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ABSTRACT In this paper, the H∞ piecewise control problem is discussed for linear parabolic distributed
parameter systems (DPSs) with piecewise observation in space. An H∞ performance constraint is provided
in this paper to solve the effect caused by the measurement disturbance. First, a static feedback controller is
designed for the collocated piecewise observation in space, then an observer-based dynamic feedback con-
troller is designed for the non-collocated piecewise observation in space. By the Lyapunov technique, it has
been proved that if the LMI-based sufficient conditions are fulfilled, the resulting closed-loop systems are
exponentially stable under a prescribedH∞ performance constraint. Finally, the numerical simulation results
of the closed-loop system and theH∞ attenuation level demonstrate the effectiveness of the proposedmethod.

INDEX TERMS H∞ control, parabolic distributed parameter systems, non-collocated piecewise observa-
tion, measurement disturbance.

I. INTRODUCTION
Parabolic distributed parameter systems (DPSs) are widely
used in engineering practice, such as diffusion process, heat
exchange and pipeline chemical reaction and so on [1], [2].
Over the past few decades, the research on the control
problem of parabolic DPSs [3]–[13] has attracted much
attention from many scholars. For example, Dubljevic has
studied the finite-dimensional state feedback predictive con-
trol for parabolic DPSs in [5], [6]; Wu has studied the finite-
dimensional output feedback control for nonlinear parabolic
DPSs in [7]; Fridman has studied the robust sampled-data
control for semi-linear parabolic DPSs in [8]; Demetriou has
studied the consensus control for parabolic DPSs in [9];Wang
has studied the pointwise control based on the Takagi-Sugeno
fuzzy PDE model for semi-linear parabolic DPSs in [12].
Generally, the control form of DPSs are divided into bound-
ary control and in-domain control. Boundary control is that
the actuators are distributed at the boundary of DPSs, and
the research about boundary control for parabolic DPSs has
already fruitful achievements [10], [14]–[18]. Although the
study of boundary control for DPSs is relatively mature,
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the in-domain control is also very important in some appli-
cations, such as the pointwise heating of a long thin rod [1].
In-domain control is that the actuators are distributed within
the spatial domain of DPSs. Some researchers have been
carried out for the in-domain control, such as static collo-
cated piecewise control [19]–[21], static collocated pointwise
control [12], [22], [23], static non-collocated pointwise con-
trol [12], static non-collocated piecewise control [8], [11],
observer-based dynamic non-collocated pointwise control
[12], [13] and observer-based dynamic non-collocated piece-
wise control [24].

For the measurement of DPSs, measurement disturbance is
usually unavoidable. H∞ control is a feasible way to reduce
the effect of the measurement disturbance. The main idea
of H∞ control is to design an H∞ feedback controller for
the DPSs and ensure that the resulting closed-loop system
is exponentially stable under an H∞ performance constraint.
In the past few decades, the H∞ control has been paid much
attention [17], [20], [25]–[29]. In this paper, we will extend
the recent results in [13], [24], [30] to discuss the problem
of H∞ control for linear parabolic DPSs. Both the collo-
cated and non-collocated piecewise observation in space are
considered. For the collocated piecewise observation case,
we propose a static output feedback controller to ensure that
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the closed-loop system satisfies the prescribed H∞ perfor-
mance constraint. For the non-collocated piecewise obser-
vation case, similar to the previous works [13], [24], [30],
an observer-based dynamic output feedback controller is
designed and the prescribed H∞ performance constraint is
guaranteed for the resulting closed-loop DPSs.

The main contributions of this paper are summarized as
follows:

1) In contrast to the results in [11]–[13], [21], [24] for
the in-domain control with non-collocated observation, H∞
control is considered in this paper.

2) Different from the H∞ control for DPSs in [25], [27],
[29], the original nonlinear PDE systems is represented by
an approximate ordinary differential equation (ODE) via
the model reduction technique before the controller design.
In this paper, the controller is designed based on the original
PDE models, and this method can utilize the original system
dynamics completely.

3) Although the H∞ controller is designed based on the
original PDE model in [17], it’s developed under the bound-
ary control. In this paper, anH∞ feedback controller based on
the original PDE model is designed for the piecewise control
form.

The organizational structure of the remaining parts of
this paper is arranged as follows. Section II gives prob-
lem formulation and preliminaries about the research of this
paper. Section III provides an H∞ static feedback controller
design for the piecewise control with collocated piecewise
observation in space. Section IV provides an H∞ observer-
based dynamic feedback controller design for the piecewise
control with non-collocated piecewise observation in space.
Section V demonstrates some numerical simulation results
of the closed-loop system with free disturbance and the H∞
disturbance attenuation level. Finally, Section VI gives the
brief conclusions of this paper.
Notation:< is the set of real numbers,<m ism-dimensional

Euclidean space, <m×m is the set of m × m matrices. P is a
symmetric matrix, P < 0 represents P is negative definite.
Meanwhile P > 0 represents P is negative. L 2([0, 1]) is a

real Hilbert space of ε(z), in which |ε(·)|2 ,
√∫ L

0 ε
2(z)dz.

L 2([0,∞]) is a real Hilbert space of ζ (·, t), in which
|ζ (·)|L 2 ,

∫
∞

0 |ζ (·, t)|2dt . H 1(0, 1) , W1,2([0, 1]) is a
real Sobolev space of absolutely continuous functions ϑ(z),

in which |ϑ(·)|H 1,

√∫ L
0

(
dϑ(z)
dz

)2
dz. yz(z, t) = dy(z, t)/dx,

yt (z, t) = dy(z, t)/dt and yzz(z, t) = d2y(z, t)/dz2 are the
partial derivatives of y(z, t). M , {1, 2, · · · ,m} is a natural
number set. The superscript ’T ’ represents the transposition
of a vector or a matrix. The symbol ’∗’ in a matrix set stands
for a symmetric matrix, for example

[
A B
BT C

]
=
[
A B
∗ C

]
.

II. PROBLEM FORMULATION AND PRELIMINARIES
Parabolic DPSs have important applications in industrial pro-
duction, and it’s of great significant to study the parabolic
DPSs. In this paper, we consider a class of linear second-order

parabolic PDE system, and study the stability of the PDE
system using the method of H∞ control.

The model of linear parabolic PDE system with the
Dirichlet-Neumann boundary constraints and initial value is
described as

yt (z, t) = yzz(z, t)+ σy(z, t)
+PT (z)w(t), t > 0, z ∈ (0, 1),

y(0, t) = 0, yz(z, t)|z=1 = 0, t > 0,
y(z, 0) = y0(z), z ∈ [0, 1]

(1)

where y(z, t) is a state variable of the PDE system related
to z and t , in which z ∈ [0, 1] ⊂ < is position variable
in space, and t ≥ 0 is time variable, respectively. σ > 0
is a known constant of the system, the distribution function
of actuators P(z) , [p1(z) · · · pm(z)]T ∈ <m is a m
dimension integrable vector, in which pi(z), i ∈ M repre-
sents the i actuator’s distribution. The control input w(t) ,
[w1(t) · · · wm(t)]T ∈ <m is a m dimension integrable
vector, in which wi(t), i ∈ M represents the i actuator’s
control input. y(0, t) is the Dirichlet boundary constraint of
y(z, t) at the position z = 0. yz(z, t)|z=1 is the Neumann
boundary constraint, which represents the derivative value of
the state y(z, t) at the position z = 1. y0(·) is the given initial
value of the state y(z, t). What we need to know is that the
system (1) is unstable without the control input (w(t) = 0)
when the system constant σ > 0.25π−2 [16].

Due to the existence of measurement disturbance in actual
measurement unavoidably, so the output with measurement
disturbance is

v(t) =
∫ 1

0
s(z)y(z, t)dz+ d(t) (2)

where the observation output v(t) , [v1(t) v2(t) · · · vm
(t)]T ∈ <m is a m dimension integrable vector, in which
vi(z), i ∈ M represents the i sensor’s observation
output. The distribution function of sensors s(z) ,
[s1(z) s2(z) · · · sm(z)]T ∈ <m is a known m dimen-
sion integrable vector, in which si(z), i ∈ M rep-
resents the i sensor’s distribution, respectively. d(·) ,
[d1(·) d2(·) · · · dm(·)] ∈ L 2([0,∞] is the m-
dimensional measurement disturbance vector, that is only
related to t .

We consider the piecewise control and piecewise observa-
tion in space for the system (1) in this paper. For piecewise
control, the distribution function pi(z), i ∈ M of control
actuators is chosen as

pi(z) ,

{
1

z̄hi −z̄
s
i
z ∈ [z̄si , z̄

h
i ]

0 elsewhere
, i ∈M (3)

The actuators are placed at the discrete piecewise domain
[z̄si , z̄

h
i ], i ∈ M of the spatial domain [0, 1], and 0 < z̄s1 <

z̄h1 < z̄s2 < z̄h2 < · · · < z̄sm < z̄hm < 1, respectively.
For piecewise observation, the distribution function

si(z), i ∈M is chosen as

si(z) ,

{
1

z̃hi −z̃
s
i
z ∈ [z̃si , z̃

h
i ]

0 elsewhere
, i ∈M (4)
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The sensors are placed at the discrete piecewise domain
[z̃si , z̃

h
i ], i ∈ M of the spatial domain [0, 1], and 0 < z̃s1 <

z̃h1 < z̃s2 < z̃h2 < · · · < z̃sm < z̃hm < 1, respectively.
Remark 1: The well-posedness analysis of the open-loop

system (1) with (3) without control input (w(t) = 0) has
been addressed in [30]. For more information, please refer
to Proposition 1 in [30].
Remark 2: It should be noted that the piecewise control is

represented by the distribution of actuators P(z), the piece-
wise observation is represented by the distribution of sensors
s(z). When the distributions of actuators and sensors are
same (i.e. P(z) = s(z)), it’s called collocated piecewise
observation. However, when the distributions of actuators
and sensors are different (i.e. P(z) 6= s(z)), it’s called non-
collocated piecewise observation

For the development of H∞ control in this paper, we pro-
vide the lemma and definition as follows:
Lemma 1 (Wirtinger’s Inequality [24]): Set y ∈H 1(0, 1)

be a scalar function, we have∫ 1

0
(y(s)− y(0))2dz ≤ 4π2

∫ 1

0
(dy(s)/ds)2 ds, (5)

or ∫ 1

0
(y(s)− y(1))2ds ≤ 4π2

∫ 1

0
(dy(s)/dz)2 ds. (6)

Remark 3: Form the inequalities (5) and (6), we can
obtain that if y(0) = 0 or y(1) = 0, then the inequality∫ 1
0 y2(s)ds ≤ 4π2

∫ 1
0 (dy(s) /ds)

2ds is fulfilled.
Similar to the method of exponential stability analysis

described in the previous works [11]–[13], [24], [28], [30],
the exponential stability of the system with free disturbance
is defined as follows:
Definition 1 (Exponential Stability in the Sense of | · |2):

If there are two constants ρ1 ≥ 1 and ρ2 > 0 satisfying the
expression |y(·, t)|2 ≤ ρ1|y0(·)|2 exp(−ρ2 t) for any t ≥ 0,
then the linear prabolic PDE system (1) with free disturbance
(w(t) = 0) is locally exponentially stable in the sense of | · |2.
An H∞ performance is provided for the H∞ control prob-

lem: ∫
∞

0
|y(·, t)|22dt ≤ τ

2
∫
∞

0
‖d(t)‖2dt (7)

where τ > 0 is a prescribed disturbance attenuation level.
In this paper, due to the existence of measurement dis-

turbance in the output v(t), it brings some effects to the
stability of the system. To deal with the influences of
measurement disturbance, the H∞ performance constraint
is proposed. The goal of this paper is to design an H∞
feedback controller to ensure that the resulting closed-
loop system is exponentially stable under a prescribed H∞
performance constraint. Next, we will analyze the H∞
control problems with two different observation methods
respectively.

III. H∞ CONTROL WITH COLLOCATED PIECEWISE
OBSERVATION
We first consider the H∞ control problem with collocated
piecewise observation in space (i.e. P(z) = s(z)). Based on
the theory of feedback control, the following static feedback
controller is designed:

w(t) = −Kv(t) (8)

where the control gain 0 < K , diag{k1, k2, · · · , km} ∈
<
m×m is m× m diagonal matrix.
Substituting the designed feedback controller (8) and the

output with measurement disturbance (2) into the system (1),
we can get the following closed-loop system for collocated
observation case:

yt (z, t) = yzz(z, t)+ σy(z, t)

−PT (z)K
(∫ 1

0 P(z)y(z, t)dz+ d(t)
)
,

t > 0, z ∈ (0, 1),
y(0, t) = 0, yz(z, t)|z=1 = 0, t > 0,
y(z, 0) = y0(z), z ∈ [0, 1]

(9)

The object of this section is to seek an appropriate con-
troller gain ki, i ∈ M to ensure the closed-loop system (9)
is exponentially stable under a prescribed H∞ performance
constraint. The following definition gives the exponential
stability analysis method at a prescribed H∞ attenuation
level τ :
Definition 2: If the closed-loop PDE system (9) with free-

disturbance (d(t) = 0) is exponentially stable, meanwhile
the closed-loop system (9) satisfies the H∞ performance con-
straint (7) when the initial value of y(z, t) is zero (y0(z) = 0)
and all d ∈ L2(0,∞), then the closed-loop system (9) is
exponentially stable at a prescribed H∞ attenuation level τ .
The following theorem provides a sufficient condition for

exponentially stability of the closed-loop system (9) at a pre-
scribed H∞ attenuation level τ based on the LMI constraint:
Theorem 1: For a class of linear parabolic PDE system

described in (1)-(2) with the collocated piecewise observation
case (i.e. P(z) = s(z)), given a disturbance attenuation level
τ > 0, if there exist controller gains ki, i ∈M satisfying the
following LMIs:

8i ,

 σ + 1− ki
1zi

ki
1zi

0
ki
1zi

−
π2

4φi
−

ki
1zi
−

ki
21zi

0 −
ki

21zi
−

τ 2

1zi

 , i ∈M (10)

in which

1zi , zi+1 − zi, i ∈M

φi , max{(zi+1 − z̄si )
2, (z̄hi − zi)

2
}, i ∈M

then there existing a static feedback controller (8) such that
the closed-loop system (9) is exponentially stable at a pre-
scribed H∞ attenuation level τ in (7).

Proof:Applying the Lyapunov stability method, we con-
sider a Lyapunov function of y(z, t):

Vy(t) = 0.5
∫ 1

0
y2(z, t)dz (11)
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According to Definition 2, we can get that the proof of The-
orem 1 consists of two parts: (1) H∞ performance analysis
that the H∞ performance constraint is guaranteed for the
closed-loop system (9) when the initial value of y(z, t) is zero
(y0(·) = 0) and all d ∈ L2(0,∞) (2) exponential stability
analysis that the closed-loop system (9) with free disturbance
(d(t) = 0) is exponentially stable . Next we will prove the
two parts in turn:

(1) H∞ Performance Analysis:
According to the Lyapunov stability method, the time

derivative of Lyapunov function Vy(t) is

V̇y(t) =
∫ 1

0
y(z, t)yt (z, t)dz

=

∫ 1

0
y(z, t)yzz(z, t)dz+ σ

∫ 1

0
y2(z, t)dz

−

∫ 1

0
y(z, t)PT (z)dzK

∫ 1

0
P(z)y(z, t)dz

−

∫ 1

0
y(z, t)PT (z)Kdzd(t) (12)

Using the technique of integration by parts to deal with
yzz(z, t), and considering the Dirichlet boundary constrain
y(0, t) and the Neumann boundary constraint yz(z, t)|z=1 in
(9), we have∫ 1

0
y(z, t)yzz(z, t)dz = y(z, t)yz(z, t)|

z=1
z=0 −

∫ 1

0
y2z (z, t)dz

= −

∫ 1

0
y2z (z, t)dz (13)

Eliminating the integral symbols by the first mean value
theorem for definite integrals [31], we can get∫ z̄hi

z̄si

y(z, t)dz = (z̄hi − z̄
s
i )y(z̄it , t) (14)

where y(z̄it , t) is the mean value of y(z, t) on [z̄si , z̄
h
i ] with

respect to t . The values of variable z̄it is varying on [z̄si , z̄
h
i ]

along with time t .
Substituting the equations (13) and (14) into (12),

we obtain

V̇y(t) = −
∫ 1

0
y2z (z, t)dz+ σ

∫ 1

0
y2(z, t)dz

−

m∑
i=1

kiy2(z̄it , t)−
m∑
i=1

kiy(z̄it , t)di(t) (15)

Define ydi(z, t) , y(z, t)− y(z̄it , t), i ∈M , then

ydi,z(z, t) = yz(z, t), i ∈M (16)

According to the Wirtinger’s inequality described in
Lemma 1, the following inequalities is obtained for any
i ∈M∫ zi+1

z̄it
y2z (z, t)dz ≥

π2

4(zi+1 − z̄it )2

∫ zi+1

z̄it
y2di(z, t)dz, (17)

and ∫ z̄it

zi
y2z (z, t)dz ≥

π2

4(z̄it − zi)2

∫ z̄it

zi
y2di(z, t)dz. (18)

As z̄it ∈ [z̄si , z̄
h
i ], i ∈M , we obtain the following inequalities

z̄it − zi ≤ z̄hi − zi and zi+1 − z̄it ≤ zi+1 − z̄
s
i . (19)

From the inequalities (17)-(19), we have∫ zi+1

zi
y2z (z, t)dz =

∫ zi+1

z̄it
y2z (z, t)dz+

∫ z̄it

zi
y2z (z, t)dz

≥
π2

4(zi+1 − z̄it )2

∫ zi+1

z̄it
y2di,z(z, t)dz

+
π2

4(z̄it − zi)2

∫ z̄it

zi
y2di(z, t)dz

≥
π2

4φi

∫ zi+1

zi
y2di(z, t)dz (20)

where φi , max{(zi+1 − z̄si )
2, (z̄hi − zi)

2
}, i ∈M .

Substituting the inequalities (20) into (15), the time deriva-
tive of Vy(t) is rewritten as

V̇y(t) ≤ −
m∑
i=1

π2

4φi

∫ zi+1

zi
(y(z, t)− y(z̄it , t))2dz

+σ

m∑
i=1

∫ zi+1

zi
y2(z, t)dz−

m∑
i=1

ki
1zi

∫ zi+1

zi
y2(z̄it , t)dz

−

m∑
i=1

ki
1zi

∫ zi+1

zi
y(z̄it , t)di(t)dz

=

m∑
i=1

∫ zi+1

zi
yTi (z, t)4iyi(z, t)dz

−

m∑
i=1

ki
1zi

∫ zi+1

zi
y(z̄it , t)di(t)dz (21)

where1zi , zi+1−zi, yi(z, t) , [y(z, t) y(z̄it , t)]T , i ∈M ,
and

4i ,

[
σ − ki

1zi
ki
1zi

ki
1zi

−
π2

4φi
−

ki
1zi

]
, i ∈M

From the H∞ performance (7), we get the following
inequality

V̇y(t)+ |y(·, t)|22 − τ
2
‖d(t)‖2

≤

m∑
i=1

∫ zi+1

zi
yTi (z, t)4iyi(z, t)dz

−

m∑
i=1

ki
1zi

∫ zi+1

zi
y(z̄it , t)di(t)dz

+

m∑
i=1

∫ zi+1

zi
y2(z, t)dz−

m∑
i=1

∫ zi+1

zi

τ 2

1zi
d2i (t)dz

=

m∑
i=1

∫ zi+1

zi
ξTi (z, t)8iξ i(z, t)dz (22)

where ξ i(z, t) , [yTi (z, t) di(t)]T .
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Assume the LMIs (10) are satisfied, it’s easily obtained
from (22) that

V̇y(t)+ |y(·, t)|22 − τ
2
‖d(t)‖2 ≤ 0, ∀t ≥ 0 (23)

Intergrating (23) from 0 to ∞ and considering y0(·) = 0,
we get expression (7), that is the H∞ performance constraint
(7) is guaranteed.

(2) Exponential Stability Analysis:
When there is no measurement disturbance in closed-loop

system (9) (d(t) = 0), the derivative of Lyapunov function
Vy(t) with respect to t is

V̇y(t) ≤ α
m∑
i=1

∫ zi+1

zi
yTi (z, t)4iyi(z, t)dz (24)

The following inequality can be derived from the LMI (10)

4i < 0, i ∈M (25)

Thus there exists an appropriate constant β > 0 satisfy the
following inequality

4i + 0.5βI ≤ 0, i ∈M (26)

Substituting the inequality (26) to (24), we obtain

V̇y(t) ≤ −0.5β
m∑
i=1

∫ zi+1

zi
yTi (z, t)yi(z, t)dz

≤ −0.5β
∫ 1

0
y2(z, t)dz = −βVy(t) (27)

By integrating from 0 to t for the inequality (27), we can get
Vy(t) ≤ Vy(0) exp(−βt), t ≥ 0, which implies |y(·, t)|2 ≤
|y0(·)|2 exp(−0.5βt), t ≥ 0. In other words, the closed-loop
PDE system (9) with d(t) = 0 is exponentially stable in the
sense of | · |2.

From the proof of H∞ performance analysis, the H∞ per-
formance constraint is guaranteed for the closed-loop system
(9) when the initial value of the y(z, t) is zero (y0(·) = 0) and
all d ∈ L2(0,∞). Moreover from the proof of exponential
stability analysis, the closed-loop system (9) with d(t) = 0 is
exponentially stable respectively. According to the descrip-
tion of Definition 2, we can get the closed-loop system (9)
is exponentially stable under a prescribed H∞ performance
constraint from the proof of theH∞ performance analysis and
exponential stability analysis. The proof is complete.

IV. H∞ OBSERVER-BASED CONTROL WITH
NON-COLLOCATED PIECEWISE OBSERVATION
In this section, we consider the non-collocated piecewise
observation in space (i.e. P(z) 6= s(z)) for the PDE system (1)
and the output with measurement disturbance (2). We first
propose a Luenberger observer to observe the collocated
state of the system (1), and then design an H∞ observer-
based feedback controller to ensure the resulting closed-loop
coupled systems are exponentially stable under a prescribed
H∞ performance constraint.

The form of the Luenberger observer is
ŷt (z, t) = ŷzz(z, t)+ σ ŷ(z, t)

+sT (z)L̂
(
v(t)− v̂(t)

)
, t > 0, z ∈ (0, 1),

ŷ(0, t) = 0, ŷz(z, t)|z=1 = 0, t > 0,
ŷ(z, 0) = ŷ0(z), z ∈ [0, 1]

(28)

where ŷ(z, t) is the observation state from the observer, 0 <
L̂ , diag{l1, l2, · · · , lm} ∈ <m×m is the observer gain to be
determined in (34) and it’s a m× m diagonal matrix.

The observation output obtained from the observer is

v̂(t) =
∫ 1

0
s(z)ŷ(z, t)dz, t ≥ 0, (29)

Based on the observer (28) and observation output (29), a
dynamic feedback controller is constructed:

w(t) = −K
∫ 1

0
P(z)ŷ(z, t)dz (30)

where K , diag{k1, k2, · · · , km} ∈ <m×m is the observer-
based control gain.

Define the estimation error function as

e(z, t) , y(z, t)− ŷ(z, t). (31)

According to the definition of estimation error, the estimation
error system is obtained:

et (z, t) = ezz(z, t)+ σe(z, t)
−sT (z)L̂

∫ 1
0 c(z)e(z, t)dz

−sT (z)L̂d(t), t > 0, z ∈ (0, 1),
e(0, t) = 0, ez(z, t)|z=1 = 0, t > 0,
e(z, 0) = e0(z), z ∈ [0, 1]

(32)

where e0(z) , y0(z)− ŷ0(z).
Substituting the observer-based dynamic feedback con-

troller (30) into (1), and considering the definition of estima-
tion error (32), we obtain the following closed-loop system
for non-collocated observation case:

yt (z, t) = yzz(z, t)+ σy(z, t)
−PT (z)K

∫ 1
0 P(z) (y(z, t)− e(z, t)) dz,

t > 0, z ∈ (0, 1),
y(0, t) = 0, yz(z, t)|z=1 = 0, t > 0,
y(z, 0) = y0(z), z ∈ [0, 1]

(33)

Hence, the closed-loop coupled PDE systems are repre-
sented by the estimation error system (32) and the closed-
loop system (33) with the distribution functions of actuators
and sensors (3)-(4).

The object of this section is to seek appropriate controller
gain ki, i ∈ M and observer gain li, i ∈ M to ensure
the closed-loop coupled PDE systems (32)- (33) and (3)-(4)
is exponentially stable under a prescribed H∞ performance
constraint. The following definition gives the exponential
stability analysis method at a prescribed H∞ attenuation
level τ :
Definition 3: If the closed-loop coupled PDE systems

(32)- (33) and (3)-(4) with free-disturbance (d(t) = 0)
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0i ,



σ + 1− ki
1zi

ki
1zi

0 0 0 0

∗ −
π2

4φi
−

ki
1zi

0 ki
21zi

0 0

∗ ∗ αωi
απ2ri
4φi

απ2(1−ri)
4ϕi

0

∗ ∗ ∗ −
απ2ri
4φi

0 −
l̂i

21zi
∗ ∗ ∗ ∗ κi 0
∗ ∗ ∗ ∗ ∗ −

τ 2

1zi


< 0, i ∈M (34)

is exponentially stable, meanwhile the closed-loop coupled
PDE systems satisfy the H∞ performance constraint (7) when
the initial value of the state y(z, t) is zero (y0(z) = 0) and all
d ∈ L2(0,∞) , then the closed-loop coupled PDE systems
(32)- (33) and (3)-(4) are exponentially stable at a prescribed
H∞ attenuation level τ .
The following theorem provides a sufficient condition for

exponentially stability of the closed-loop coupled PDE sys-
tems (32)-(33) and (3)-(4) at a prescribed H∞ attenuation
level τ based on the LMI constraint:
Theorem 2: For a class of linear parabolic PDE system

described in (1)-(2) with non-collocated piecewise observa-
tion in space (i.e. P(z) ≥ s(z)), given constants τ > 0 and
0 < ri < 1, i ∈M , if there exist controller gains ki, i ∈M
and scalars l̂i, i ∈M satisfying the following LMIs: see (34),
as shown at the top of this page, in which

ϕi , max{(zi+1 − z̃si )
2, (z̃hi − zi)

2
}, i ∈M

ωi , σ −
π2ri
4φi
−
π2(1− ri)

4ϕi
, i ∈M

κi , −
l̂i
1zi
−
απ2(1− ri)

4ϕi
, i ∈M

then there exists an observer-based dynamic feedback con-
troller (30) such that the resulting closed-loop coupled PDE
systems (32)-(33) and (3)-(4) is exponentially stable at a
prescribed H∞ attenuation level τ in (7), where the observer
gains li, i ∈M are

li = l̂i/α, i ∈M . (35)

Proof: For the closed-loop coupled PDE systems (32)-
(33) and (3)-(4), we consider the coupled Lyapunov function
Vye(t) composed of Vy(t) and Ve(t):

Vye(t) = Vy(t)+ Ve(t) (36)

where Ve(t) = 0.5α
∫ 1
0 e

2(z, t)dz and α > 0 is a Lyapunov
parameter.

Similar to the inequality (21), we can get

V̇y(t) ≤
m∑
i=1

∫ zi+1

zi
yTi (z, t)4iyi(z, t)dz

+

m∑
i=1

kiy(z̄it , t)e(z̄it , t) (37)

Similar to the equation (13), considering the boundary
conditions in (32), we obtain∫ 1

0
e(z, t)ezz(z, t)dz = −

∫ 1

0
e2z (z, t)dz (38)

From (14), we can obtain that for each i ∈M and any t ≥ 0,∫ z̃hi

z̃si

e(z, t)dz = (z̃hi − z̃
s
i )e(z̃it , t) (39)

where y(z̃it , t) is themean value of the state variable y(z, t) on
[z̃si , z̃

h
i ] with respect to t . The values of variable z̃it is varying

on [z̃si , z̃
h
i ] along with time t .

Using the equations (38) and (39), the time derivative of
Ve(t) is

V̇e(t) = −α
∫ 1

0
e2z (z, t)dz+ ασ

∫ 1

0
e2(z, t)dz

−α

m∑
i=1

lie2(z̃it , t)− α
m∑
i=1

lie(z̃it , t)di(t) (40)

Define edi(z, t) , e(z, t)− e(z̄it , t), i ∈M and esi(z, t) ,
e(z, t)−e(z̃it , t), i ∈M , according to theWirtinger’s inequal-
ity in Lemma 1, similar to the inequality (20), we get for any
i ∈M ∫ zi+1

zi
e2z (z, t)dz ≥

π2

4φi

∫ zi+1

zi
e2di(z, t)dz (41)

and ∫ zi+1

zi
e2z (z, t)dz ≥

π2

4ϕi

∫ zi+1

zi
e2si(z, t)dz (42)

where ϕi , max{(zi+1 − z̃si )
2, (z̃hi − zi)

2
}, i ∈M .

Set

l̂i = αli, i ∈M (43)

Utilizing (41)-(42) and considering 0 < ri < 1, i ∈ M ,
the derivative of Lyapunov function Ve(t) with respect to t is

V̇e(t) ≤ −α
m∑
i=1

π2

4φi
ri

∫ zi+1

zi
e2di(z, t)dz

−α

m∑
i=1

π2

4ϕi
(1− ri)

∫ zi+1

zi
e2si(z, t)dz

+ασ

m∑
i=1

∫ zi+1

zi
e2(z, t)dz
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−

m∑
i=1

l̂i
1zi

∫ zi+1

zi
e2(z̃it , t)dz−

m∑
i=1

l̂ie(z̃it , t)di(t)

=

m∑
i=1

∫ zi+1

zi
eTi (z, t)9iei(z, t)dz

−

m∑
i=1

l̂ie(z̃it , t)di(t) (44)

where ei(z, t) , [e(z, t) e(z̄it , t) e(z̃it , t)], i ∈M , and

9i ,


αωi

απ2ri
4φi

απ2(1−ri)
4ϕi

απ2ri
4φi

−
απ2ri
4φi

0

απ2(1−ri)
4ϕi

0 κi

, i ∈M ,

in which ωi , σ − π2ri
4φi
−
π2(1−ri)

4ϕi
and κi , −

l̂i
1zi
−
απ2(1−ri)

4ϕi
.

From (37) and (44), the time derivative of Lyapunov func-
tion Vye(t) is

V̇ye(t) = V̇y(t)+ V̇e(t)

≤

m∑
i=1

∫ zi+1

zi
yTi (z, t)4iyi(z, t)dz

+

m∑
i=1

kiy(z̄it , t)e(z̄it , t)

+

m∑
i=1

∫ zi+1

zi
eTi (z, t)9iei(z, t)dz

−

m∑
i=1

l̂ie(z̃it , t)di(t)

=

m∑
i=1

∫ zi+1

zi
χTi (z, t)�iχ i(z, t)dz

−

m∑
i=1

l̂ie(z̃it , t)di(t) (45)

where χ i(z, t) , [yTi (z, t) eTi (z, t)]
T , and

�i ,


σ − ki

1zi
ki
1zi

0 0 0

∗ −
π2

4φi
−

ki
1zi

0 ki
21zi

0

∗ ∗ αωi
απ2ri
4φi

απ2(1−ri)
4ϕi

∗ ∗ ∗ −
απ2ri
4φi

0
∗ ∗ ∗ ∗ κi

 ,
i ∈M

From (45) and consider the H∞ performance in (7),we get

V̇ye(t)+ |y(·, t)|22 − τ
2
‖d(t)‖2

≤

m∑
i=1

∫ zi+1

zi
χTi (z, t)�iχ i(z, t)dz

−

m∑
i=1

l̂ie(z̃it , t)di(t)+
m∑
i=1

∫ zi+1

zi
y2(z, t)dz

−

m∑
i=1

∫ zi+1

zi

τ 2

1zi
d2i (t)dz

=

m∑
i=1

∫ zi+1

zi
$ T

i (z, t)0i$ i(z, t)dz (46)

where$ i(z, t) , [χTi (z, t) di(t)]T .
Assume the LMIs (34) in Theorem 2 are fulfilled, it is

easily obtained from (46) that

V̇ye(t)+ |y(·, t)|22 − τ
2
‖d(t)‖2 ≤ 0, ∀t ≥ 0 (47)

Intergrating (47) from 0 to ∞ and considering e0(·) = 0,
we get expression (7), i.e. the H∞ performance constraint (7)
is guaranteed for any t ≥ 0.
When d(t) = 0, according to the expression (45), the time

derivative of Lyapunov function Vye(t) is rewritten as

V̇ye(t) ≤
m∑
i=1

∫ zi+1

zi
χTi (z, t)�iχ i(z, t)dz (48)

It is easily derived from (34) that

�i < 0, i ∈M (49)

Similar to the proof of exponential stability in section III,
from the inequalities (25)-(27), it can be derived that the
closed-loop coupled PDE systems (32)-(33) and (3)-(4) with
free disturbance (d(t) = 0) are exponentially stable in the
sense of | · |2.

From the proof of H∞ performance analysis, the H∞
performance is guaranteed for the closed-loop coupled PDE
systems (32)-(33) and (3)-(4) with the zero initial value
y0(·) = 0. Moreover from the proof of exponential stability
analysis, the closed-loop coupled PDE systems (32)-(33) and
(3)-(4) with d(t) = 0 is exponential stable, respectively.

FIGURE 1. Open-loop simulation results: (a) Evolutionary profile of y (z, t)
(b) Trajectory of |y (·, t)|2.

VOLUME 7, 2019 62871



Y. Liu, C. Sun: H∞ Piecewise Control for Linear Parabolic DPSs With Piecewise Observation in Space

FIGURE 2. Closed-loop simulation results of the closed-loop PDE system
(9) with P(z) = s(z) and d(t) = 0: (a) Evolutionary profile of y (z, t)
(b) Trajectory of |y (·, t)|2 (c)Trajectory of the static output feedback
controller (8).

According to the description of Definition 3, we can get the
closed-loop coupled PDE systems (32)-(33) and (3)-(4) is
exponentially stable at a prescribed H∞ attenuation level τ .
The proof is complete.

V. SIMULATIONS AND EXPERIMENTS
In this section, wewill provide some numerical simulations to
verify that the proposed H∞ control method can stabilize the
system (1) . Given the constant σ = 10 and the initial value
y0(z) = 0.5 sin(0.5πz), z ∈ [0, 1]. The simulation results of
the open-loop system (1) with w(t) = 0 is first presented
in Figure 1, which describes the evolutionary profile of the
system state y(z, t) and trajectory of |y(·, t)|2. In Figure 1,
the state of the system y(z, t) and the value of |y(·, t)|2 is
increasing along with t . That is, the linear parabolic PDE
system (1) with w(t) = 0 is unstable. Then we provide the
simulation results of closed-loop system for collocated obser-
vation case and non-collocated observation case respectively.
Assume m = 3, that is there are three actuators and three
sensors, and the space region can be divided into three parts
by the actuators and sensors, i.e., z1 = 0, z2 = 1

3 , z3 =
2
3 ,

z4 = 1, thus 1z1 = 1z2 = 1z3 = 1
3 .

FIGURE 3. Closed-loop PDE system (9) simulation results with y0(z) = 0:
the trajectory of τ (t).

FIGURE 4. Closed-loop simulation results of the closed-loop coupled PDE
systems (32)-(33) and (3)-(4) with P(z) 6= s(z) and d(t) = 0: (a)
Evolutionary profile of y (z, t) (b) Profile of evolution of e(z, t).

A. H∞ CONTROL FOR COLLOCATED OBSERVATION CASE
We consider the H∞ control for collocated observation case
(i.e. P(z) = s(z)). The actuators and sensors are respectively
taken action at the same region of this spatial domain as
[0.2, 0.3], [0.4, 0.5] and [0.7, 0.8] . That is, z̄s1 = z̃s1 = 0.2,
z̄h1 = z̃h1 = 0.3, z̄s2 = z̃s2 = 0.4, z̄h2 = z̃h2 = 0.5, z̄s3 = z̃s3 = 0.7,
z̄h3 = z̃h3 = 0.8. We can obtain φ1 = 0.09, φ2 = 0.0711, φ3 =
0.09. Given τ ∗ = 8.1761, by solving the LMIs (10), we get
k1 = 13.6392, k2 = 13.0998, k3 = 13.6392. The simulation
results of the closed-loop PDE system (9) with P(z) = s(z)
and d(t) = 0 are presented in Figure 2, which described
the evolutionary profile of y(z, t), the trajectory of |y(·, t)|2
and the trajectory of the static output feedbcak controller (8).
In Figure 2, the state of the system y(z, t) tends to a plane
and no longer varying along with t , the values of |y(·, t)|2
and controller input w(t) tend to zero when t →∞. That is,
the designed H∞ static feedback controller (8) can stabilize
the linear parabolic PDE system (1) with P(z) = s(z) and
d(t) = 0.

Define the initial state value of the closed-loop PDE system
(9) as y0(z) = 0 and d(t) = [exp(−0.1t) exp(−0.2t)
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FIGURE 5. Closed-loop simulation results of the closed-loop coupled PDE
systems (32)-(33) and (3)-(4) with P(z) 6= s(z) and d(t) = 0: (a) Trajectory
of |y (·, t)|2 (b) Trajectory of |e(·, t)|2 (c)Trajectory of the H∞
observer-based dynamic output feedback controller (30).

exp(− 0.3t)]T , t > 0. Define τ (t) ,

√ ∫ t
0 |y(·,s)|

2
2ds∫ t

0 ||d(s)||
2ds

Figure 3

shows the trajectory of τ (t) for the linear parabolic PDE
system (1) with P(z) = s(z) and the initial value y0(z) = 0.
From Figure (3), it’s easily seen that τ (t) < τ ∗, the H∞
performance (7) is guaranteed.

B. H∞ CONTROL FOR NON-COLLOCATED OBSERVATION
CASE
We consider the H∞ control for non-collocated observation
case (i.e. P(z) 6= s(z)). The actuators are respectively active
during the domain [0.1, 0.2], [0.4, 0.5] and [0.7, 0.8] of this
spatial domain. That is, z̄s1 = 0.1, z̄h1 = 0.2, z̄s2 = 0.4, z̄h2 =
0.5, z̄s3 = 0.7, z̄h3 = 0.8. The sensors are respectively active
during the domain [0.2, 0.3], [0.5, 0.6] and [0.8, 0.9] of this
spatial domain. That is, z̃s1 = 0.2, z̃h1 = 0.3, z̃s2 = 0.5, z̃h2 =
0.6, z̃s3 = 0.8, z̃h3 = 0.9. We can obtain φ1 = 0.0544, φ2 =
0.0711, φ3 = 0.09, ϕ1 = 0.09, ϕ2 = 0.0711, ϕ3 = 0.0544.
Given τ ∗ = 55.3514, r1 = 0.2, r2 = 0.1 and r3 = 0.1,
by solving the LMIs (34), we get k1 = 18.0054, k2 =
13.6897, k3 = 11.8222, l1 = 10.7453, l2 = 8.7235, l3 =
8.1029. The simulation results of the closed-loop coupled
PDE systems (32)-(33) and (3)-(4) with P(z) 6= s(z) and
d(t) = 0 are present in Figure 4 and Figure 5, which described

FIGURE 6. Closed-loop coupled PDE systems (32)-(33) and (3)-(4) with
e0(z) = 0: the trajectory of τ (t).

the profile of evolution of y(z, t) and y(z, t), the trajectory of
|y(·, t)|2, |e(·, t)|2 and theH∞ observer-based dynamic output
feedback controller (30). In Figure 3, the states of the system
y(z, t) and estimate error e(z, t) tend to planes and no longer
vary along with t . In Figure 4, the values of |y(·, t)|2, |e(·, t)|2
and the controller input w(t) tend to zero when t →∞. That
is, the designedH∞ observer-based dynamic output feedback
controller (30) can stabilize the linear parabolic PDE system
(1) with P(z) 6= s(z) and d(t) = 0.
Define the initial value of the closed-loop coupled PDE

systems (32)-(33) and (3)-(4) as y0(z) = 0. Set d(t) =
[exp(−0.2t) exp(−0.4t) exp(−0.3t)]T , t > 0. Define

τ (t) ,

√ ∫ t
0 |y(·,s)|

2
2ds∫ t

0 ||d(s)||
2ds

Figure 6 shows the trajectory of dis-

turbance attenuation level τ (t) for the closed-loop coupled
PDE systems (32)-(33) and (3)-(4) with P(z) 6= s(z) and the
initial value e0(z) = 0. From Figure (6), it’s easily seen that
τ (t) < τ ∗, the performance (7) is guaranteed for the closed-
loop coupled PDE systems (32)-(33) and (3)-(4).

VI. CONCLUSION
This paper has presented an H∞ piecewise control prob-
lem for linear parabolic DPSs with piecewise observation in
space. The method of H∞ control is proposed to reduce the
effect of the measurement disturbance. The closed-loop sys-
tems are constructed via the static feedback controller design
for the collocated observation case and the observer-based
dynamic feedback controller design for the non-collocated
observation case, respectively. Based on the definitions of
H∞ stability and exponentially stability in the sense of | ·
|2, the exponentially stability of the closed-loop system is
guaranteed under a prescribed H∞ performance constraint.
Theorem 1 and Theorem 2 present the sufficient conditions on
the existence of such controllers in the form of LMI. Finally,
numerical simulation results of the closed-loop system with
free disturbance and the disturbance attenuation level are
shown, which illustrate the proposed H∞ control method is
effective.
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