn detection network.
The proposed corn detection method is implemented on
NVIDIA TX2 and can achieves the speed up to 10fps speed,
which can perform almost real-time detection.

REFERENCES
[1] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,

Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, ‘‘Speed/accuracy
trade-offs for modern convolutional object detectors,’’ in Proc. CVPR,
vol. 4, Jul. 2017, pp. 7310–7311.

[2] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
Apr. 2018, arXiv:1804.02767. [Online]. Available: https://arxiv.org/
abs/1804.02767

[3] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, ‘‘Focal loss for dense
object detection,’’ IEEE Trans. Pattern Anal. Mach. Intell., to be published.

[4] H. F. Ng, W. F. Wilcke, R. V. Morey, and J. P. Lang, ‘‘Machine vision
evaluation of corn kernel mechanical and mold damage,’’ Trans. ASAE,
vol. 41, no. 2, pp. 415–420, 1998.

[5] K. Liao, M. R. Paulsen, J. F. Reid, B. C. Ni, and E. Bonifacio-Maghirang,
‘‘Corn kernel breakage classification by machine vision using a neu-
ral network classifier,’’ Trans. ASAE, vol. 36, no. 6, pp. 1949–1953,
1993.

[6] L. Zayas, H. Converse, and J. Steele, ‘‘Discrimination of whole from
broken corn kernels with image analysis,’’ Trans. ASAE, vol. 33, no. 5,
pp. 1642–1646, 1990.

[7] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[8] N. Dalal andB. Triggs, ‘‘Histograms of oriented gradients for human detec-
tion,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
Jun. 2005, vol. 1, no. 1, pp. 886–893.

[9] R. Lienhart and J. Maydt, ‘‘An extended set of haar-like features for
rapid object detection,’’ in Proc. IEEE Int. Conf. Image Process., vol. 1,
Sep. 2002, pp. I–I.

[10] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, ‘‘Support
vector machines,’’ IEEE Intell. Syst. Appl., vol. 13, no. 4, pp. 18–28,
Jul./Aug. 2008.

[11] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, ‘‘Object detection with
deep learning: A review,’’ IEEE Trans. Neural Netw. Learn. Syst., to be
published.

68288 VOLUME 7, 2019



Z. Liu, S. Wang: Broken Corn Detection Based on an Adjusted YOLO With Focal Loss

[12] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Dec. 2015, pp. 1440–1448.

[13] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91–99.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2016, pp. 779–788.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot MultiBox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Amsterdam, The Netherlands: Springer, 2016, pp. 21–37.

[16] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in deep con-
volutional networks for visual recognition,’’ in Proc. Eur. Conf. Comput.
Vis. Zurich, Switzerland: Springer, 2014, pp. 346–361.

[17] M. Lin, Q. Chen, and S. Yan, ‘‘Network in network,’’ Dec. 2013,
arXiv:1312.4400. [Online]. Available: https://arxiv.org/abs/1312.4400

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolu-
tions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 1–9.

[19] T.-Y. Lin and P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jul. 2017, pp. 936–944.

[20] C. Wu, S. Xu, G. Song, and S. Zhang, ‘‘How many labeled license plates
are needed?’’ in Proc. Chin. Conf. Pattern Recognit. Comput. Vis. (PRCV).
Guangzhou, China: Springer, 2018, pp. 334–346.

[21] M. Everingham, L. VanGool, C. K. I.Williams, J.Winn, andA. Zisserman,
‘‘The Pascal visual object classes (VOC) challenge,’’ Int. J. Comput. Vis.,
vol. 88, no. 2, pp. 303–338, Jun. 2010.

ZECHUAN LIU received the B.E. degree from
Shandong University, Jinan, China, in 2017. He is
currently pursuing the M.E. degree with the Uni-
versity of Science and Technology of China. His
research interests include computer vision, image
processing, and machine learning.

SONG WANG received the B.S., M.E., and Ph.D.
degrees from the University of Science and Tech-
nology of China, Hefei, China, in 1997, 2003, and
2010, respectively. His research interests include
image processing and machine learning.

VOLUME 7, 2019 68289


	INTRODUCTION
	RELATED WORK
	THE OVERVIEW OF THE PROPOSED CORN DETECTION METHOD
	NETWORK STRUCTURE
	THE MAJOR CORN DETECTION PROCEDURE
	POST PROCESSING

	MAIN CONTRIBUTIONS
	FOCAL LOSS
	DATA GENERATION

	EXPERIMENTAL RESULTS AND ANALYSIS
	VERIFY THE EFFECTIVENESS OF THE FOCAL LOSS THROUGH THE PASCAL VOC DATASET
	TRAINING WITH THE SIMULATED AND REAL CORN IMAGES
	PARAMETER SENSITIVITY OF FOCAL LOSS

	CONCLUSION
	REFERENCES
	Biographies
	ZECHUAN LIU
	SONG WANG


