
Received April 9, 2019, accepted May 1, 2019, date of publication May 15, 2019, date of current version May 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2916350

A Correlation-Experience-Demand
Based Personalized Knowledge
Recommendation Approach
XIYAN YIN , BUYUN SHENG, FEIYU ZHAO, XINGGANG WANG, ZHENG XIAO, AND HUI WANG
School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
Hubei Digital Manufacturing Key Laboratory (Wuhan University of Technology), Wuhan 430070, China

Corresponding author: Feiyu Zhao (zhaofeiyu1992@whut.edu.cn)

This work was supported in part by the National Key R&D Program of China under Grant 2016YFB1101701.

ABSTRACT Knowledge recommendation is an important means of knowledge reuse that can improve
the efficiency and quality of product design. However, at present, there is no good way to fully consider
the personalized demands of designers while ensuring the applicability of the recommendation results.
Previous studies have usually been based on the similarity between tasks and knowledge or use collab-
orative filtering technology to accomplish knowledge recommendation. However, these methods do not
consider the personal experience of designers and the characteristics of knowledge. This paper proposes
a knowledge recommendation approach that integrates the degree of correlation between knowledge and
tasks, the feedback-based personal experience, the collective experience of designers, and the degree of
demand for knowledge based on the forgetting curve. A knowledge assistance score is generated based on
these factors, and the knowledge recommendation list is obtained by ranking the knowledge in descending
order of this score. Finally, the approach is applied to a machine shop layout design task and a computer
numerical control (CNC) machine tool’s spindle design and bearings selection task. The experimental results
on two tasks demonstrate that the proposed approach outperforms three baselines on three ranking oriented
evaluation metrics. This approach can effectively shorten the time for designers to acquire knowledge by
recommending applicable knowledge to assist designers in completing design tasks with high quality and
efficiency.

INDEX TERMS Collaborative filtering, degree of assistance, degree of correlation, degree of demand,
knowledge recommendation, ontology model.

I. INTRODUCTION
At present, the integration and complexity of industrial prod-
ucts are constantly improving, and the lifecycle is gradually
shortening, which puts greater requirements on the designer’s
product design abilities [1]. Knowledge reuse is a com-
mon means for assisting designers in accomplishing design
tasks with high efficiency and quality in a short time [2].
Knowledge retrieval and knowledge recommendation are two
main approaches to knowledge reuse [3]. The advantage of
knowledge retrieval is that it fully meets the user’s retrieval
needs and can quickly and accurately find the best matching
results from the retrieval keywords [4], [5]. However, the
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efficiency of knowledge retrieval decreases as the capacity
of the knowledge base grows. It is also difficult for inexpe-
rienced designers to use accurate keywords to find the most
appropriate knowledge. Therefore, knowledge recommenda-
tion is gradually replacing knowledge retrieval as the key
technology in knowledge reuse [6]. Knowledge recommen-
dation technologies adopt algorithms to search the knowledge
base for knowledge that best meets the current needs of the
designer and then actively recommend it to the designer. This
characteristic requires less experience and is more acceptable
to designers [7].

To find knowledge that can solve design tasks, the similar-
ity between the task and knowledge needs to be computed.
The knowledge that has the highest similarity value to the
task is generally considered to be the best result. There are
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three main types of similarity computations [8]. The first type
is based on keyword matching, e.g., the N-gram method [9]
or the Jaccard method [10]. The second type is based on
vector spaces and is the most widely used method at present.
It extracts the keywords from the knowledge and uses them to
build a vector to represent the knowledge. Therefore, the sim-
ilarity between two knowledge results can be compared by
computing the distance between these vectors. The common
methods use the Minkowski distance [11], the cosine simi-
larity method [12]–[14], the Pearson correlation coefficient
method [15], the Hamming distance method [16], etc. The
third type is based on ever-evolving artificial intelligence
algorithms [17]–[19]. The accuracies of the above similarity
computation methods are gradually improving, and the scope
of application is also increasing. However, when these algo-
rithms are used to compute the similarity between tasks and
knowledge, the result is the objective similarity between them
without considering the subjective experience and demands
of designers. Therefore, these methods do not apply to all
designers in practice.

Recommendation systems that consider users’ needs are
widely used in many fields such as movies recommenda-
tion, advertisements recommendation on some websites, and
especially the e-commerce field [20]–[23]. The most classic
algorithm is collaborative filtering (CF) [24]. CF is mainly
divided into user-based CF and item-based CF. The main
idea of the former is that for two users with similar pref-
erences, if one of them likes an item, the other one will
like it as well. The main idea of the latter is that if a user
likes one of two similar items, he/she will like the other one.
CF combines the feedback information of a large number of
users with the objective similarity between users or items
and enables users to obtain filtered information from other
users according to their needs. It is a typical way to use
collective wisdom. However, recommendation systems in the
engineering design field are different from other fields. For
instance, CF algorithms in the e-commerce field mainly con-
sider the ratings or preferences of a user when recommending
new items to him/her. This characteristic restrains the types
of recommendation results, which is not appropriate for the
engineering design field. In the engineering design field, one
of the functions of the recommendation systems is to assist
the designers in improving their design ability. Therefore,
the pieces of knowledge that useful but not frequently used
by the designers should be recommended to the designers.
The current recommendation algorithms in other fields do not
possess this characteristic.

Researchers have done much work to apply the CF algo-
rithm to the engineering field to build personalized knowl-
edge recommendation systems. Liu et al. [25] use an ontology
matching algorithm to explore the relationship between the
context in the workflow system to find accomplished tasks
that are similar to the current task, and the knowledge used
by them is recommended to the current designer to real-
ize knowledge reuse. Xu et al. [26] proposed an intelligent
and personalized multiperson cooperative intention capture

technology for product concept design. They built a coop-
erative intention capture model and then built a knowledge
recommendation system that met the requirements of collab-
oration through a text content matching algorithm. Similarly,
Zhang et al. [27] constructed a knowledge component model,
including knowledge ontology, an inference engine and an
evaluation method based on entropy weights to optimize
matching results. The model was successfully applied to
a plane parts design task. In addition, some personalized
recommendation technologies that only consider individual
knowledge and experience also exist. Li et al. [28] proposed a
double recommendation strategy based on a complex network
to capture the designer’s intention and match the correspond-
ing knowledge according to the intention. Gao et al. [29]
proposed a cognitive information gain model to measure the
assistance that knowledge gave to designers. The model clas-
sifies designers into four categories: assistant engineer, junior
engineer, intermediate engineer, and senior engineer accord-
ing to the number of completed tasks, and the model com-
putes the assistance of the knowledge to each type of designer
by assigning different weights. Wang et al. [30] explored a
knowledge recommendation method that combined design
intention and user interest, and the knowledge was classified
according to user interest to better meet the user’s personal-
ized demands. Li et al. [31] established the ontology model
of knowledge and constructed an inference engine that meets
manufacturing constraints by using semantic web rule lan-
guage. Then, knowledge can be reused through the inference
engine.

However, the essence of CF is still to use the individual
and collective experience to search the target through simi-
larity computation, which is not fully applicable to knowl-
edge recommendation in the engineering field. In engineering
design, compared with knowledge retrieval, the purpose of
knowledge recommendation is to minimize the time spent
acquiring applicable knowledge. A good knowledge recom-
mendation approach should recommend the right knowledge
(what to recommend) to the right person (who to recommend)
at the right time (when to recommend) in the right way
(how to recommend). Most researches have been focused on
the ‘‘what to recommend’’ problem using similarity compu-
tation techniques and the ‘‘when to recommend’’ problem
using context matching techniques, but few studies consid-
ered all the four problems simultaneously. The ‘‘who to
recommend’’ and ‘‘how to recommend’’ problems are also
important. These two problems determine if the designers
willing to use the recommendation system. Both the prob-
lems relate to the designers’ prior knowledge and experience.
In general, designers can quickly find the knowledge they
are familiar with, but they need much more time to find
unfamiliar knowledge and judge its applicability. Therefore,
the designer’s familiarity with knowledge is an important
indicator of the designer’s personalized demands. This paper
proposes a correlation-experience-demand (CED) integrated
knowledge recommendation approach to solve the above four
problems. TheCED approach uses theworkflow engine of the
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product data management (PDM) system to establish the rela-
tionship between the design process and tasks, which solves
the ‘‘when to recommend’’ problem. The term frequency-
inverse document frequency algorithm (TF-IDF) and cosine
similarity algorithm are adopted in each workflow node of
the design process to compute the similarity between tasks
and knowledge to find the knowledge that matches the task,
which solves the ‘‘what to recommend’’ problem. Then, for
a specific designer, the tasks completed by that individ-
ual and the knowledge usage information by all designers
are combined to compute the subjective judgment score of
the correlation between the task and knowledge. Moreover,
according to that individual’s access to knowledge informa-
tion, that individual’s degree of demandmodel for knowledge
is constructed based on the forgetting curve, which solves
the ‘‘who to recommend’’ problem. Finally, the assistance
score of the knowledge for the current designer to com-
plete the task in the current context is computed combining
the above three parts. The recommendation list is obtained
by ranking the knowledge in assistance score descending
order to build personalized and accurate knowledge rec-
ommendations, which solves the ‘‘how to recommend’’
problem.

The paper is structured as follows. Section 2 presents
the framework of the CED approach. The ontology models
of knowledge and designer are constructed in section 3.
Section 4 describes the mathematical model of the knowledge
recommendation algorithm. Section 5 provides a case study
using the CED approach and includes a discussion of the
results. The conclusions of the study and planned future work
are summarized in section 6.

II. THE FRAMEWORK OF THE CED APPROACH
Knowledge recommendation involves five parts: design pro-
cess, task, knowledge, designer and knowledge recommen-
dation algorithm. To enable the computer to process the five
parts, they are constructed into four models, and the CED
approach consists of these four models. The four models
are as follows: design process-based task model, knowledge
ontology model, designer ontology model and the mathe-
matical model for the knowledge recommendation algorithm.
The design process-based task model uses a PDM system
to manage the design process. Tasks can be divided into
multiple levels or multiple subtasks according to the actual
situation. Each task has one and only one corresponding
design process, and its subtasks are included in the nodes
of the design process. The knowledge ontology model and
the designer ontology model use ontology technology [27] to
integrate the information from both knowledge and designer.
The mathematical model of the knowledge recommendation
algorithm consists of three submodules, namely, the degree
of correlation, the degree of demand and the degree of assis-
tance, and the model is used to evaluate the knowledge and
build the knowledge recommendation.
Definition 1: Degree of correlation (DoC). DoC is the

evaluation of the correlation between a task and a piece of

FIGURE 1. The framework of the CED approach.

knowledge. The DoC consists of objective correlation and
subjective correlation.
Definition 1.1:Objective correlation. Objective correlation

is the objective evaluation of the correlation between a task
and a piece of knowledge. Objective correlation is obtained
by a similarity computation between the task and the knowl-
edge.
Definition 1.2: Subjective correlation. Subjective correla-

tion is the subjective evaluation of the correlation between
a task and a piece of knowledge given by a designer based
on his/her experience. If the knowledge has been used to
complete a task by the designer in the node, the subjective
correlation is computed through the feedback of the designer.
If the knowledge has not been used to complete a task by the
designer in the node, the subjective correlation is computed
by using the usage information of the knowledge in the node
by all the other designers.
Definition 2: Degree of demand (DoD). DoD is the eval-

uation of the degree of demand of a designer for a piece of
knowledge at a particular moment. The DoD is computed by
using the designer’s access to knowledge information based
on the forgetting curve function.
Definition 3: Degree of assistance (DoA). The DoA is

the evaluation of the degree of assistance that a piece of
knowledge gives to a designer in completing a task at a given
moment. DoA is computed using the DoC and the DoD.

A. RELATIONSHIP AMONG MODELS
The design process-based task is assigned by the PDM and
includes four parts: the corresponding design process node
(Node_T), the task title (Title_T), the keywords (Kws_T) and
the description (Des_T). The knowledge ontology model and
the designer ontology model store knowledge and designer
information, which will participate in the computation of
the mathematical model in combination with the task infor-
mation. The DoA score of knowledge is computed by the
mathematical model, and the recommendation list (RL) is
obtained according to the DoA score. The relationship among
the models is shown in Fig. 1.
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FIGURE 2. The granularity and structure of knowledge.

FIGURE 3. The process of the CED knowledge recommendation approach
and relationship among PDM workflow, tasks, designers and knowledge.

When completing tasks, knowledge is the basic unit used
by designers and is the recommended object. However, two
different pieces of knowledge have different amounts of
information (AoI) and may share some of the same content.
Therefore, the concept of meta-knowledge is introduced and
is considered to be the basic unit of knowledge in this paper.
A piece of knowledge contains multiple meta-knowledge
pieces, and a piece of meta-knowledge can be contained in
multiple knowledge pieces. A piece of knowledge belongs to
one or more nodes in the design process and is used to solve
the tasks corresponding to the node. The relationship between
meta-knowledge, knowledge and design process nodes is
shown in Fig. 2.

B. KNOWLEDGE RECOMMENDATION PROCESS
The knowledge recommendation process is completed by the
above four models together, as shown in Fig. 3.

In the first step, the chief designer assigns task T cor-
responding to node N in the design process to designer D
through PDM. If a task requires the collaboration of more
than one designer, it will be split into multiple subtasks with
each designer undertaking one or more of them. In the second
step, after D receives T , the knowledge recommendation
system will automatically extract the relevant information

TABLE 1. Definition of symbols in the paper.

from T and compute the objective correlation value between
T and all the knowledge corresponding to node N in the
knowledge base. If the objective correlation value of a piece
of knowledge is higher than a predefined threshold value,
the knowledge will be added into the alternative set (AS) of
knowledge. In the third step, the subjective correlation value
and the DoC value of the knowledge in the AS are computed
according to the relevant information in the designer and
knowledge ontology models. In the fourth step, the DoD
value of the knowledge in the AS is computed. Finally,
the DoA score of the knowledge in the AS is computed. The
knowledge in the AS is ranked in DoA score descending order
to generate the RL for D.

Since each task corresponds to a workflow node in the
PDM system, if a designer is assignedmultiple tasks, the rela-
tionship between arbitrary two tasks can be one of the fol-
lowing three situations: (1) the two tasks are in the same
node of the same workflow; (2) the two tasks are in two
different nodes of the same workflow; (3) the two tasks
are in two different workflows. When processing multiple
tasks, the precedence is different according to the relationship
between tasks. For situation (1), tasks are closely related to
each other and designers need to process them simultane-
ously. For situation (2), the sequential order of two tasks is
determined by the corresponding workflow, and designers
need to process them successively according to the workflow.
For situation (3), tasks have no relation to each other and
designers can process them according to his/her preference.
Tasks in the situation (2) and (3) do not need to be processed
simultaneously.

For illustrative purposes, some symbols are defined in the
paper, as shown in Table 1.

III. ONTOLOGY MODEL CONSTRUCTION
A. KNOWLEDGE ONTOLOGY MODEL
The knowledge ontology model is defined as follows.

Knowledge = {Type,Attri, Info_K } (1)

a) Type is the type of knowledge belonging to one of the fol-
lowing six classes: criterion, text, formula, workflow, model,
and image, denoted as

Type = {criterion, text, formula,workflow,model, image}

(2)
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FIGURE 4. The knowledge ontology model.

b) Attri contains the basic attributes of knowledge and is
defined as

Attri = {ID_K ,Title_K ,Kws_K ,Des_K ,

Con_K ,Node_K ,Ver,Ctr} (3)

where ID_K, Title_K, Kws_K, Des_K, Con_K, Node_K, Ver,
and Ctr are the ID, title, keywords, description, content, cor-
responding node in the design process, version, and creator
of the knowledge, respectively.

c) Info_K is the usage information of the knowledge and
consists of the usage information of users. Info_K is defined
as

Info_K = (InfoD1, InfoD2, · · · , InfoDn)T (4)

where InfoDn is the usage information of user Dn. The ith
time usage information of Dn is recorded from the following
four aspects: relevant task Rtni, access time (unit: minutes)
Vtni, access date Vdni, and the action Actni. InfoDn is denoted
as

InfoDn =


Rtn1 Vtn1 Vdn1 Actn1
Rtn2 Vtn2 Vdn2 Actn2
...

...
...

...

Rtni Vtni Vdni Actni

 (5)

The action belongs to one of the four types, namely, Use,
Read, Ignore and Decline and are denoted as

Actni ∈ {Use,Read, Ignore,Decline} (6)

The definition and meaning of the actions are illus-
trated in the subsection feedback-based subjective correla-
tion. The structure of the knowledge ontologymodel is shown
in Fig. 4.

B. DESIGNER ONTOLOGY MODEL
One designer’s experience and personalized demands
can be reflected by their completed tasks, access to
knowledge and feedback on the recommended results.
Therefore, the designer ontology model is defined as
follows.

Designer = {Info_D,Cts,Lks} (7)

a) Info_D is the basic information of the designer, defined as

Info_D = {ID_D,Name,Age,Dpt,Pos} (8)

where ID_D, Name, Age, Dpt, and Pos are the ID, name, age,
department, and post of the designer, respectively.

b)Cts is the set of tasks completed by the designer, denoted
as

Cts = (Task1,Task2, · · · ,Taskm)T (9)

where Taskm is the mth completed task of the designer. Taskm
is recorded from the following five aspects: title Title_Tm,
keywords Kws_Tm, description Des_Tm, corresponding node
Node_Tm in the design process, and used knowledge Uksm.
Taskm is denoted as

Taskm = {Title_Tm,Kws_Tm,Des_Tm,Node_Tm,Uks_m}

(10)

Since designers access more than one piece of knowledge
when completing tasks, Uksm is the set that consists of all the
accessed knowledge and the corresponding actions, defined
as

Uksm = {(ID_Km1,Actm1), (ID_Km2,Actm2),

· · · , (ID_Kmn,Actmn)} (11)

c) Lks is the set of all the knowledge the designer has
learned, denoted as

Lks = (LksK1,LksK2, · · · ,LksKn)T (12)

Designers can also use knowledge recommendation sys-
tems to learn knowledge when not undertaking tasks. This
knowledge is recorded in Lks. LksKn is the learning informa-
tion of knowledge Kn and is recorded from the following two
aspects: the ith learning time Ltni (unit: minutes) and the ith
learning date Ldni. LksKn is denoted as

LksKn =


Ltn1 Ldn1
Ltn2 Ldn2
...

...

Ltni Ldni

 (13)

The knowledge in Cts and Lks is different. Knowledge in
Cts is task-relevant and can reflect the subjective evaluation of
the designer, which will be considered in subsequent knowl-
edge recommendation processes for the designer. Knowledge
in Lks is task-irrelevant. Its information will only be used to
compute the DoD value of the designer.

The structure of the designer ontology model is shown
in Fig. 5.

IV. THE MATHEMATICAL MODEL OF KNOWLEDGE
RECOMMENDATION ALGORITHM
A. DoC MODULE
The DoC consists of the objective correlation and the sub-
jective correlation between task and knowledge. The objec-
tive correlation is only related to the task and knowledge
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FIGURE 5. The designer ontology model.

and is evaluated by the similarity between them. The objec-
tive correlation between task and knowledge is propor-
tional to their similarity. The subjective correlation is related
to the task, knowledge and subjective evaluation of the
designer.

1) OBJECTIVE CORRELATION
A task T consists of Node_T, Title_T, Kws_T, and Des_T.
Node_T is used to rapidly filter the knowledge base to select
the knowledge that is used to complete the corresponding
tasks of Node_T. Title_T, Kws_T, and Des_T are specific
requirements of the task. Since the TF-IDF algorithm is easy
to implement and runs quickly [6], this paper uses the TF-
IDF algorithm and the cosine similarity to compute the objec-
tive similarity between tasks and knowledge to generate the
AS.

In this paper, the objective correlation value is com-
puted through the corresponding similarity between the pairs
Title_K and Title_T, Kws_K and Kws_T, and Des_K and
Des_T. Therefore, themi in the six parts is extracted and used
to construct a vector to represent the six parts. The form of the
vector is shown in (14).

vec = {[m1,wvec (m1)] , [m2,wvec (m2)] ,

· · · , [mn,wvec (mn)]} (14)

where wvec(mi) is the weight of mi in vec, and vec can
be Title_K, Title_T, Kws_K, Kws_T, Des_K, or Des_T.
If T can be split into multiple subtasks, then we write

T1,T2, . . . ,Tn,Tvec =
n⋃
i=1

Ti−vec, where Tvec is the vector of

T and Ti−vec is the vector of Ti.
If multiple tasks that assigned to a designer do not need

to be processed simultaneously, the vector that represents
each task is used to compute the relevant parameters in
this paper. If the tasks need to be processed simultaneously,
the meta-knowledge in these tasks is retrieved to construct
the vector that represents all of them. Then, the vector is
used to compute the relevant parameters in this paper of these
tasks.
wvec(mi) is computed and normalized by the term fre-

quency TFvec(mi) of mi in vec position and inverse document

frequency IDF(mi) of mi through (15).

wvec (mi) =
TFvec (mi) · IDF (mi)√√√√ n∑

i=1

[TFvec (mi) · IDF (mi)]2

TFvec (mi) = Numvec (mi)
/
Numvec (M)

IDF (mi) = lg
Num (K )

Num
(
Kmi

)
+ 1

(15)

where Kmi is the knowledge that contains mi.
As the global weight of mi, IDF(mi) is significant to both

knowledge and task. High IDF(mi) means that mi appears in
few knowledge pieces. Therefore, an mi with high IDF(mi)
has a good ability to distinguish the knowledge that contains
it. For tasks, an mi with high IDF(mi) highlights the focus of
the task and enables the knowledge that is most applicable to
the task to be selected.

The similarity between two objects in vector form can
be computed by the cosine similarity algorithm. However,
in general, the dimension of the two vectors is different,
so preprocessing is required to equalize the dimension. A task
may require more than one piece of knowledge, and each one
of these may support a part of the task. To obtain the part
of a task supported by a piece of knowledge, the vectors of
task and knowledge are intersected. Then, the intersection is
compared with the vector of knowledge, and the elements that
the intersection does not contain are added into it; the weights
are set to zero to obtain another vector,B.B represents the part
of the task that is supported by the knowledge and has the
same dimension as the vector of knowledge. Mathematically,
the above operation projects the task vector into the vector
space that contains the knowledge vector, and this operation is
performed correspondingly in the title, keywords and descrip-
tion parts of the knowledge and B vectors. The similarity
between each part is computed by using (16), as shown at
the bottom of the next page.

Where Simt (T ,K ), Simk (T ,K ) and Simd (T ,K ) are the sim-
ilarity between the title, keywords and description of the
task and knowledge, respectively; wTitle_B(mi), wKws_B(mi)
and wDes_B(mi) are the weights of mi in the title, keywords
and description of the B vector, respectively; wTitle_K (mi),
wKws_K (mi) and wDes_K (mi) are the weights of mi in the title,
keywords and description of knowledge vector, respectively.

The objective correlation value, Simobj(T ,K ), between a
task and a piece of knowledge is computed by using (17).

Simobj (T ,K ) = wtSimt (T ,K )

+wkSimk (T ,K )+ wdSimd (T ,K ) (17)

where, wt , wk and wd are the weights of Simt (T ,K ),
Simk (T ,K ) and Simd (T ,K ), respectively, and can be
computed by the analytic hierarchy process (AHP)
algorithm [32].

2) FEEDBACK-BASED SUBJECTIVE CORRELATION
A designer gives feedback actions to the recommended
knowledge when using the knowledge recommendation
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TABLE 2. Designer’s actions to the recommended knowledge.

system. If a designer once gave a valid feedback to a piece
of knowledge, the subjective correlation value is computed
based on the feedback to retain his/her preference. Feedback
actions can be defined differently according to the spe-
cific requirements of the knowledge recommendation sys-
tem. The definitions of feedback actions in this paper are
shown in Table 2. Use, read and decline are valid feed-
back actions, and ignore is invalid feedback. The correlation
column in Table 2 is the designer’s subjective evaluation
of the correlation between tasks and the recommended
knowledge.

Since the task is design-process based, the tasks that share
the same Node_T are similar to each other. Similarly, knowl-
edge pieces that belong to the same design process node
are similar to each other. When recommending knowledge
to a designer, the knowledge that the designer deems to
be highly correlated with the task has priority in recom-
mendation. To quantify feedback actions, subjective weights
need to be assigned to feedback actions. Based on the pre-
vious analysis, the weight of feedback actions should be
use> read> decline, and ignore should not be assigned a
weight since it does not provide useful information. To best

TABLE 3. The weight of designer’s feedback actions.

retain the preference of designers and distinguish different
feedback actions while keeping the possibility of variation
of the recommendation results, the weight of use should be
lower than 1 and the weight of decline should be higher than
0. Combined with the above analysis and the idea of the
AHP algorithm, which divides the importance of features into
9 grades of 1-9, the weights of the feedback actions are shown
in Table 3.

When computing the subjective correlation value between
a piece of knowledge K in the AS and current task T for
a designer, the knowledge recommendation system obtains
his/her previously completed tasks that correspond to K in
the Node_T. Then, the similarity between T and each of
these tasks is computed to obtain Tp that has the highest
similarity. Since T is similar to Tp, the designer is assumed
to have the same feedback action in response to K for both
T and Tp.

Similar to the objective similarity computation between
tasks and knowledge, the similarity, Sim(T ,Tp), between T
and Tp is also computed from the title, keywords and descrip-
tion parts using (16) and (17). The difference is that the
preprocessing is simpler. The union of the vector form of
title, keywords and description parts of T and Tp is obtained.
Then, each vector form is compared with the corresponding
union, and the elements that the vector does not contain are
added into it, and the weights are set to zero to equalize the
dimension of the two vectors. After this preprocessing, the
feedback-based subjective correlation is computed by using
(18).

Simsub (T ,K ) = wrSim
(
T ,Tp

)
(18)



Simt (T ,K ) =

n∑
i=1

wTitle_B (mi) · wTitle_K (mi)√√√√( n∑
i=1

(
wTitle_B (mi)

)2)
·

(
n∑
i=1

(
wTitle_K (mi)

)2)

Simk (T ,K ) =

n∑
i=1

wKws_B (mi) · wKws_K (mi)√√√√( n∑
i=1

(
wKws_B (mi)

)2)
·

(
n∑
i=1

(
wKws_K (mi)

)2)

Simd (T ,K ) =

n∑
i=1

wDes_B (mi) · wDes_K (mi)√√√√( n∑
i=1

(
wDes_B (mi)

)2)
·

(
n∑
i=1

(
wDes_K (mi)

)2)

(16)
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3) COLLECTIVE INTELLIGENCE-BASED SUBJECTIVE
CORRELATION
If a designer has not given a valid feedback to a piece
of knowledge, the subjective correlation value is computed
based on all the other designers’ feedback actions to fully
take advantage of the collective intelligence. An improved
information gain algorithm (IIG) is proposed in this paper to
predict the subjective correlation value of a piece of knowl-
edge.

Information gain is a commonly used measurement
approach for the importance of features. It has a high pre-
cision since it considers two situations: the presence and
absence of features. In addition, the precision can be further
improved if the distribution of features is considered. The
basic assumption of information gain is that if a feature brings
more information to a classification system, the feature is
more important to the system. The AoI brought to the system
by a feature is reflected in the difference in the system’s AoIs
in the presence or absence of the feature.

To compute the information gain value of a meta-
knowledge mi in a design process node, all the recommended
knowledge of the node is required. According to the feed-
back of designers, each piece of recommended knowledge
is divided into two categories: used knowledge (category C)
and unused knowledge (category C). N pieces of knowledge
from the node and their corresponding feedback are randomly
selected to create a training set,Q. The information gain value
of mi in Q is an unbiased estimation of the information gain
value of mi in the node and is computed by using (19).

IG(mi) = −
∑
Cj=C,
Cj=C

P(Cj) · log2 P(Cj)

+P(mi) ·
∑
Cj=C,
Cj=C

P(Cj|mi) · log2 P(Cj|mi)

+P(mi) ·
∑
Cj=C,
Cj=C

P(Cj|mi) · log2 P(Cj|mi) (19)

where mi is the meta-knowledge in Q and is contained in
knowledge kl in Q; P(Cj) is the probability that kl belongs
to category Cj; P(mi) is the probability that the knowledge
contains mi; Pmi) is the probability that the knowledge does
not contain mi; P(Cj|mi) is the conditional probability that
kl belongs to category Cj if mi is contained; P(Cj|mi) is the
conditional probability that kl belongs to category Cj if mi is
not contained.

Furthermore, to avoid the drawback that the distribution
of the features is not considered in the information gain
algorithm, two parameters inspired by [29] are introduced
in IIG. The two parameters are the distribution of mi in a
category and the distribution of mi in all categories. In this
paper, because only the impact of mi on category C is of
concern, the two parameters are denoted as DI(C ,mi) and
D(mi), respectively. The two parameters are computed by the

sample variance of mi. DI(C ,mi) reflects the importance of
mi to C . The higher the sample variance of mi in a category
is, the less of the knowledge that contains mi in the category
and the less importantmi is to the category.D(mi) reflects the
ability of mi to distinguish categories. The fewer categories
mi appears in, the higher the concentration of mi in these
categories and the more important mi is to these categories.
DI(C ,mi) and D(mi) are defined in (20) and (21).

DI (C,mi) = 1−
√
S2C (X (mi))

/√√√√ n∑
i=1

S2C (X (mi))

S2C (X (mi)) =

N∑
r=1

(
Xr (mi)− XC (mi)

)2
NumC (kl)− 1

XC (mi) = NumC (mi)
/
NumC (kl)

(20)

where Xr (mi) is the number of mi in the r th piece of knowl-
edge in Q.

D (mi) =
√
S2 (Y (mi))

/√ n∑
i=1

S2 (Y (mi))

S2 (Y (mi)) =

∑
Cj=C,
Cj=C

(
NumCj (mi)−Y (mi)

)2
m−1

Y (mi) = NumQ (mi) /m

(21)

Since the knowledge is only divided into two categories,
(21) can be simplified to (22).

D (mi) =
√
S2 (Y (mi))

/√ n∑
i=1

S2 (Y (mi))

S2 (Y (mi)) =
(
NumC (mi)− Y (mi)

)2
+
(
NumC (mi)− Y (mi)

)2
Y (mi) = NumQ (mi)

/
2

(22)

In (19), (20) and (22), the parameters relevant to mi should
also be computed through the vector form of title, key-
words, and description of knowledge. Then, the IIG value
that takes the distribution of mi into account is computed by
using (23).

IIGvec (C,mi) = IGvec (mi) ·
(
DIvec (C,mi)+ Dvec (mi)

2

)
(23)

where IGvec(mi), DIvec(C ,mi) and Dvec(mi) are the values of
IG(mi), DI(C ,mi) and D(mi), respectively, after considering
the position of mi.
IIGvec(C ,mi) is obtained by the feedback of all designers

and reflects the importance of mi to the knowledge that con-
tains it. Therefore, when computing collective intelligence-
based subjective correlation, the IIG value is used as the
weight of the meta-knowledge. The collective intelligence-
based subjective correlation can also be computed using (16)
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FIGURE 6. The coordinate system for DoC value computation.

and (17), with IIGvec(C ,mi) as the weight of mi in the vector
form of the knowledge. Note that the preprocessing is also
required in this case.

4) DoC VALUE COMPUTATION
The DoC value is the synthesis of the objective and sub-
jective correlation values. To combine the applicability of
the knowledge and experience of designers, the objective
and subjective correlation values are deemed to be of equal
importance. To combine them, a coordinate system is estab-
lished with subjective correlation value as the abscissa and
objective correlation value as the ordinate, as shown in Fig. 6.
The DoC value is computed by using the Euclidean distance
method [11].

In Fig. 6, the red point P is the knowledge that theoretically
best supports the current task, T , and the green points are
the knowledge that belongs to Node_T. For knowledge in
the AS, d is the distance between the knowledge and P. The
DoC value is inversely proportional to d . If the coordinate of
knowledge kl is (Simsub(T ,kl), Simobj(T ,kl)), the DoC value
is defined and computed by using IV-B.{
DoC (T , kl) = e−d

d =
√
[Simsub (T , kl)− 1]2 +

[
Simobj (T , kl)− 1

]2 (24)

B. DoD MODULE
Technically speaking, the degree of demand of designers for
knowledge is actually the degree of demand of designers for
the knowledge recommendation service. DoD is generally
decided by the experience of designers. Experienced design-
ers are familiar with knowledge content or can rapidly find the
target knowledge in the knowledge base. Therefore, the DoD
of experienced designers is relatively low. DoD is commonly
measured through the modeling of designers’ design abil-
ity [20], [29]. Designers are graded according to the num-
ber of their completed tasks. However, the precision of this
approach is limited, and the difference between subjects at the
same level cannot be reflected. Therefore, the DoDmodule in
this paper quantizes the designer’s demands for knowledge
based on the forgetting curve from four aspects of the AoI of
knowledge, the logic of the knowledge, the memory ability of

the designers, and the designers’ access to knowledge infor-
mation. In this section, the AoI of knowledge is computed
based on Shannon’s information theory, and the rest of the
three parts are constructed into a designers’ memory model.

1) AoI OF KNOWLEDGE
The AoI of each piece of knowledge is different because
different pieces of knowledge contain a different number of
meta-knowledge. According to Shannon’s information the-
ory, the AoI of knowledge can be represented by the infor-
mation entropy in (25).

H = −
n∑
i=1

P (mi) · log2 P (mi) (25)

where P(mi) is the probability of mi in the knowledge that
contains it and is computed by the term frequency of mi.

In this paper, the AoI of a piece of knowledge is computed
by the summation of the AoI of its title, keywords, and
description parts, as shown in (26).H (kl) =

∑
Hvec (kl)

Hvec (kl) = −
n∑
i=1

Pvec (mi) · log2 Pvec (mi)
(26)

whereH (kl) is theAoI of kl ;Hvec(kl) is theAoI of vec position
of kl , and vec can be Title_K, Kws_K or Des_K; Pvec(mi) is
the probability of mi in vec position of kl .
According to (26), if kl only contains one meta-knowledge,

its AoI is zero. However, one meta-knowledge does not
possess enough semantic information to make kl a piece of
knowledge, which means that the AoI of an arbitrary knowl-
edge is greater than zero. Thus, the range ofAoI for any pieces
of knowledge is (0,+∞). For a specific designer, the required
time to master a piece of knowledge is proportional to the AoI
of the knowledge. The access time of a designer to a piece
of knowledge can be obtained from the Cts and Lks of the
designer ontology model.

2) MEMORY MODEL OF DESIGNERS
Psychologists have found that humans forget knowledge
according to the Ebbinghaus forgetting curve [33]. To bet-
ter simulate designers’ memories and precisely quantize the
DoD values, the memory model of designers is constructed
based on the forgetting curve and from the following four
aspects: the age of the designers, the memory ability of the
designers, the logic of the knowledge and the information
regarding the designers’ access to each piece of knowledge.
The age and the access information of designers can be
obtained from the knowledge and designer ontology models.
The logic of knowledge is decided by the type of knowledge
and reflects how difficult it is for designers to memorize the
knowledge. The memory ability of designers is calculated
as the longest time interval between two times of correctly
recalling the same piece of knowledge. The time interval can
be obtained from Uks in the designer ontology model.
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TABLE 4. The weight of logicality for different types of knowledge.

The forgetting curve has multiple forms, e.g., the exponen-
tial function, the power function or the Pareto function [33].
Each form of the forgetting curve can reach the same pre-
cision if the coefficients are properly selected. Considering
multiple factors such as function complexity, the exponential
function is selected to create the forgetting curve in this paper,
as shown in (27).P

(
t, t ′

)
= e−

t−t′
b

b =
(
e
1t
10 + c− a+ ar

)
εt

(27)

where P(t , t′) is the proportionality coefficient of the cor-
rectly memorized information of a piece of knowledge for a
designer to the total information of the knowledge at moment
t; t′ is the previous moment that the designer accesses the
knowledge;1t is a coefficient relevant to the memory ability
of the designer; c is the time that the designer has access to the
knowledge; a is the age of the designer; ar is the maximum
age of designers and can be taken as the retirement age;
εt is the weight of logic for different types of knowledge.
The higher the εt is, the more unforgettable the knowledge
type. According to our experience, εt values are assigned
in Table 4.

3) DoD VALUE COMPUTATION
The DoD value is a significant indicator to determine if a
piece of knowledge should be recommended to a designer.
If a piece of knowledge has a low DoD value to a designer,
the new information that the designer can obtain from the
knowledge is limited, which means that the designer can
complete the task without the assistance of the knowledge.
Therefore, the knowledge should not be recommended to the
designer. Specifically, the DoD value of a piece of knowledge
to its creator is deemed to be zero in this paper.

The learning speed of a designer is a constant value;
thus, the percentage of a designer’s mastered information
is proportional to the learning time. As the learning time
increases, the newly added learning time brings declining
useful information from a piece of knowledge. Therefore,
after the ith time accessing knowledge kl , the index ofmastery
for a designer to kl can be defined as in (28).

C (kl, i) = log2 Timei (kl)/H (kl) (28)

where H (kl) is the AoI of kl and is computed by (26);
Timei(kl) is the valid access time to kl for a designer for the
ith time. The unit of Timei(kl) is minutes, and Timei(kl) ≥1.
Timei(kl) is obtained from Vtni in the knowledge ontology
model and Ltni in the designer ontology model.

Combining (27) with (28), the index of mastery for a
designer to kl at moment t is defined in (29).

F (kl, t) =
c∑
i=1

P (t, ti) · C (kl, i) (29)

where ti is the moment that the designer accesses kl for the
ith time. If a designer never accesses a piece of knowledge,
F(kl , t) = 0 for that individual at any moment.

Since the DoD value is inversely proportional to the index
of mastery, it is computed by IV-B to limit its range to
[0, 100].

DoD (kl, t) =
100

F (kl, t)+ 1
(30)

C. DoA SCORE AND RL GENERATION
The DoA score is a comprehensive evaluation of the ability of
a piece of knowledge to determine if the knowledge can assist
a designer in completing a task. The DoA score is relevant to
the DoC and DoD values and is proportional to both of them.
Therefore, the DoA score is defined and computed in (31).

DoA (T , kl, t) = DoC (T , kl) · DoD (kl, t) (31)

Since knowledge with a higher DoA score has a better
ability to assist the designer, the RL is generated by ranking
the knowledge in the AS in descending order of their DoA
scores. The process used in the CED approach to generate
the RL is shown in Fig. 7.
Step 1. Task assignment. PDM assigns a task, T , to a

designer, D, and the information of T and the
meta-knowledge in T are extracted.

Step 2. Objective correlation computation and AS gener-
ation. Compute the objective correlation between
knowledge belongs to Node_T and T . If the result
is higher than the predefined threshold value, v,
the knowledge is added to the AS.

Step 3. Knowledge removal. Remove all the knowledge cre-
ated by D from the AS.

Step 4. Subjective correlation computation. Compute the
subjective correlation between knowledge in the AS
and T according to the feedback information of the
knowledge.

Step 5. DoC value computation. Compute the DoC value
based on the objective and subjective correlation
values.

Step 6. DoD value computation. Compute the DoD value of
a piece of knowledge in the AS to D at moment t .

Step 7. DoA score computation and RL generation. Com-
pute the DoA value based on the DoC and DoD
values. Generate the RL for D by ranking the DoA
scores in descending order.

V. CASE STUDY
In this section, two different tasks are adopted to validate
the proposed CED approach. First, the tasks’ information,
the relevant parameters, the experimental subjects, and the
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FIGURE 7. The process of the CED approach.

experimental environment are listed. Second, the computa-
tion results of the CED approach are shown and analyzed
in detail. Third, to further evaluate the CED approach, three

evaluation metrics are adopted for comparisons between the
CED approach and three knowledge recommendation algo-
rithms.

A. DATASETS AND PARAMETERS SETTINGS
1) PARAMETERS SETTINGS
The computation of the CED approach involves many
designer-related parameters, and these parameters are
obtained from the designer ontology model. The ar in (27)
is set to 60.

The predefined threshold value, v, for generating the AS
should be neither too high nor too low. If v is too low, more
knowledge with a relatively low DoA score will be recom-
mended to the designers, which will cause the designers
to spend more time filtering them. If v is too high, some
knowledge that might be used will not be recommended to the
designers, which will cause the designers to actively retrieve
this part of knowledge in the knowledge base. Both situations
will reduce design efficiency. In this paper, v is set to 0.7
according to our experience. In practice, v is set to 0.7 initially
and can be changed by designers based on their experience
and preference.

The wt , wk , and wd in (17) are computed by using the
AHP algorithm. Firstly, 10 experts are asked to give their
subjective evaluations to the weights of {wt , wk , wd}. The
weight evaluation matrixes are listed as follows.

M1 =

 1 1 3
1 1 3
1/3 1/3 1

 M2 =

 1 2 6
1/2 1 6
1/6 1/6 1


M3 =

 1 1/2 1
2 1 2
1 1/2 1

 M4 =

 1 1 2
1 1 2
1/2 1/2 1


M5 =

 1 1/2 2
2 1 3
1/2 1/3 1

 M6 =

 1 3 8
1/3 1 4
1/8 1/4 1


M7 =

 1 1/3 1/2
3 1 2
2 1/2 1

 M8 =

 1 6 4
1/6 1 1/3
1/4 3 1


M9 =

 1 1 1
1 1 1
1 1 1

 M10 =

 1 1/3 1
3 1 2
1 1/2 1


Second, obtain the eigenvectors and the max characteristic

roots of the 10 matrixes. Eigenvectors should be normalized.
The results are as follows.

Normalized eigenvectors:
w1 = (0.4286, 0.4286, 0.1429),w2 = (0.5644, 0.3591,

0.0765),w3 = (0.25, 0.5, 0.25),w4 = (0.4, 0.4, 0.2),w5 =

(0.2973, 0.5390, 0.1638),w6 = (0.6690, 0.2572, 0.0738),
w7 = (0.1638, 0.5390, 0.2973),w8 = (0.6853, 0.0934,
0.2213),w9 = (0.3333, 0.3333, 0.3333),w10 = (0.2106,
0.5485, 0.2409).

Max characteristic roots:
λ1 = 3, λ2 = 3.0539, λ3 = 3, λ4 = 3, λ5 = 3.0592, λ6 =

3.0184, λ7 = 3.0092, λ8 = 3.0541, λ9 = 3, λ10 = 3.0183.
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TABLE 5. Information of the tasks.

Third, test the consistency of the results. The consistency
ratio (CR) should be less than 0.1 to pass the consistency
test. The CR is computed by using CR = CI/RI, where CI
is the consistency index and is computed by using CI =
(λ − 1)/(n − 1); the RI is the random index; n is the rank
of the evaluation matrix. When n = 3, RI = 0.58. The test
results are as follows.

Consistency indexes:
CI1 = 0, CI2 = 0.027, CI3 = 0, CI4 = 0, CI5 = 0.0046,

CI6 = 0.0092, CI7 = 0.0046, CI8 = 0.0271, CI9 = 0,
CI10 = 0.0092.

Consistency ratios:
CR1 = 0, CR2 = 0.0465, CR3 = 0, CR4 = 0, CR5 =

0.0079, CR6 = 0.0158, CR7 = 0.0079, CR8 = 0.0467,
CR9 = 0, CR10 = 0.0158.

All the evaluation matrixes pass the consistency test. Thus,
the wt , wk , and wd can be obtained by computing the mean
values of the normalized eigenvectors. The results are wt =
0.4002, wk = 0.3998 and wd = 0.2.

2) DATASETS
A machine shop layout design task, T1, and a computer
numerical control (CNC) machine tool’s spindle design and
bearings selection task, T2, are selected to validate the CED
approach. T1 consists of three subtasks, T11, T12, and T13. The
tasks’ information is shown in Table 5.

FIGURE 8. DoA scores of knowledge in the AS in descending order of
both experiments. (a) DoA scores of knowledge in experiment 1. (b) DoA
scores of knowledge in experiment 2.

We randomly selected 500 pieces of knowledge belonging
to Node_T1 and all 117 pieces of knowledge belonging to
Node_T2 to construct the original knowledge bases for T1 and
T2. Recommending knowledge for T1 and T2 using the CED
approach is named experiment 1 and 2 respectively.

Then, by using (17) on the original knowledge bases of the
two experiments and according to the values of wt , wk and
wd , 193 pieces of knowledge and 92 pieces of knowledge
that meet the requirement of Simobj(T , K ) > v are selected to
create the alternative sets for T1 and T2, respectively. In each
AS, the knowledge is successively numbered. One hundred
pieces of recommended knowledge in Node_T1 andNode_T2
are randomly selected to create the training sets for T1 and
T2, respectively. The IIG value of each meta-knowledge is
computed by using (19)-(23). The first 20 pieces of knowl-
edge in each AS are selected to create the test sets for each
experiment. The information of pieces of knowledge in the
test sets is listed in Table 6. In the table, the jth piece of
knowledge in the test set i is denoted as ki−j. Due to space
constraints, Kws_K and Des_K are not listed.

B. EXPERIMENTAL SUBJECTS AND ENVIRONMENT
To better demonstrate the characteristics of the proposedCED
approach and compare with other knowledge recommenda-
tion approaches, both experiments involve 45 designers with
different levels of experience. In each experiment, 45 design-
ers are consisting of 15 junior engineers (JEs), 15 intermedi-
ate engineers (IEs), and 15 senior engineers (SEs).

The SolidWorks Enterprise PDM system (2016 edition)
is selected to establish the design workflow. The relevant
information of the workflow is retrieved through secondary
development using the application programming interfaces
and then written into the knowledge and designer ontology
models.

C. ANALYSIS OF THE CED APPROACH
Six designers, D1 to D6, are randomly selected from the
experimental subjects to show the computation results of
the CED approach. D1, D2, and D3 are selected from the
JEs, IEs, and SEs from experiment 1, respectively. D4,
D5, and D6 are selected from the JEs, IEs, and SEs from
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TABLE 6. Information of pieces of knowledge in the test sets.

experiment 2, respectively. The DoA scores of pieces of
knowledge and the distribution of correlations between the
task and knowledge in the AS for the six designers are shown
in Fig. 8 and Fig. 9 to show the overall characteristics of the
CED approach.

Fig. 8 clearly shows that the DoA scores overall decrease as
the designers’ experience increase. For an arbitrary designer,
the DoA scores sharply decrease at first, and then the
downward trend gradually slows down. The characteris-
tic indicates that only a few pieces of knowledge are of
great assistance, and most pieces of knowledge are of lim-
ited assistance, which should not be recommended to the
designer.

In Fig. 9, each point represents a piece of knowledge
in the AS. The pieces of knowledge are divided into two
types of feedback-based knowledge (FBK) and collective
intelligence-based knowledge (CIBK), and the top 5 pieces
of knowledge with the highest DoA scores for each designer
are also highlighted. Differences can be seen from the

comparisons between Fig. 9(a) to Fig. 9(c) and Fig. 9(d) to
Fig. 9(f). First, designers are obviously less supported by
the IIG algorithm as their experience increases, which means
the CED approach can well retain the designer’s autonomy.
Second, in the region with high DoC value, the density
of knowledge for experienced designers is lower than for
inexperienced designers, indicating that the distinction of
knowledge for designers is determined by the experience
of the designers. For experienced designers, the number of
pieces of knowledge that are actually assistive is low because
tasks can be completed on his/her own. Third, the top 5 pieces
of knowledge for all the six designers are not the pieces of
knowledge with the highest DoC values, which reflects the
comprehensive consideration of DoC and DoD in the CED
approach.

Fig. 8 and Fig. 9 show the overall situations of all the
knowledge in the AS. The same characteristics can also be
observed in the test sets. The detailed information of the top
5 pieces of knowledge in terms of the DoA score in the test
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FIGURE 9. Distribution of correlations between task and knowledge in the AS for the six designers. (a) D1. (b) D2. (c) D3. (d) D4. (e) D5. (f) D6.

sets for the six designers are listed in Table 7. The results are
actually the RL for the six designers when n = 5.

(1) The recommendation results for different designers are
quite different. The recommendation results for most
designers are different from either the DoC or the DoD
values in descending order, which reflects the compre-
hensive consideration of these factors.

(2) The DoC value and the DoD value have a different
impact on the DoA score for different designers. For
JEs, the DoC value is the more significant factor. This
is because the DoD values of most pieces of knowl-
edge for JEs are high, so the difference between DoA
scores is mainly reflected in the DoC values. For SEs,
the situation is quite the opposite. For IEs, the DoD
value has a relatively greater impact on the DoA score
for the DoC value. This characteristic seems to ignore
the applicability of the recommendation results. How-
ever, in fact, it can greatly reduce the design time.
When completing tasks, the most time-consuming pro-
cess is searching the applicable knowledge. For most
designers, searching for unfamiliar knowledge requires
more time than searching for familiar knowledge.
The DoD module in the CED approach can greatly
shorten the time to search for unfamiliar knowledge and
consequently improve design efficiency. Meanwhile,
designers are assumed to have less access to knowledge
with a low DoA score. According to the forgetting
curve, the demand for such knowledge will increase
gradually, and the DoA score will increase accord-

ingly. Therefore, the DoA score of each knowledge will
appear with some kind of periodicity. This character-
istic can assist designers in becoming more familiar
with the knowledge in the knowledge base and improve
their ability to acquire and properly use this part of
knowledge in the shortest time.

(3) The CED approach can well retain a designer’s auton-
omy and assist him/her precisely. For example, as a
senior engineer, D6 is assumed to have rich experience.
However, the DoD value for D6 on k2−2 indicates
that he/she has never accessed this piece of knowl-
edge. Thus, compared with other knowledge in the RL,
the DoA value of k2−2 is high enough to rank it at the
top of the RL, which increases the possibility for D6 to
see it.

The CED approach can appropriately guide inexperienced
designers by using collective intelligence and can well retain
the personalized demands of experienced designers by using
their experience. The DoC value neither completely relies on
personalized experience nor collective intelligence but rather
uses the flexible adjustment of their combination according
to the designers’ access to knowledge information.

Compared with most knowledge recommendation algo-
rithms [6], [21]–[23], [29], another advantage of the CED
approach is the cold start problem can be well disposed of.
If a designer has not accessed any knowledge, the subjec-
tive correlation value to all knowledge is 0, and the DoD
values are all 100. Therefore, the DoA score is completely
dependent on the objective correlation value. The knowl-
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TABLE 7. Top five pieces of knowledge in the test sets for the six selected
designers using CED approach.

edge with the highest objective correlation value will be
ranked at the top of the RL. However, the CED approach
also has a deficiency. At the beginning of the recommen-
dation system, if the feedback actions given by the ini-
tial designers are not good enough, the subsequent design-
ers will be misled, thereby slowing the convergence of the
approach.

The following comparisons will demonstrate the advan-
tages of the CED approach.

D. BASELINES FOR COMPARISON
Three knowledge recommendation algorithms are adopted as
baselines for comparisons with the CED approach.

1) CIG
The cognitive information gain (CIG) algorithm is pro-
posed by Gao et al. [29] for personalized recommendation.
Since the ‘‘collective intelligence-based subjective correla-
tion’’ part of the CED approach is inspired by CIG, it would
be straightforward to compare the CED approach with CIG.

2) NB
The Naïve Bayes (NB) algorithm [34] is a classic recommen-
dation algorithm, which classifies knowledge into different
categories by the historical data.

3) ITEM-CF
The item-based collaborative filtering (Item-CF) algo-
rithm [23] is a typical recommendation algorithm that uses
the collective intelligence. In engineering design field, inex-
perienced designers should improve their abilities by learning
from experienced designers, so the Item-CF is more applica-
ble than the user-based CF.

E. EVALUATION METRICS
Since the CED approach is a personalized recommendation
approach and the ‘‘what to recommend’’ problem is solved
by using the cosine similarity algorithm, the ‘‘how to rec-
ommend’’ problem (i.e. the rank of pieces of knowledge in
the RL) is of more concern. Therefore, three ranking-oriented
evaluation metrics, namely, the normalized discounted cumu-
lative gain (NDCG@n) [35], the half-life utility (HLU@n)
[36], and the mean average precision (MAP@n) [36] are
adopted for evaluations.

For illustrative purposes, some symbols are defined in this
section. For all the metrics, n is the length of the RL and u is
the test subject. Because each recommendation approach has
its ownway to evaluate knowledge, Scrm(u, i) is defined as the
evaluation score of the ith piece of knowledge in the RL for
user u using method m, and m ∈{CED, CIG, NB, Item-CF}.

1) NDCG@n
The NDCG@n is used to evaluate the cumulative gain value
of an RL in a specific rank. The idea of the NDCG@n is that
if a highly relevant result ranks low in the RL, its influence
should be discounted. The NDCG@n is computed using (32).



NDCG@n =
1

Num (u)

Num(u)∑
u=1

NDCGu@n

NDCGu@n =
DCGu@n

Max (DCGu@n)

DCGu@n =
n∑
i=1

Scrm (u, i)
log2 (i+ 1)

(32)

where Max(DCGu@n) is the maximum value of DCGu@n
that can be obtained.

2) HLU@n
The HLU@n is used to evaluate the probability of a
user clicking a recommended result. The idea of the
HLU@n is that it assumes the user will successively click
every recommended result in the RL with an exponential
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FIGURE 10. The recommendation performance comparisons of experiment 1 using the NDCG@n evaluation metric. (a) The average NDCG@n of JEs.
(b) The average NDCG@n of IEs. (c) The average NDCG@n of SEs. (d) The average NDCG@n of all subjects.

FIGURE 11. The recommendation performance comparisons of experiment 1 using the HLU@n evaluation metric. (a) The average HLU@n of JEs.
(b) The average HLU@n of IEs. (c) The average HLU@n of SEs. (d) The average HLU@n of all subjects.

decay probability. The HLU@n is computed using (33).

HLU@n =

Num(u)∑
u=1

HLUu@n

Num(u)∑
u=1

Max (HLUu@n)

HLUu@n =
n∑
i=1

Scrm (u, i)
2i−1

(33)

where Max(HLUu@n) is the maximum value of HLUu@n
that can be obtained.

3) MAP@n
The MAP@n is used to evaluate the overall precision of a
recommendation approach. Because the precision computa-
tion of MAP@n is relevant to the ranks of the recommended
items, MAP@n is a ranking-oriented metric. The MAP@n is
computed using (34).

MAP@n =
1

Num (u)

Num(u)∑
u=1

APu@n

APu@n =
1
n

n∑
j=1

j∑
i=1

Scrm (u, i)

j

(34)

F. RESULTS OF THE EXPERIMENTS
The recommendation performance comparisons between the
CED approach and the three baselines using the three evalua-
tion metrics of NDCG@n, HLU@n, and MAP@n in experi-
ment 1 are shown in Fig. 10, Fig. 11, and Fig. 12, respectively.
The same comparisons of experiment 2 are shown in Fig. 13,
Fig. 14, and Fig. 15.

The following observations can be obtained from Fig. 10 to
Fig. 15.

From the evaluation metric’s standpoint,

(1) Fig. 11 and Fig. 14 show that, in both experiments,
the CED approach performs best against all the base-
lines using the HLU@n evaluation metric. In HLU@n,
the importance of a piece of knowledge in the RL
dramatically decays with its rank. Thus, the HLU@n
only values the first several pieces of knowledge in
the RL. The comparison results show that the CED
approach has a good ranking ability for the first several
pieces of knowledge in the RL.

(2) In terms of the NDCG@n evaluation metric,
Fig. 10 and Fig. 13 indicate that the CED approach
performs best against all the baselines when n < 10
and slightly better than the NB when n > 10 in both
experiments. Compared with HLU@n, the downward
trend of the knowledge’s importance in the RL is gradu-
ally decreased. Thus, the NDCG@n reflects the overall
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FIGURE 12. The recommendation performance comparisons of experiment 1 using the MAP@n evaluation metric. (a) The average MAP@n of JEs. (b) The
average MAP@n of IEs. (c) The average MAP@n of SEs. (d) The average MAP@n of all subjects.

FIGURE 13. The recommendation performance comparisons of experiment 2 using the NDCG@n evaluation metric. (a) The average NDCG@n of JEs.
(b) The average NDCG@n of IEs. (c) The average NDCG@n of SEs. (d) The average NDCG@n of all subjects.

FIGURE 14. The recommendation performance comparisons of experiment 2 using the HLU@n evaluation metric. (a) The average HLU@n of JEs.
(b) The average HLU@n of IEs. (c) The average HLU@n of SEs. (d) The average HLU@n of all subjects.

ranking ability of a recommendation approach. The
comparison results show that the CED approach also
has a good ranking ability for all the knowledge in the
RL.

(3) When it comes to the MAP@n, the ranking ability of
the CED approach is somewhat deficient. In Fig. 12 and
Fig. 15, the performances of the CED approach are
better than the CIG and Item-CF algorithm, but worse
than the NB algorithm when n is small. The perfor-
mances of the CED approach are better than all the
baselines only when n is large. This is because the
MAP@n evaluates performances by the precision, and

the CED approach appropriately sacrifices precision
for personalized demands.

From the engineers’ standpoint,

(4) In both experiments, the performances of the CED
approach do not significantly change with the experi-
ence of the designers using the three evaluation met-
rics. This characteristic enables the CED approach
to recommend the appropriate knowledge to design-
ers with any level of experience. The NB algorithm
has the same characteristic. However, the NB algo-
rithm achieves this by not considering the designers’

VOLUME 7, 2019 61827



X. Yin et al.: Correlation-Experience-Demand Based Personalized Knowledge Recommendation Approach

FIGURE 15. The recommendation performance comparisons of experiment 2 using the MAP@n evaluation metric. (a) The average MAP@n of JEs.
(b) The average MAP@n of IEs. (c) The average MAP@n of SEs. (d) The average MAP@n of all subjects.

experience when recommendation, which will not fully
meet the personalized demands of designers. The per-
formances of the CIG and Item-CF algorithms decline
as the designers’ experience increase. The reason is
these two algorithms use the collective intelligence to
assist individuals, so the assistance will reduce as the
designers’ experience grows.

From the baselines’ standpoint,

(5) The CED approach has an overall more stable perfor-
mance than the other three baselines. Since the NB,
CIG, and Item-CF algorithms are based on collective
intelligence, their performances will be affected by
the number and quality of the completed tasks. How-
ever, the CED approach is partially based on collec-
tive intelligence because the feedback of a designer
is prior to collective intelligence. Meanwhile, all the
sub-figures in Fig. 10 to Fig. 15 show that the classic
Item-CF algorithm does not performwell in both exper-
iments. The main reason for this is the Item-CF is based
on the similarity between items, but the samples’ sizes
in experiments are not big enough for Item-CF to con-
sider the applicability of the recommendation results
and personalized demands of the designers simultane-
ously. Similarly, performances of the CIG algorithm are
also not good enough when the sample size is small.
In contrast, the CED approach considers only two
parameters, the DoC and DoD values, its performance
will not be affected by sample size.

VI. CONCLUSIONS AND FUTURE WORK
In summary, the CED approach proposed in this paper aims
to solve the ‘‘what to recommend’’, ‘‘who to recommend’’,
‘‘when to recommend’’, and ‘‘how to recommend’’ prob-
lems simultaneously in the engineering field, especially the
‘‘how to recommend’’ problem. Consequently, it takes the
correlation between knowledge and task, personalized expe-
rience, collective intelligence, and the demand for knowl-
edge of designers into account. The correlation, experience,
and demands are fully considered, and a personalized RL
for every single designer is generated according to his/her

access to knowledge information and the feedback on com-
pleted tasks. Finally, knowledge is comprehensively eval-
uated combining the DoC and DoD values, and the per-
sonalized knowledge recommendation service is achieved.
Experimental results on two tasks in engineering field demon-
strate that the proposed CED approach outperforms three
baselines on three ranking oriented evaluation metrics.

The relationships between tasks, knowledge, and designers
are studied in this paper. The correlation between tasks and
knowledge and the demand of designers for knowledge are
quantized. These ideas and algorithms lay the foundations
for future studies on the fungibility and complementarity of
knowledge and on the collaboration of multiple pieces of
knowledge in completing a task. Meanwhile, they also pro-
vide theoretical and data support for further research into the
correlation between designers’ operations and their design
intentions to provide more precise and personalized knowl-
edge recommendation services.
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