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ABSTRACT This paper is concerned with the problems of finite-time stochastic H∞ control for singular
Itô Markovian jump systems with (x, v)-dependent noise and generally uncertain transition rates (GUTRs).
Based on two equivalent sets, a new criterion, ensuring the considered systems with completely known TRs
to be finite-time stochastically bounded withH∞ performance, is first established, which is less conservative
than the existing one. Then, the obtained results are extended to the case of GUTRs. To overcome the
nonlinear difficulty resulting in the Young inequality for designing a convex controller, an approach called
the association of free variables and slack variables are used. The state feedback controller and observer-
based controller are respectively designed such that the corresponding closed-loop systems with GUTRs are
finite-time stochastically bounded while achieving H∞ performance. Finally, the numerical examples are
addressed to illustrate the effectiveness and efficiency of our obtained results.

INDEX TERMS Singular stochastic Itô systems, Markov jump systems, finite-time H∞ control, generally
uncertain transition rates.

I. INTRODUCTION
During the past two decades, interest on singular stochastic
systems driven by the Itô stochastic differential equation has
been increasing [1]–[9]. The reason is that such systems
possessing double characteristics of singular systems and the
Itô stochastic differential equation are much more realistic
and advanced than deterministic ones. As is well known,
singular systems, also called differential algebraic systems,
generalized state-space systems, descriptor or implicit sys-
tems, have extensive applications in real areas such as the
oil catalytic cracking model, dynamic Leontief model of a
multisector economy, biological systems, electric circuits as
well as power systems [10]–[12]. At the same time, the envi-
ronment noise inevitably disturbs any system, and the lin-
ear Itô stochastic differential equation has played important
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roles in many practical fields such as economy, biology,
etc, [13]–[18]. To date, abundant results on various con-
trol problems of singular systems or linear Itô stochastic
systems have been proposed, we refer the reader to [13], [15],
[19]–[24] and references therein. It can be found that, how-
ever, little works have been made on singular Itô stochastic
systems. This is because the essential issue that the condition
for existence and uniqueness of a solution to the system equa-
tion has not been completely resolved, more details please
see, e.g., [2]–[4]. As a result, some suitable conditions have
to be assumed to guarantee the existence and uniqueness of
solution of this class of stochastic systems.

In some practical applications, we often focus our attention
on the transient behavior of a system state response. Followed
by this fact, the definition of finite-time stability of systems
emerged, which can be specifically described as: the state of
system did not exceed some bounds in a prescribed finite-
time interval on the condition that the initial state was in
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a fixed bound [25], [26]. Up to now, many important control
problems on this subject have been presented. For instance,
robust finite-time stabilization for uncertain singular Marko-
vian jump systems were discussed in [27]–[29], and state
feedback controller, output feedback controller as well as
observed-based controller were respectively designed such
that the corresponding closed systems satisfied the finite-
time boundedness while achieving H∞ performance. The
finite-time stability and stabilization for singular Itô stochas-
tic systems without Markovian jump parameters was firstly
studied in [30], where the concept of finite-time stochas-
tic stability was introduced and a state feedback controller
was presented. However, it can be found that all the ref-
erences mentioned above employed the equality constraint
PiET = EPTi , which can not only lead to some trouble when
checking the condition numerically, but also set some obsta-
cles for the analysis of controller. So it is incentive and desir-
able to substitute that equality constraint with a strict LMI
condition.

In another research front line, a great deal of attention has
been devoted to a class of Markovian jump systems with
generally uncertain transition rates (GUTRs) in recent years.
Many encouraging development have been made on this hot
topic, such as stability and stabilization [31]–[34], output
feedback control [35], H∞ control [36], [37], passivity and
passification [38], delay-dependent H∞ filtering [39] and so
on. The main reason for focusing on such systems can be
embodied by the following twofold: one hand, Markovian
jump systems can model some dynamics systems whose
structure and parameters often suffered random abrupt varia-
tions such as component repairs and failures, sudden envi-
ronmental disturbances [40]–[43]. On the other hand, it is
not easy and even impossible to obtain completely exact
TRs on the engineering practice. Moreover, as said in [31],
uncertain TRs and partially unknown TRs were still too
restrictive to describe some actual problems better [44]–[48].
As a result, a kind of more general TRs labeled as generally
uncertain transition rates was put forward in [31], in which
each TR was allowed to be known, unknown and uncertain.
The uncertain TRs meant that estimate values and bounds of
TRs were known [44]–[46]. The description on the partially
unknown TRs was that each TR whether was completely
known or completely unknown [47], [48]. It is easy to see
that uncertain TRs as well as partially known TRs can be
viewed as the special case of GUTRs. However, it is not
trivial to generalize the results of completely known TRs to
uncertain TRs or GUTRs. When designing the controller of
systems with GUTRs, the nonlinear term resulting from the
Young inequality will appear. A natural question is, how to
overcome the difficulty of nonlinear term and subsequently
design a convex controller? Although [31] explored the sta-
bility of linear Markovian jump systems with GUTRs, but
the feedback controller was not designed. [32] generalized
the results of [31] to singular systems, sufficient conditions
of stability for systems under consideration were obtained,
and a state feedback controller was presented by using the

duality principle. Reference [33] derived less conserva-
tive conditions than those in [32] with the aid of free-
weighting matrices and slack variable matrices. On the basis
of [32], [34] further discussed the stability and stabiliza-
tion for singular Itô Markovian jump systems with GUTRs,
the state feedback controller was presented by introducing a
equality constraint to bind the uncertain term. Reference [37]
proposed a separated method to decouple the intercon-
nection between Lyapunov variables and controller gains.
Reference [38] studied the passivity and passification for
normal Itô Markovian jump systems with GUTRs by using
free-weighting matrices and the same equality constraint as
that in [34]. Reference [39] was concerned with the delay-
dependent H∞ filtering for stochastic singular Itô systems
with GUTRs, in which the delay-dependent sufficient con-
ditions were presented to ensure the filtering error system to
be stochastically admissible. On the basis of above analysis,
to the authors’ best of knowledge, the problems of finite-
time stochastic H∞ control for singular Itô Markovian jump
systems with GUTRs haven’t been fully explored, even for
the case of (x, v)-dependent noise, which also motivate us to
do this study.

This paper will study finite-time stochastic H∞ control for
singular Itô Markovian jump systems with (x, v)-dependent
noise and GUTRs. The main contributions of this paper
are summarized as follows: First, taking advantage of two
equivalent sets technique, sufficient conditions of finite-time
stochastic H∞ control for the considered systems with com-
pletely known TRs are derived. The obtained results not
only are less conservative than those in [27]–[30], but also
can be viewed as generations from singular Markovian jump
systems to singular Itô Markovian jump systems with multi-
plicative noise. Second, the nonlinear terms resulting of the
Young inequality have been eliminated by resorting to the
combination of free-weighting matrices and slack variable
matrices. A new criterion ensuring singular Itô Markovian
jump systems with GUTRs to be finite-time stochastically
bounded with H∞ performance level is established, which
makes the controller analysis go smoothly. Third, the state
feedback controller and observer-based controller for the cor-
responding closed-loop systems are presented, respectively.
Finally, numerical examples are proposed to verify the effec-
tiveness of our obtained results.

The rest of this paper is organized as follows. In Section II,
we give important assumptions and present several use-
ful lemmas. Section III contains main results of this paper
on finite-time stochastic H∞ stabilization via state feed-
back controller and observer-based controller. Numerical
examples are presented in Section IV to illustrate the
effectiveness of obtained results. Conclusions are drew
in Section V.

Throughout this paper, the following notations will be
used. Notations: Rn: the linear space of all n− dimensional
real vectors with usual 2-norm ‖ · ‖; Rm×n: the linear space
of all m × n real matrices; A > 0(resp.A < 0): A is a real
symmetric positive definite (resp. negative definite) matrix;
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AT : the transpose of A; E+: Moore-Penrose pseudo inverse
of a matrix E ; E(·): the expectation operator; In: the n × n
identity matrix; He(A) : A + AT ; rank(A): the rank of a
matrix A.

II. PRELIMINARIES
Consider the following singular Itô-type Markovian jump
system with (x, v)-dependent noise and generally uncertain
transition rates:

Edx(t) = [A(rt )x(t)+ B(rt )u(t)+ D(rt )v(t)]dt
+[A0(rt )x(t)+ D0(rt )v(t)]dw(t),

y(t) = F(rt )x(t),
z(t) = C(rt )x(t)+ B1(rt )u(t)+ D1(rt )v(t),
Ex(0) = x0,

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, v(t) ∈ Rq, y(t) ∈ Rl

and z(t) ∈ Rp are, respectively, the system state, the control
input, the disturbance signal, the measure output and the
controlled output; w(t) is one-dimensional, standard Wiener
process that is defined on the complete filtered probability
space (�,F ,Ft ,P) with a filtering {Ft }{t≥0}; E is a constant
matrix with rank(E) = r ≤ n; A(rt ), B(rt ), D(rt ), A0(rt ),
D0(rt ), F(rt ), C(rt ), B1(rt ), D1(rt ) are known matrices of
compatible dimensions, {rt , t ≥ 0} is a right continuous
homogeneous Markovian jump process taking values in a
finite state space S = {1, · · · ,N } with transition probability
matrix

∏
= {π̂ij}N×N given by

Pr{rt+h = j|rt = i} =

{
π̂ijh+ o(h), i 6= j,
1+ π̂iih+ o(h), i = j,

with h > 0, limh→0 o(h)/h = 0, and π̂ij ≥ 0(i 6= j)
represents the transition rate from i to j, which satisfies

π̂ii = −
N∑

j=1,j 6=i
π̂ij. Suppose that Markovian jump process

{rt , t ≥ 0} is independent of w(t), and the external distur-
bance signal v(t) satisfies

E
{ ∫ t

0
vT (s)v(s)ds

}
≤ h2, h > 0, t ∈ [0,T ]. (2)

In this paper, TRs of Markovian jump process are assumed
to be known, unknown as well as uncertain, simultaneously.
Concretely speaking, the transition probability matrix of
system (1) with N jump modes can be described as

4 = (π̂ij)N×N

=


? π12 ? · · · π1N +1π1N

π21 +1π21 ? π33 · · · ?
...

...
...

. . . · · ·

πN1 +1πN1 ? ? · · · πNN +1πNN

 ,
(3)

where πij and 1πij ∈ [−µij, µij](µij ≥ 0) respectively rep-
resent the estimate value and the estimate error of uncertain
transition rate π̂ij. Also, πij and µij are known. The notion
? denotes the completely unknown TRs, namely, both the

estimate value and the estimate error of π̂ij are unknown. For

each rt = i, i ∈ S, we defineS = S ik+S
i
uk , whereS

i
k
4
={j : π̂ij

is completely known or the estimate value of π̂ij is known for

j ∈ S}, S iuk
4
={j : π̂ij is unknown for j ∈ S}. Note that if π̂ij is

completely known, its estimate error equals 0. In view of this,
if S ik 6= ∅, we denote S

i
k = {k

i
1, k

i
2, · · · , k

i
l } with 1 ≤ l ≤ N ,

where k im ∈ Z
+(1 ≤ k im ≤ N ,m = 1, 2, · · · , l) represents

the index of the mth estimate value-known element in the ith
row of matrix 4.
Remark 1: Notice that if 1πij = 0, (3) degenerates to

the partially unknown transition probability matrix [47], [48].
Also, if there is no ? appearing in (3), in this case, (3)
becomes the uncertain bounded transition probability matrix
[44]–[46]. Therefore, the GUTRs matrix considered in
this paper is more general and complex than other two
cases.

Because of special characteristics of TRs, it is reasonable
to give the following assumptions; see. e.g., [31]–[33], [39].
Assumption 2:
(i) If S ik = S, then πij − µij ≥ 0(∀j ∈ S, j 6= i), πii =

−

N∑
j=1,j 6=i

πij ≤ 0, and µii = −
N∑

j=1,j 6=i
µij.

(ii) If S ik 6= S and i ∈ S ik , then πij − µij ≥ 0(∀j ∈
S ik , j 6= i), πii + µii ≤ 0, and

∑
j∈S i

k
π̂ij ≤ 0;

(iii) If S ik 6= S and i ∈ S iuk then πij−µij ≥ 0(∀j ∈ S ik ) and
β = mini∈S i

uk
π̂ii.

For notational simplicity, we denote A(rt ),B(rt ),D(rt ),
A0(rt ), D0(rt ), C(rt ), B1(rt ), D1(rt ),F(rt ) by Ai,Bi,Di,A0i,
D0i,Ci, B1i,D1i,Fi for each rt = i, i ∈ S. Further-
more, to make fully use of the known information of TRs,
the lower bound of the uncertain element π̂ij is expressed as
πij = πij − µij.
Assumption 3: For each rt = i, i ∈ S, two equivalent

assumptions are given as follows. (i) rank(E,A0i) = rank(E).
(ii) There exist a set of matrices Yi, i ∈ S such that A0i = EYi
hold.
Remark 4: It was shown from [1]–[4] that, due to the

appearance of diffusion term, the sole regularity condition
cannot guarantee the existence of solution to the singu-
lar Itô stochastic system equation any more. For this rea-
son, the additional assumptions have to be presented, which
implies that the stochastic disturbance term does not really
cause the change on system structure. It can be seen that if
the input matrix depends on noise in system (1), the condition
of Assumption 3 may be destroyed after implementing a state
feedback control law on system (1). In addition, the item (i) of
Assumption 3 was given in [3], [4], which is less conservative
than previous work such as [1], [2]. Recently, the item (ii)
of Assumption 3 was presented in [8]. However, it can be
proved that two conditions are equivalent. (i) H⇒ (ii): Due
to rank(E,A0i) = rank(E), there must exist nonsingular
matrices U and V such that

UEV =
[
Ir 0
0 0

]
, UA0iV =

[
Â01i Â02i
0 0

]
. (4)
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By (4), A0i, i ∈ S are equivalently expressed as

A0i = U−1
[
Ir 0
0 0

]
V−1V

[
Â01i Â02i
0 0

]
V−1

= EV
[
Â01i Â02i
0 0

]
V−1. (5)

Let Yi = V
[
Â01i Â02i
0 0

]
V−1, then we have A0i = EYi.

(ii) H⇒ (i): If A0i = EYi hold for some matrices Yi, i ∈ S,
it is easy to see that rank(E,A0i) = rank(E,EYi) = rank(E).
Next, we present several important Lemmas which will be

used in the sequel.
Lemma 5 [1]: For a general stochastic singular system

Edx(t) = f1(x(t), t)dt + f2(x(t), t)dw(t), (6)

where f1, f2 : Rn
× R+ → Rn satisfy the local Lipschitz

condition and the linear growth condition. Let V (x(t), t) =
xT (t)ETPx(t) with ETP = PTE ≥ 0. Then V (x(t), t) is
again an Itô process with the singular stochastic differential
given by

dV (x(t), t) = [f T1 (x(t), t)Px(t)+ xTPT f1(x(t), t)
+ f T2 (x(t), t)(E+)TETPE+f2(x(t), t)]dt
+ 2xT (t)PT f2(x(t), t)dw(t). (7)

Remark 6: It should be pointed out that E+ and the relation
E = EE+E are introduced to compute dV (x(t), t); see,
e.g., [1]–[3]. By applying Itô’s formula to V (x(t), t), we have

dV (x(t), t) = d(xT (t)ET )Px(t)+ xT (t)PT d(Ex(t))
+ d(xT (t)ET )Pd(x(t)). (8)

But we only know the expression of dEx(t) rather than dx(t).
In view of this, the third term d(xT (t)ET )Pd(x(t)) in (8) is
rewritten as d(xT (t)ET )(E+)TETPE+d(Ex(t)). Correspond-
ingly, dV (x(t), t) can be easily calculated.
Lemma 7 [49]: For each rt = i, i ∈ S, let Pi ∈ Rn×n be

symmetric such that ETL PiEL > 0, and Ri ∈ R(n−r)×(n−r) are
nonsingular. Then, PiE +8TRi3T are nonsingular and their
inverse matrices are expressed as

(PiE +8TRi3T )−1 = P̄iET +3R̄i8, (9)

where P̄i ∈ Rn×n are symmetric and R̄i ∈ R(n−r)×(n−r) are
nonsingular such that

(ETR P̄iER)
−1
= ETL PiEL , (10)

R̄i = (3T3)−1R−1i (88T )−1, (11)

where EL and ER have full column ranks with E = ELETR ,8
and 3 are the left and right null matrices of E , respectively.
Lemma 8 [21]: The following sets are equivalent for each

rt = i, i ∈ S:

U = {Mi ∈ Rn×n
: ETMi=MT

i E≥0,Mi are nonsingular},

V = {Mi = PiE+8TRi3T
: Pi=PTi ∈ Rn×n,ETL PiEL>0,

Ri ∈ R(n−r)×(n−r) are nonsingular}, (12)

where EL ,ER,3 and 8 are defined in Lemma 7.

Lemma 9 [50]: Let Z and F > 0 be real square matrices,
then we have the following matrix inequality

ε(Z + ZT ) ≤ ε2F + ZF−1ZT (13)

for any real number ε.

III. MAIN RESULTS
A. FINITE-TIME STOCHASTIC H∞ CONTROL
VIA STATE FEEDBACK CONTROLLER
This section aims to design a state-feedback controller for
system (1) with GUTRs such that the resultant closed-loop
system is finite-time stochastically bounded with an H∞
disturbance attenuation level γ .

Below, we consider the following state feedback controller
for system (1)

u(t) = K (rt )x(t), (14)

where K (rt ) denoted by Ki for each i ∈ S, is the state
feedback gain matrix to be designed. Substituting (14) into
system (1), we obtain the resultant closed-loop system

Edx(t) = [Â(rt )x(t)+ D(rt )v(t)]dt
+ [A0(rt )x(t)+ D0(rt )v(t)]dw(t)

z(t) = Ĉ(rt )x(t)+ D1(rt )v(t),
Ex(0) = x0,

(15)

where Â(rt ) = A(rt ) + B(rt )K (rt ), Ĉ(rt ) = C(rt ) +
B1(rt )K (rt ).

Similar to [27], the following fundamental definitions for
the singular Itô stochastic system (15) are introduced, which
are crucial to give our main results.
Definition 10: For scalars 0 < c1 < c2,T > 0, h > 0,

γ > 0 and a positive matrix Q > 0,
(i) the closed-loop system (15) with v(t) = 0 is said to be

finite-time stochastically stable (FTSS) with respect to (wrt)
(c1, c2,T ,Q), if it has an impulse-free solution in the time
interval [0,T ] and satisfies

E{xT (0)ETQEx(0)} ≤ c21 H⇒ E{xT (t)ETQEx(t)} < c22.

(16)

(ii) The closed-loop system (15) is said to be finite-time
stochastically bounded (FTSB) wrt (c1, c2,T , h,Q), if it is
FTSS and the condition (2) holds for all nonzero v(t).
(iii) The closed-loop system (15) is said to be finite-

time stochastically bounded (FTSB) with an H∞ disturbance
attenuation γ wrt (c1, c2,T , h, γ,Q), if, under the zero initial
condition, it is FTSB and satisfies

E
{ ∫ T

0
zT (t)z(t)dt

}
< γ 2E

{ ∫ T

0
vT (t)v(t)dt

}
. (17)

Remark 11: In contrast with the notion of finite-time
boundedness for the deterministic system [25], [26], mathe-
matical expectation is introduced to evaluate the boundedness
of the state trajectory over a finite time interval, which reveals
some differences between deterministic and stochastic sys-
tems. In addition, it should be pointed out that finite-time
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stochastic boundedness of system (15) implies that the state
trajectory of the dynamical mode of system (15) is finite-
time stochastically bounded, so does the whole mode. The
reason is that the static mode of system (15) is impulse free.
Therefore, the definition of finite-time stochastic bounded-
ness given in this paper is consistent with those of [25], [26].

In what follows, we will firstly provide sufficient condi-
tions for finite-time stochastic H∞ control of system (15)
with completely known TRs, which pay the way for following
discussions.
Lemma 12: The closed-loop system (15) with completely

known TRs is FTSB with an H∞ disturbance attenuation γ
wrt (c1, c2,T , h, γ,Q), if there exist scalars δ ≥ 0, γ̄ > 0,
a set of symmetric matrices Pi = PTi , nonsingular matrices
Ri and positive symmetric matrices Gi > 0 such that the
following inequalities hold for each i ∈ S :

ETL PiEL > 0, (18)∑1i
∑

2i ĈT
i

∗
∑

3i DT1i
∗ ∗ −I

 < 0, (19)

ETMi = ETQ1/2GiQ1/2E, (20)

eδT (c21supi∈S{λmax(Gi)}+γ̄ h
2)< c22infi∈S{λmin(Gi)}, (21)

where ∑
1i
= He(ÂTi Mi)+ AT0i(E

+)TETMi(E+)A0i

+

N∑
j=1

π̂ijETMj − δETMi,∑
2i
= AT0i(E

+)TETMi(E+)D0i +MT
i Di,∑

3i
= DT0i(E

+)TETMi(E+)D0i − γ̄ I ,

Mi = PiE +8TRi3T , γ =

√
γ̄ eδT . (22)

Proof: The proof will be divided into three steps.
Step (i): We will prove that system (15) has an impulse-

free solution in the time interval [0,T ]. By (18) and Mi =

PiE+8TRi3T , it is easy to see that a set of matricesMi, i ∈ S
satisfy the set V in Lemma 8, then by the two equivalent sets,
Mi, i ∈ S satisfy the set U , i.e.

ETMi = MT
i E ≥ 0. (23)

Note that (19) implies
∑

1i < 0, which together with (23)
yields

ÂTi Mi+MT
i Âi+(π̂ii−δ)E

TMi<−

N∑
j=1,i 6=j

π̂ijETMj ≤ 0. (24)

On the other hand, because of rank(E) = r ≤ n, there must
exist a pair of nonsingular matrices U ,V such that

UEV =
[
Ir 0
0 0

]
, UÂiV =

[
Ã1i Ã2i
Ã3i Ã4i

]
. (25)

Setting

U−TMiV =
[
M̃1i M̃2i

M̃3i M̃4i

]
, (26)

and substituting (25) and (26) into (23), we obtain

M̃1i = M̃T
1i ≥ 0, M̃2i = 0. (27)

Then applying (25), (26) and (27) to (24), we have ÃT4iM̃4i +

M̃T
4iÃ4i < 0, which implies Ã4i, i ∈ S are invertible.

Furthermore, considering Assumption 3, there must exist
nonsingular matrices Ûi and V such that

ÛiEV =
[
Ir 0
0 0

]
, ÛiÂiV =

[
Ã1i − Ã2iÃ

−1
4i Ã3i 0

Ã3i Ã4i

]
,

ÛiA0iV =
[
Ã01i Ã02i
0 0

]
, (28)

with Ûi =
[
I −Ã2iÃ

−1
4i

0 I

]
U . Hence, by Lemma 3 of [4],

it follows that system (15) has an impulse-free solution in the
time interval [0,T ].
Step (ii): The closed-loop system (15) is FTSB wrt

(c1, c2,T , h,Q). By Schur complement Lemma, (19) leads to[∑
1i

∑
2i

∗
∑

3i

]
< 0. (29)

Let us choose the Lyapunov function candidate as
V (x(t), rt = i) = xT (t)ETMix(t) and consider E = EE+E .
On the basis of Lemma 5 and generalized Itô’s formula [see
(5.2) of [15]], it follows that

LV (x(t), i)

= [Âix(t)+ Div(t)]TMix(t)+ xT (t)MT
i [Âix(t)+ Div(t)]

+ [Â0ix(t)+D0iv(t)]T (E+)TETMi(E+)[Â0ix(t)+D0iv(t)]

+

N∑
j=1

πijETMj

= [xT (t) vT (t)]
[
�1i �2i
∗ �3i

] [
x(t)
v(t)

]
(30)

where

�1i = ÂTi Mi +MT
i Âi + A

T
0i(E

+)TETMiE+A0i

+

N∑
j=1

π̂ijETMj,

�2i = MT
i Di + A

T
0i(E

+)TETMiE+D0i,

�3i = DT0i(E
+)TETMiE+D0i.

In view of (29) and (30), we can get

LV(x(t), i) < δV (x(t), i)+ γ̄ vT (t)v(t). (31)

Pre-multiplying (31) by e−δt , which yields

L[e−δtV (x(t), i)] < e−δt γ̄ vT (t)v(t). (32)
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Integrating (32) from 0 to t and taking expectation on it, (32)
becomes

e−δtE{V (x(t), i)<E{V (x(0), r0)}+E{
∫ t

0
γ̄ e−δsvT (s)v(s)ds}.

(33)

By (33), we have

E{V (x(t), i)} < eδt
{
E{V (x(0), r0} + γ̄ E{

∫ t

0
vT (s)v(s)ds}

}
.

(34)

By making use of (20), we get

E{V (x(t), i)} = E{xT (t)ETMix(t)}

≥ infi∈S{λmin(Gi)}E{xT (t)ETQEx(t)}, (35)

E{V (x(0),r0)} = E{xT (0)ETMix(0)}

≤ supi∈S{λmax(Gi)}E{xT (0)ETQEx(0)} (36)

As a result, (21), (34), (35) as well as (36) result in

E{xT (t)ETQEx(t)} < c22, t ∈ [0,T ]. (37)

Step (iii): We will show that the closed-loop system (15)
is FTSB with an H∞ disturbance attenuation level γ wrt
(c1, c2,T , h, γ,Q). Based on Definition 10-(iii), it remains
to prove that the expression (17) holds. The procedures below
are similar to those of [27], [28], [48]. By (19) and (30), one
can get

LV(x(t), i) < δV (x(t), i)+ γ̄ vT (t)v(t)− zT (t)z(t). (38)

Pre-multiplying (38) by e−δt , it follows that

L[e−δtV (x(t), i)] < e−δt [γ̄ vT (t)v(t)− zT (t)z(t)]. (39)

Integrating (39) from 0 to T and taking expectation on it,
we obtain the following inequality under the zero initial
condition

E
{ ∫ T

0
e−δt [zT (t)z(t)− γ̄ vT (t)v(t)]dt

}
< −E{e−δTV (x(T ), i)} ≤ 0. (40)

Notice that e−δT ≤ e−δt ,∀t ∈ [0,T ], (40) becomes

E
{ ∫ T

0
e−δT zT (t)z(t)dt

}
< E

{ ∫ T

0
e−δt γ̄ vT (t)v(t)dt

}
.

(41)

(41) is the same as

E{
∫ T

0
z(t)z(t)dt} < E

{ ∫ T

0
eδ(T−t)γ̄ vT (t)v(t)dt

}
. (42)

It is easy to see that the following inequality holds

E
{ ∫ T

0
eδ(T−t)γ̄ vT (t)v(t)dt} ≤ E{

∫ T

0
eδT γ̄ vT (t)v(t)dt

}
(43)

Finally, let γ =
√
γ̄ eδT , then (42) as well as (43) results

in (17). The proof is ended.

Remark 13: A new criterion, which guarantees singu-
lar stochastic systems (15) with completely known TRs
to be FTSB with an H∞ performance level γ , is estab-
lished in Lemma 12. It should be pointed that the obtained
results are not trivial extensions to singular Itô stochastic
systems. By using the two equivalent sets [21], the equal-
ity constraint PiET = EPTi given in [27]–[29] and [30]
has been removed, which makes the numerical computa-
tion more reliable and tractable. Moreover, with the help

of Lemma 7, the nonlinear term
N∑
j=1
πijPiP

−1
j EPTi pre-

sented in Theorem 1 of [27] can be replaced as follows:
N∑
j=1
πijM

−T
i MT

j EM
−1
i =

N∑
j=1
πijNT

i E
TPjENi = πiiNT

i E
T
+

N∑
j=1,i 6=j

πijNT
i ER(E

T
L PiEL)E

T
RNi with Ni = P̄iET + 3R̄i8.

Note that
N∑

j=1,i 6=j
πijNT

i ER(E
T
L PiEL)E

T
RNi can be directly con-

verted into the linear term, which lays a solid foundation for
designing a controller in terms of strict LMIs.
Theorem 14: The closed-loop system (15) with GUTRs

is FTSB with an H∞ disturbance attenuation level γ wrt
(c1, c2,T , h, γ,Q), if there exist scalars δ ≥ 0, γ̄ > 0,
a set of symmetric matrices Pi,Wi, Sij,Xij, positive symmet-
ric matrices Gi > 0,Hi > 0,Tij > 0,Zij > 0, and
nonsingular matrices Ri such that (18), (20), (21) and the
following inequalities hold for each rt = i, i ∈ S:

∑
4i+θ1i

∑
2i ĈT

i Wi 91i
∗

∑
3i DT1i 0 0

∗ ∗ −I 0 0
∗ ∗ ∗ −Hi 0
∗ ∗ ∗ ∗ −92i

 < 0, i ∈ S ik ,

(44)
∑

4i+θ2i
∑

2i ĈT
i 93i

∗
∑

3i DT1i 0
∗ ∗ −I 0
∗ ∗ ∗ −94i

 < 0, i ∈ S iuk ,

(45)

ETMj − ETMi −Wi ≤ 0, j ∈ S iuk , i ∈ S, i 6= j,

(46)

ETMj − ETMi −Wi − Sij ≤ 0, j ∈ S ik , i ∈ S ik , i 6= j,

(47)

ETMj − ETMi −Wi − Xij ≤ 0, j ∈ S ik , i ∈ S iuk , i 6= j,

(48)

where∑
4i
= He(ÂTi Mi)+ AT0i(E

+)TETPiE(E+)A0i − δETPiE,

θ1i =
∑

j∈S i
k ,i 6=j

[πij(ETMj − ETMi −Wi)+ µijSij +
µ2
ij

4
Tij]

+
µ2
ii

4
Hi − πiiWi,
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

91i = [Sik i1
, Sik i2

, . . . , Sik il ],

92i = diag[Tik i1
,Tik i2

, . . . ,Tik il ],

93i = [Xik i1
,Xik i2

, . . . ,Xik il ],

94i = diag[Zik i1
,Zik i2

, . . . ,Zik il ],

k im ∈ S ik , k im 6= i,m = 1, 2, . . . , l,

θ2i =
∑
j∈S i

k

[πij(ETMj − ETMi −Wi)+ µijXij

+
µ2
ij

4
Zij]− βWi,∑

2i and
∑

3i are the same as those in Lemma 12.
Proof: Due to π̂ii = −

∑
j∈S i

k ,i 6=j

π̂ij −
∑

j∈S i
uk ,i 6=j

π̂ij, it fol-

lows that
N∑
j=1

π̂ijETMj =
∑

j∈S i
k ,i 6=j

π̂ij(ETMj − ETMi)

+

∑
j∈S i

uk ,i 6=j

π̂ij(ETMj − ETMi). (49)

Inspired by [33], [45], [46], [47], we introduce the free
weighting matrices Wi, i ∈ S and the zero sum equation
N∑
j=1
π̂ijWi = 0, then (49) is converted into

N∑
j=1

π̂ijETMj =
∑

j∈S i
k ,i 6=j

π̂ij(ETMj − ETMi −Wi)

+

∑
j∈S i

uk ,i 6=j

π̂ij(ETMj − ETMi −Wi)− π̂iiWi.

(50)

Case (i) (i ∈ S ik ): Taking into account (46) and π̂ij ≥ 0
(j ∈ S iuk ), it is easy to see that∑

j∈S i
uk ,i 6=j

π̂ij(ETMj − ETMi −Wi) ≤ 0. (51)

Then (50) and (51) can result in∑
1i
≤

∑
4i
+

∑
j∈S i

k ,i 6=j

π̂ij(ETMj − ETMi −Wi)− π̂iiWi

=

∑
4i
+

∑
j∈S i

k ,i 6=j

(πij +1πij)(ETMj − ETMi −Wi)

− (πii +1πii)Wi

=

∑
4i
+

∑
j∈S i

k ,i 6=j

[πij(ETMj − ETMi −Wi)

+ (1πij + µij)(ETMj − ETMi −Wi − Sij)

+ (1πij + µij)Sij]− (πii +1πii)Wi, (52)

where
∑

1i is given in (19). According to Lemma 9, we obtain∑
j∈S i

k ,i6=j

1πijSij ≤
∑

j∈S i
k ,i 6=j

(
µ2
ij

4
Tij + SijT

−1
ij Sij), (53)

and

−1πiiWi ≤
µ2
ii

4
Hi +WiH

−1
i Wi. (54)

Via (47) and Assumption 2-(ii), we have

(1πij + µij)(ETMj − ETMi −Wi − Sij) ≤ 0. (55)

Therefore, (52)-(55) can lead to∑
1i
≤

∑
4i
+θ1i+

∑
j∈S i

k ,i 6=j

SijT
−1
ij Sij+WiH

−1
i Wi. (56)

Applying Schur complement Lemma to (44) and considering
(55), it can be verified that condition (44) implies (19).
Case (ii)(i ∈ S iuk ) : Along with the similar line as that in

Case (i), we get the following inequality∑
1i
≤

∑
4i
+θ2i +

∑
j∈S i

k ,i 6=j

XijZ
−1
ij Xij. (57)

Employing Schur complement Lemma to (45) and using
(57), we derive that (45) implies (19). This completes the
proof.
Remark 15: As it can be seen, most of existing references

investigated the control problems on Markovian jump sys-
tems with GUTRs by classifying the TRs as three cases, that
is : (i) i ∈ S ik ,S

i
uk = ∅; (ii) i ∈ S

i
k ,S

i
uk 6= ∅; (iii) i ∈ S iuk .

However, the item (i) and the item (ii) have been merged in
Theorem 14. In fact, in the case of (i), we only need to set
Wi = 0,Hi = 0 and delete the fourth row and column in
(44), then (44) and (47) can ensure system (15) to be FTSB
with an H∞ disturbance attenuation γ .
Remark 16: As said in [8], [37], [45], [46], it is diffi-

cult to design a convex controller for systems with uncer-
tain TRs or GUTRs. This is because the nonlinear associ-
ation terms caused by the Young inequality often emerge.
To obtain a convex controller, the duality principal in [32]
was employed to study the stability and stabilization of sin-
gular Markovian jump systems, however, which is not appli-
cable to system (1) of this paper. Similarly, the separated
approach adopted in [37] is still restricted to the case that
the measurement output equation doesn’t contain the control
input. Therefore, the technique called the association of free-
connection weighting matrices with slack matrices is used in
Theorem 14. It can be seen that the free-connection weight-
ing matrices Wi are proposed to deal with the completely
unknown transition rates, which can provide less conservative
results than fix-weighting matrices [38], [47]. Also, the aim
introducing the slack matrices Sij and Xij is to conquer the
nonlinear difficulty arising in the Young inequality, which
provides a convex method for controller synthesis [33].
Theorem 17: The closed-loop system (15) with GUTRs

is FTSB with an H∞ disturbance attenuation γ wrt
(c1, c2,T , h, γ,Q), if there exist scalars δ ≥ 0, γ̄ > 0, λ > 0,
a set of symmetric matrices P̄i, W̄i, S̄ij, X̄ij, positive symmet-
ric matrices H̄i > 0, T̄ij > 0, Z̄ij > 0, J2i > 0, matri-
ces Li, and nonsingular matrices R̄i such that the following
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inequalities hold for each rt = i, i ∈ S:
ETR P̄iER > 0, (58)

∑
5i

Di
∑

6i
NT
i A

T
0i(E

+)TER W̄i 9̄1i ϒ1i

∗ γ̄ I DT1i DT0i(E
+)TER 0 0 0

∗ ∗ I 0 0 0 0
∗ ∗ ∗ ETR P̄iER 0 0 0
∗ ∗ ∗ ∗ H̄i 0 0
∗ ∗ ∗ ∗ ∗ 9̄2i 0
∗ ∗ ∗ ∗ ∗ ∗ ϒ2i


< 0, i ∈ S ik , (59)

∑
7i

Di
∑

6i
NT
i A

T
0i(E

+)TER 9̄3i ϒ1i

∗ γ̄ I DT1i DT0i(E
+)TER 0 0

∗ ∗ I 0 0 0
∗ ∗ ∗ ETR P̄iER 0 0
∗ ∗ ∗ ∗ 9̄4i 0
∗ ∗ ∗ ∗ ∗ ϒ2i


< 0, i ∈ S iuk , (60)[

−W̄i − NT
i E

T NT
i ER

∗ −ETR P̄jER

]
≤ 0,

i ∈ S, j ∈ S iuk , i 6= j, (61)[
−W̄i − NT

i E
T
− S̄ij NT

i ER

∗ −ETR P̄jER

]
≤ 0,

i ∈ S ik , j ∈ S ik , i 6= j, (62)[
−W̄i − NT

i E
T
− X̄ij NT

i ER

∗ −ETR P̄jER

]
≤ 0,

i ∈ S iuk , j ∈ S ik , i 6= j, (63)

λI < Q
1
2U−1diag{J1i, J2i}U−TQ

1
2 < I , (64)

−c22e
−δT
+ γ̄ h2 +

c21
λ
< 0, (65)

where∑
5i
= He(AiNi + BiLi)− δNT

i E
T
+ θ3i,

θ3i =
∑

j∈S i
k ,i6=j

[−πij(NT
i E

T
+ W̄i)+ µijS̄ij +

µ2
ij

4
T̄ij]

+
µ2
ii

4
H̄i − πiiW̄i,∑

6i
= NT

i C
T
i + L

T
i B

T
1i

9̄1i = [S̄ik i1
, S̄ik i2

, · · · , S̄ik il ],

9̄2i=diag[T̄ik i1
, T̄ik i2

, · · · , T̄ik il ],

9̄3i= [X̄ik i1
, X̄ik i2

, · · · , X̄ik il ],

9̄4i=diag[Z̄ik i1
, Z̄ik i2

, · · · , Z̄ik il ],

ϒ1i= [
√
πik i1

NT
i ER,

√
πik i2

NT
i ER, · · · ,√

πik il
NT
i ER],

ϒ2i=diag{ETR P̄ik i1
ER,ETR P̄ik i2

ER, · · · ,

ETR P̄ik ilER},

(k im ∈ S ik , k im 6= i,m = 1, 2, · · · , l),

∑
7i
= He(AiNi + BiLi)− δNT

i E
T
+ θ4i,

θ4i =
∑
j∈S i

k

[−πij(NT
i E

T
+ W̄i)+ µijX̄ij +

µ2
ij

4
Z̄ij]− βW̄i,

Ni = P̄iET +3R̄i8,

J1i = [Ir 0]UENiUT [Ir 0]T .

The state feedback gain matrices are presented as Ki =
LiN
−1
i , i ∈ S.
Proof: As observed in Lemma 7, we obtain

(ETL PiEL)
−1
= ETR P̄iER and Ni = M−1i = P̄iET +3R̄i8, so

inequality (58) implies (18). Next, pre- and post-multiplying

(44), (45), (46)-(48) by diag{M−Ti , I , I , I , I }, diag{M−Ti , I ,
I , I },M−Ti and their transposes, respectively, and introducing
the following new matrices Li = KiNi, W̄i = NT

i WiNi, S̄ij =
NT
i SijNi, Z̄ij = NT

i ZijN
T
i , X̄ij = NT

i XijNi, H̄i =

NT
i HiNi, T̄ij = NT

i TijNi, we derive that inequalities (44) and
(45) are respectively equivalent to (59) and (60) by applying
Schur complement Lemma and a series of simple compu-
tations. Furthermore, inequalities (46)-(48) are equivalently
transformed to (61)-(63).

The remainder is to prove that conditions (64) and (65)
imply (20) and (21). Note that (20) is equivalent to

NT
i E

T
= NT

i E
TQ

1
2GiQ

1
2ENi. (66)

So we will only need to find the suitable matrices Gi > 0,
i ∈ S to satisfy (66). To this end, setting V−1NiUT

=[
Ñ1i Ñ2i

Ñ3i Ñ4i

]
, and taking into account NT

i E
T
= ENi ≥ 0,

we derive Ñ1i = ÑT
1i ≥ 0, Ñ2i = 0. Also, Ñ1i is positive

because of the nonsingularity of Ni. Thus, (66) holds when

taking Gi = Q−
1
2UT

[
Ñ1i 0
0 J2i

]−1
UQ−

1
2 with the arbitrary

positive matrices J2i > 0. On the other hand, Ñ1i is expressed
as the following form of known symmetric matrices

J1i
4
= Ñ1i = [Ir 0]V−1NiUT [Ir 0]T

= [Ir 0]UENiUT [Ir 0]T . (67)

Hence, condition (66) is satisfied. Finally, it can be seen from
(64) that I < Gi < λ−1I , which together with (65) can result
in (21). This completes the proof.

When system (15) includes neither noise nor unknown and
uncertain TRs, Theorem 17 degenerates to the conditions of
finite-time stochasticH∞ stabilization by state feedback con-
troller for singular Markovian jump systems with completely
known TRs, which is presented as follows.
Corollary 18: There exist the mode-dependent state feed-

back controller u(t) = Kix(t) with Ki = LiN
−1
i , i ∈

S such that system (15) with completely known TRs and
w(t) = 0 is FTSB with an H∞ disturbance attenuation γ wrt
(c1, c2,T , h, γ,Q), if there exist scalars δ ≥ 0, γ̄ > 0, λ > 0,
a set of matrices P̄i = P̄Ti , J2i > 0,Li and nonsingular matri-
ces R̄i such that (58),(64),(65) and the following inequalities
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hold for each rt = i, i ∈ S:
∑̄

1i Di
∑

6i
95i

∗ −γ̄ I DT1i 0

∗ ∗ −I 0
∗ ∗ ∗ −96i

 < 0, (68)

where∑̄
1i
= He(AiNi + BiLi)+ (πii − δ)EP̄iET ,

95i = [
√
πi1NT

i ER,
√
πi2NT

i ER, · · · ,
√
πi,i−1NT

i ER,
√
πi,i+1NT

i ER, · · · ,
√
πiNNT

i ER],
96i = diag{ETR P̄i1ER,E

T
R P̄i2ER, · · · ,E

T
R P̄i,i−1ER,

ETR P̄i,i+1ER, · · · ,E
T
R P̄iNER},

and
∑

6i is given in Theorem 17.
Remark 19: It can be seen that conditions (58),(64),(65)

and (68) are given in terms of strict LMIs. Thus, what we
have obtained are superior to Theorem 1 of [27] and Theo-
rem 22 of [30] whether in theory or numerical computation.

B. FINITE-TIME STOCHASTIC H∞ CONTROL BY
OBSERVER-BASED CONTROLLER
It is well known that state variables of the system are gener-
ally difficult to measure in most of practical situations. There-
fore, it is desirable to design a controller without resorting to
accessing to the state. This subsection is devoted to designing
an observer-based output feedback controller that ensures the
closed-loop system with GUTRs to be FTSB with an H∞
disturbance attenuation γ . The observer-based controller is
provided as follows:
Edx̂(t)=A(rt )x̂(t)dt+B(rt )u(t)dt+J (rt )[ŷ(t)−y(t)]dt,
ŷ(t)=F(rt )x̂(t),
u(t)=K (rt )x̂(t),

(69)

where x̂(t) ∈ Rn is the estimation of x(t); K (rt ) and J (rt )
are the controller gain and observer gain to be designed,
respectively.

Let e(t) = x(t)− x̂(t) and x̃(t) = [xT (t) eT (t)]T , then the
corresponding closed-loop augment system is given as in the
following form:

Ẽdx̃(t) = [Ã(rt )x̃(t)+ D̃(rt )v(t)]dt
+ [Ã0(rt )x̃(t)+ D̃0(rt )v(t)]dw(t),

z(t) = C̃(rt )x̃(t)+ D̃1(rt )v(t),
Ẽ x̃(0) = x̃0,

(70)

where

Ẽ =
[
E 0
0 E

]
, Ã0(rt ) =

[
A0(rt ) 0
A0(rt ) 0

]
,

Ã(rt ) =
[
A(rt )+ B(rt )K (rt ) −B(rt )K (rt )

0 A(rt )+ J (rt )F(rt )

]
,

D̃(rt ) =
[
D(rt )
D(rt )

]
, D̃0(rt ) =

[
D0(rt )
D0(rt )

]
, D̃1(rt ) = D1(rt ),

C̃(rt ) = [C(rt )+ B1(rt )K (rt ) − B1(rt )K (rt )].

Definition 20: For scalars 0 < c1 < c2,T > 0, γ > 0
and a matrix Q̃ = diag{Q,Q} > 0, the closed-loop augment
system (70) is said to be

(i) FTSS wrt (c1, c2,T , Q̃) when v(t) = 0, if it has an
impulse-free solution in the time interval [0,T ] and satisfies
the following condition

E{x̃T (0)ẼT Q̃Ẽ x̃(0)} ≤ c21 H⇒ E{x̃T (t)ẼT Q̃Ẽ x̃(t)} < c22.

(71)

(ii) FTSB wrt (c1, c2,T , h, Q̃), if it is FTSS and condition
(2) holds for all nonzero v(t).

(iii) FTSB with an H∞ disturbance attenuation γ wrt
(c1, c2,T , h, γ, Q̃), if it is FTSB while satisfying condition
(17) under the zero initial condition.
Theorem 21: The closed-loop augment system (70) with

completely known TRs is FTSB with an H∞ disturbance
attenuation γ wrt (c1, c2,T , h, γ, Q̃), if there exist scalars
δ ≥ 0, γ̄ > 0, a set of matrices Pi = PTi , nonsingular
matrices Ri, and positive symmetric matrices Gi > 0 such
that (18), (20), (21) and the following inequalities hold for
each rt = i, i ∈ S

511i 512i 513i 514i

∗ 522i 523i −KT
i B

T
1i

∗ ∗ 533i DT1i

∗ ∗ ∗ −I

 < 0, (72)

where

511i = He(ATi Mi + KT
i B

T
i Mi)+ 2AT0i(E

+)TETPiEE+A0i

+

N∑
j=1

π̂ijETPjE − δETPiE,

512i = −MT
i BiKi,

513i = MT
i Di + 2AT0i(E

+)TETPiEE+D0i,

514i = CT
1i + K

T
i B

T
1i,

522i = He(ATi Mi + FTi J
T
i Mi)+

N∑
j=1

π̂ijETPjE − δETPiE,

523i = MT
i Di, 533i = −γ̄ I + 2DT0i(E

+)TETPiEE+D0i.

Proof: Setting ẼL = diag{EL ,EL}, ẼR = diag{ER,ER},
Ẽ+ = diag{E+,E+}, P̃i = diag{Pi,Pi}, R̃i = diag
{Ri,Ri}, M̃i = diag{Mi,Mi}, G̃i = diag{Gi,Gi},Gi > 0,
it is easy to see that (18),(20) together with (21) imply the
following conditions hold, respectively

ẼL P̃iẼL > 0, (73)

ẼT M̃i = ẼT Q̃1/2G̃iQ̃1/2Ẽ, (74)

eδT (c21λ2 + γ̄ h
2) < c22λ1, (75)

where λ2 = supi∈S{λmax(Gi)} = supi∈S{λmax(G̃i)}, λ1 =
infi∈S{λmin(Gi)} = infi∈S{λmin(G̃i)}. On the other hand,
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(72) is just the same as5̃11i 5̃12i C̃T
i

∗ 5̃22i DT1i
∗ ∗ −I

 < 0, (76)

with

5̃11i = He(ÃTi M̃i)+ ÃT0i(Ẽ
+)T ẼT M̃i(Ẽ+)Ã0i

+

N∑
j=1

π̂ijẼT M̃j − δẼT M̃i,

5̃12i = ÃT0i(Ẽ
+)T ẼT M̃i(Ẽ+)D̃0i + M̃T

i D̃i,

5̃22i = D̃T0i(Ẽ
+)T ẼT M̃i(Ẽ+)D̃0i − γ̄ I .

Hence, based on Lemma 12, conditions (73)-(76) ensure that
system (70) with completely known TRs is FTSBwith anH∞
disturbance attenuation γ . This completes the proof.
Theorem 22: The closed-loop augment system (70) with

GUTRs is FTSB with an H∞ disturbance attenuation γ wrt
(c1, c2,T , h, γ, Q̃), if there exist scalars δ ≥ 0, γ̄ > 0, λ > 0,
a set of symmetric matrices P̄i, P̂i, W̄i, S̄ij, X̄ij, positive sym-
metric matrices J2i > 0, H̄i > 0, T̄ij > 0, Z̄ij > 0, matrices
Li, J̃i and nonsingular matrices R̄i, R̂i such that (61)-(65) and
the following inequalities hold for each rt = i, i ∈ S:

ETR P̄iER > 0, (77)

ÊTR P̂iÊR > 0, (78)

FiNi = (P̂iÊT + 3̂R̂i8̂)Fi,

(79)
τ11i τ12i τ13i τ14i τ15i
∗ τ22i τ23i 0 0
∗ ∗ τ33i 0 0
∗ ∗ ∗ τ44i 0
∗ ∗ ∗ ∗ τ55i

 < 0, i ∈ S ik , (80)


ζ11i ζ12i ζ13i ζ14i ζ15i
∗ ζ22i ζ23i 0 0
∗ ∗ ζ33i 0 0
∗ ∗ ∗ ζ44i 0
∗ ∗ ∗ ∗ ζ55i

 < 0, i ∈ S iuk , (81)

where

τ11i =

[∑
5i −BiLi
∗

∑
8i

]
, τ12i =

[
Di

∑
6i

Di −LTi B
T
1i

]
,

τ13i =

[
NT
i A

T
0i(E

+)TER NT
i A

T
0i(E

+)TER
0 0

]
,

τ14i =

[
W̄i 9̄1i ϒ1i
0 0 0

]
, τ15i=

[
0 0 0
W̄i 9̄1i ϒ1i

]
,

τ22i =

[
−γ̄ I DT1i
∗ I

]
,

τ23i =

[
DT0i(E

+)TER DT0i(E
+)TER

0 0

]
,

τ33i = diag{−ETR P̄iER,−E
T
R P̄iER},

τ44i = diag{−H̄i,−9̄2i,−ϒ2i},

τ55i = τ44i, ζ11i =

[∑
7i −BiLi
∗

∑
9i

]
,

ζ12i = τ12i, ζ13i = τ13i,

ζ14i =

[
9̄3i ϒ1i
0 0

]
, ζ15i =

[
0 0
9̄3i ϒ1i

]
,

ζ22i = τ22i, ζ23i = τ23i, ζ33i = τ33i,

ζ44i = −diag{9̄4i, ϒ2i}, ζ55i = ζ44i,∑
8i
= He(AiNi + J̃iFi)− δNT

i E
T
+ θ3i,∑

9i
= He(AiNi + J̃iFi)− δNT

i E
T
+ θ4i,

Ê is a suitable singular matrix with Ê = ÊL ÊTR , 8̂ and
3̂ are left and right null matrix of Ê , respectively, and∑

5i,
∑

6i,
∑

7i, 9̄1i, 9̄2i, ϒ1i, ϒ2i, θ3i, θ4i are given in Theo-
rem 17. In this case, the state feedback control gain matrices
are presented as Ki = LiN

−1
i with Ni = P̄iET + 3R̄i8, i ∈

S, and the observer gain matrices are calculated as Ji =
J̃i(P̂iÊT + 3̂R̂i8̂)−1, i ∈ S.

Proof: Performing the congruence transformation on
(72) with diag{M−1i ,M−1i , I , I } and setting Li = KiNi, J̃i =
Ji(P̂iÊT + 3̂R̂i8̂), then using the Schur complement equiva-
lence, (72) becomes τ̃11i τ12i τ13i

∗ τ22i τ23i
∗ ∗ τ33i

 < 0, (82)

where

τ̃11i =

[
∇1i −BiLi
∗ ∇2i

]
,

∇1i = He(AiNi + BiLi)+
N∑
j=1

π̂ijNT
i E

TPjENi − δNT
i E

T ,

∇2i = He(AiNi + J̃iFi)+
N∑
j=1

π̂ijNT
i E

TPjENi − δNT
i E

T .

Furthermore,
N∑
j=1
π̂ijNT

i E
TPjENi can be taken the same mea-

sures as
N∑
j=1
π̂ijETMj in Theorem 14. Then it can be proved

that inequalities (80) and (81) imply (82). The detail proof
here is omitted.

As a byproduct of Theorem 22, the following conditions
regarding FTSB with an H∞ performance index γ of the
closed-loop augment system (70) with completely known
TRs and w(t) = 0 are derived.
Corollary 23: There exist the mode-dependent observer-

based controller in the form of (69) such that the closed-
loop augment system (70) with completely known TRs and
w(t) = 0 is FTSB with an H∞ disturbance attenuation γ wrt
(c1, c2,T , h, γ, Q̃), if there exist scalars δ ≥ 0, γ̄ > 0, λ > 0,
a set of matrices P̄i = P̄Ti , P̂i = P̂Ti , J2i > 0,Li, J̃i and
nonsingular matrices R̄i, R̂i, such that (64),(65), (77)-(79) and
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the following inequalities hold for each i ∈ S:

∑̄
1i −BiLi Di

∑
6i 95i 0

∗
∑̄

2i Di −LTi B
T
1i 0 95i

∗ ∗ −γ̄ I DT1i 0 0

∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ 96i 0
∗ ∗ ∗ ∗ ∗ 96i


< 0,

(83)

where
∑̄

2i = He(AiNi+ J̃iFi)+(πii−δ)EP̄iET ,
∑̄

1i, 95i96i
are the same as those in Corollary 18. The state feedback gain
and the observer gain are presented as those of Theorem 22.
Remark 24: It is observed that the state feedback gain

and observer-based gain are simultaneously resolved at the
expense of using the equality constraint (79), how to remove
it deserve our further study. Also, to solve (79) by applying
Matlab LMI toolbox, we replace it as the following inequality[

−ρI FiNi − (P̂iET + 3̂R̂i8̂)Fi
∗ −I

]
< 0, (84)

where ρ is a sufficiently small positive scalar.

IV. NUMERICAL EXAMPLES
In this section, two examples are proposed to demonstrate the
effectiveness of our presented results.
Example 25: Consider a oil catalytic cracking model

[4], [12], which is described by

ẋ1(t) = a1x1(t)+ a2x2(t)+ b1u(t)+ d1v(t),

0 = a3x1(t)+ a4x2(t)+ b2u(t)+ d2v(t), (85)

where x1(t) denotes a vector to be regulated, such as regen-
erate temperature, valve position, blower capacity, etc; x2(t)
represents the vector reflecting business benefits, administra-
tion, policy, etc; u(t) is the regulation value, and v(t) repre-
sents a extra disturbance. Obviously, (85) can be equivalently
expressed as

Eẋ(t) = Ax(t)+ Bu(t)+ Dv(t), (86)

with

x(t) = [x1(t)T x2(t)T ]T ,

E =
[
1 0
0 0

]
, A =

[
a1 a2
a3 a4

]
,

B =
[
b1
b2

]
, D =

[
d1
d2

]
. (87)

To demonstrate the efficiency of our proposed results, with-
out loss of generality, the coefficient matrices of (86) are
modeled by a Markovian process, and the control output
equation

z(t) = C(rt )x(t)+ B1(rt )u(t)+ D1(rt )v(t)

is taken into account, then (86) becomes
Eẋ(t) = A(rt )x(t)+ B(rt )u(t)+ D(rt )v(t)
z(t) = C(rt )x(t)+ B1(rt )u(t)+ D1(rt )v(t),
Ex(0) = x0.

(88)

In order to compare Corollary 18 with the existing results
of [27], the coefficient matrices of (88) are taken the same
data as example 2 of [27]:

E =
[
1 0
0 0

]
, A1 =

[
−0.8 1.5
2 3

]
,

A2 =
[
−2 1.2
1 4

]
, B1 =

[
−1 0.2
0.5 −0.1

]
,

B2 =
[
−1 1
0.5 −2

]
, D1 =

[
0.2
0.1

]
,

D2 =

[
0.2
0.3

]
, C1 = C2 = [1 1],

B11 = B12 = [0.1 0.2], D11 = D12 = 0.1.

The Markovian jump transition probability matrix is
given by [

−1.2 1.2
1 −1

]
. (89)

Other parameters are given as h = 1,T = 2, c1 = 1,Q = I .
According to the method proposed in [27], the expression
min(γ 2

+ c22) was viewed as the optimal objective to get
the state feedback gain for FTH∞SB of system (88), then
feasible solutions can be obtained when δ changes the value
in [1.85 10.34]. Furthermore, in the case of δ = 2.4283,
the optimal values were presented by c2 = 20.0345 and γ =
12.5486. However, by applying Corollary 18 of this paper,
feasible solutions can be found when δ ∈ [0 10.35], and the
optimal values are given as c2 = 11.3967 and γ = 1.1348.
Therefore, it can be seen that, even for system (1) without
noise, our obtained results are much better than existing one.
Example 26: In many practical cases, the environment

noise often exist and cannot be neglected. If we take white
noise ẇ(t) into account system (88), then the singular Itô
stochastic Markovian jump system in the form of (1) is
presented. To verify the efficiency of Theorem 17 and
Theorem 22, the three-mode singular Itô Markovian jump
system (1) with GUTRs was taken the following data:

For mode 1,

A1 =

−0.5 −0.8 −1
1.5 −1 1
0 −1 1

, B1 =

 0.2 0.4
1 1
−1 1

,
D1 =

 0.2
0.4
0

, A01 =

 0.4 0.2 −0.1
0.5 0 0.3
0 0 0

,
D01 =

 0
0
−0.6

, C1 =

 1 2 1
3 1 1
4 1 1

,
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B11 =

 2 −0.4
0.7 0.8
0 1

, D11 =

 0.5
−0.4
0.8

,
F1 =

[
1 −0.7 −2
2 1 0

]
.

For mode 2,

A2 =

−5 0.3 0
0.2 −8.6 0
0 −1 −5

, B2 =

 0 0.5
0 1
−1 1

,
D2 =

 0
0.6
−0.8

, A02 =

 0.3 −0.1 0.2
−0.4 0.2 0
0 0 0

,
D02 =

−0.20
0.3

, C2 =

−3 2 1
3 4.2 1.3
4 1 1

,
B12 =

 2.6 0.6
0.2 0.9
1.2 1.4

, D12 =

 0
−0.6
0.8

,
F2 =

[
−0.7 0.9 −1
0.9 0.8 1

]
.

For mode 3,

A3 =

−10 0 0
0 −9 0
1 −1 −6

, B3 =

 0 0.5
0.9 1
1 0.8

,
D3 =

 0.2
−0.4
0.2

, A03 =

−0.5 0.4 −0.3
−0.2 0.3 0
0 0 0

,
D03 =

 0.1
0
0.4

, C3 =

 1.1 0 −1
−0.1 −0.5 0
−0.2 0 0

,
B13 =

−0.5 0.7
0.9 0.4
0.1 0.2

, D13 =

 0.6
−0.4
−0.9

,
F3 =

[
−3 0 −1
0.9 −4.5 −3

]
.

The Markovian jump matrix with GUTRs is given as−1+1π11 ? ?
? ? 2+1π23

0.2+1π31 0.3+1π32 −0.5+1π33

. (90)

In addition, we choose

E =

 1 0 0
0 1 0
0 0 0

, EL =

 1 0
0 1
0 0

, ER =
 1 0
0 1
0 0

,
Ê =

[
1 0
0 0

]
, 8 = [0 0 0.7], 3 = [0 0 0.9]T ,

8̂ = [0 0.5], 3̂ = [0 0.6]T , µij = 0.1 ∗ |1πij|.

In this paper, we mainly concern with theH∞ performance of
system, so γ̄ is considered as optimized variable to obtain an
optimized finite-time stabilized controller. Given c1 = 0.3,

FIGURE 1. State response curves of the closed-loop system (15).

c2 = 5, h = 1,T = 2, δ = 0.2, β = 5,Q = I , ρ = 1.0 ×
10−10, then by solving inequalities (58)-(65) in Theorem 17,
the optimal value of γ̄ is 1.3400, and the state feedback gain
matrices are presented by

K1 =

[
−1.1328 −1.4788 −0.7780
−5.0131 −1.6555 −0.7776

]
,

K2 =

[
2.0603 1.0426 0.1517
−4.4259 −2.7252 −0.8340

]
,

K3 =

[
1.1864 −0.3998 −0.7173
−1.9402 −1.3976 1.0412

]
.

Also, by solving inequalities (61)-(65) and (77)-(81) in
Theorem 22, the optimal value of γ̄ is 1.3541. The state
feedback controller gains are obtained as follows:

K1 =

[
1.1977 −1.6600 −0.8449
−4.6190 −1.0782 −0.5892

]
,

K2 =

[
2.1343 1.0335 0.1827
−4.2151 −2.2946 −0.7128

]
,

K3 =

[
0.9321 −0.2976 −0.6477
−0.0982 −0.7014 0.0132

]
.

The observer gains are given as

J1 =

 0.2874 −1.5799
0.2579 −0.0475
0.2191 1.2021

,
J2 =

 0.2674 −0.3510
−0.2029 −1.4795
0.3902 0.0352

,
J3 =

 13.2093 −0.2293
−28.9715 22.4344
−25.3593 23.5054

.
Remark 27: To perform the simulation, we assume

v(t) = 0.6t (
∫ 2
0 0.62tdt = 0.8519 < 1) and the initial

value x(0) = [0.3 0.3 0.2]T . By using the Euler-Maruyama
approach to simulate Wiener process, state response curves
x(t) in Figure 1, xT (t)ETQEx(t) and E{xT (t)ETQEx(t)}
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FIGURE 2. E{xT (t)ET QEx(t)} for the closed-loop system (15).

FIGURE 3. H∞ performance analysis for the closed-loop system (15).

FIGURE 4. Curves of rt .

FIGURE 5. State response curves of the closed-loop system (70).

in Figure 2 for the closed-loop system (15) are obtained.
Figure 1 shows that the curves asymptotically converge 0,
which denotes that the closed-loop system (15) with GUTRs
is mean square admissible at infinite time. This is because
LMIs (58)-(65) still have feasible solutions in the case

FIGURE 6. E{x̃T (t)ẼT Q̃Ẽ x̃(t)} for the closed-loop system (70).

FIGURE 7. H∞ performance analysis for the closed-loop system (70).

of δ = 0. Furthermore, it can be seen from Figure 2 that
system (15) with GUTRs is FTSB wrt (0.3, 5, 2, 1, I ). Under
the zero initial condition, Figure 3 exhibits that the desired
H∞ performance is achieved in the finite-time interval
[0, 2]. So what we have obtained in Theorem 17 are effec-
tive. Similarly, to illustrate the efficiency of Theorem 22,
the initial value for system (70) is taken as x̃(0) =
[0.3 0.3 0.2 0 0 0]T . Then state response curves x(t) and
error response curves e(t) are proposed in Figure 5, and the
response for E{x̃T (0)ẼT Q̃Ẽ x̃(0)} is presented in Figure 6.
Therefore, we can also draw a conclusion that the closed-
loop augment system (70) with GUTRs not only is FTSB wrt
(0.3, 5, 2, 1, I ) but also mean square admissible in the infinite
time. Besides, from Figure 7, H∞ performance for system
(70) is satisfied as well.

V. CONCLUSION
In this paper, we have discussed the problems of finite-time
stochastic H∞ control for singular Itô-type Markovian jump
systems with (x, v)-dependent noise, including both cases of
completely known TRs and generally uncertain TRs. First,
sufficient conditions ensuring the considered systems with
completely known TRs to be FTSB with H∞ performance
have been presented, which, even for the system without
noise, are still less conservative than the results of [27]–[29].
Then by utilizing the association of free-weighting matrices
and slack matrices, we have obtained the new criteria of
finite-time stochastic H∞ control for the underlying systems
with GUTRs. The state feedback controller and observer-
based controller have successfully been designed.

It is interesting for us to extend the obtained results of this
paper to discrete-time singular systems or semi-Markovian
jump systems in the near future.
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