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ABSTRACT In this paper, a novel neural network named CRSum for the video summarization task is
proposed. The proposed network integrates feature extraction, temporal modeling, and summary generation
into an end-to-end architecture. Compared with previous work on this task, the proposed method owns
three distinctive characteristics: 1) it for the first time leverages convolutional recurrent neural network for
simultaneously modeling spatial and temporal structure of video for summarization; 2) thorough and delicate
features of video are obtained in the proposed architecture by trainable three-dimension convolutional neural
networks and feature fusion; and 3) a new loss function named Sobolev loss is defined, aiming to constrain
the derivative of sequential data and exploit potential temporal structure of video. A series of experiments are
conducted to prove the effectiveness of the proposed method. We further analyze our method from different
aspects by well-designed experiments.

INDEX TERMS CRNN, CRSum, Sobolev loss, spatiotemporal modeling, video summarization.

I. INTRODUCTION
The amount of video data has been increasing exponen-
tially for a few decades on account of the blossom of video
media and a variety of video recording devices, such as dig-
ital video cameras, surveillance cameras, cell phones, drive
recorders, etc. Statistically, 300 hours of video are uploaded
to YouTube every minute on average. It takes approximately
50 years to watch all the uploaded videos in a single day.
Large amounts of video data lead to two major problems:
1) the difficulty of retrieve valuable information conveyed
by videos; 2) the extremely heavy burden of data storage.
A plain idea to cope with those problems is that we generate a
short version of the video that contains the important frames
[1]–[9], subshots [4], [10]–[14], events [15]–[19] and objects
[20], [21] that turn up in the original video. The short version
is called as video summary.

The associate editor coordinating the review of this manuscript and
approving it for publication was Vicente Alarcon-Aquino.

A video summary of high quality would distill the cru-
cial information from the original video and summarize it
into a short watchable synopsis [4]. Three forms of sum-
mary are widely used for the video summarization task:
keyframe [1]–[9], key subshot [4], [10]–[14] and time-
lapse [13]. Among the three forms of summary, keyframe is
most widely used since it emphasizes the exact key points
in video and the generating process is simple. In this paper,
we choose keyframe to form our summary.

For the last two decades, lots of research in automatic
video summarization have been carried out. There has been
a growing interest in the study of summarization techniques.
Those techniques can be roughly classified into unsupervised
approaches [2], [5], [15], [17], [18], [20]–[25] and supervised
approaches [1], [3], [4], [6]–[14]. Unsupervised approaches
depend on the picking rules defined by human. They have
apparent disadvantages due to the complexity of the problem
and the limitation of human cognition. On the other hand,
supervised approaches utilize human annotations as guide
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to learn the inner structure of a video and set reasonable
scores to all the frames of videos. They have evident superi-
ority compared to those unsupervised ones. In this paper we
propose a supervised method for video summarization and
consider it as a nonlinear regression problem.

As a considerably complicated task, video summarization
needs thorough understanding of videos from their appear-
ance to semantic meanings. In recent years, deep neural
network (DNN) has been widely applied to many fields for
its powerful capability of representation and fitting. There
is a trend of summarizing videos using DNN. Two kinds
of typical DNN, convolutional neural network (CNN), and
recurrent neural network (RNN), are commonly employed
in complicated tasks. It is worth mentioning that a novel
architecture of DNN called convolutional recurrent neural
network (CRNN) is brought up to handle some sequential-
related tasks. The effectiveness of CRNN has been proven by
experiments [26]–[28].

Traditional DNN based methods for video summarization
usually have five drawbacks. 1) They use pretrained two-
dimension (2D) CNNs (VGGNet [29] or GoogLeNet [30],
etc) to extract features that are originally applied for the
task of object recognition. It is not wise to directly employ
those features to out task. 2) The output features of above
mentioned 2D CNNs only contain the spatial information
of each frame, and so the relation between frames are not
exploited. 3) Those features are commonly known as deep
features (i.e., semantic meanings), which means the shallow
ones are always ignored in those methods. Such practice
leads to a less comprehensive descriptions of frames. 4) The
process of those methods is two-stage and does not coincide
with human cognition which simultaneously receives and
understands images. 5) MSE loss and cross entropy loss are
commonly used to train those networks, indicating that the
temporal structure in a video is not taken into consideration.
A more comprehensive loss is required to bond with video
summarization task.

Out of these drawbacks, we propose a novel method
(CRSum) for video summarization in this paper. The main
contributions of this paper are as follows:
• We set a new state-of-art-for video summarization as
measured by F-measure on two public datasets. Our
method integrates feature extraction, temporal mod-
elling and summary generation into an end-to-end
architecture.

• We for the first time leverage convolutional recurrent
neural network for simultaneously modelling spatial and
temporal structure of video for summarization, which
coincides with human cognition and leads to better
results.

• Thorough and delicate features of video are obtained
in the proposed architecture by trainable three-
dimension (3D) CNNs [31] and feature fusion. These
features are especially learned for the task so as to
improve the accuracy of our method.

• A new loss function is defined, aiming to constrain
the derivative of sequential data and exploit potential
temporal structure of video.

The rest of this paper is organized as follows.
Section 2 elaborates typical work on video summarization
and CRNN. Section 3 expounds our method of CRSum as
well as Sobolev loss. Section 4 is the experiment part of this
paper, where the effectiveness of our method is demonstrated
and further analysis of our method is carried out. In Section 5,
we make our conclusion.

II. RELATED WORK
As we explained in Section 1, video summarization tech-
niques fall primarily into two categories, unsupervised
approaches and supervised approaches. We first list some
typical work in each category to make a brief exhibition of
the progress in this field.

Unsupervised approaches of video summarization focus
on designing the picking rules and how to quantify impor-
tance, or introducing various factors into their model [2], [5],
[15], [17], [18], [20]–[25]. Reference [15] takes the notion of
story into consideration to link sub-events when summarizing
an egocentric video and introduces a comprehensive object
function to quantify the quality of selected sub-shots. Refer-
ence [2] uses singular value decomposition (SVD) to derive
the refined feature space for clustering and to define a metric
for measuring the visual content contained in each clus-
ter. Reference [5] proposes a generative architecture based
on variational recurrent auto-encoders (VAE) and generative
adversarial network (GAN) for unsupervised video summa-
rization to select a subset of key frames. The architecture
in [5] consists of a summarizer and a discriminator. The
summarizer plays a role as an adversary of the discriminator,
which is trained to maximally confuse the discriminator.
Reference [16] proposes a new framework for video sum-
marization ,where the features of human visual system are
introduced to discriminate the perceptual significant events
and eliminate perceptual redundancy. Those methods empha-
size the fancy criteria which are well-defined to simulate the
perception of human and their achievements are distinguished
in the field of video summarization.

Supervised approaches of video summarization have
drawn much attention to researchers in recent years in
virtue of the access to big data and the development of
deep learning [1], [3], [4], [6]–[14]. Reference [10] per-
forms a semantically-consistent temporal segmentation on
category-specific videos and assign an importance score
to each segment by pre-trained SVMs, then generates
a summary according to high scores. Reference [1]
uses web-images as a prior to facilitate the process of
creating summaries of user-generated videos and cre-
ates a crowd-sourcing based automatic evaluation frame-
work to evaluate the results. Reference [11] uses a
supervised approach to learn a comprehensive object
function which takes interestingness, representativeness
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and uniformity of selected segments into consideration.
Reference [3] presents a Bag-of-Importancemodel to identify
the importance of each local feature and extracts representa-
tive frames with more important local features. Reference [8]
proposes a probabilistic model for diverse sequential subset
selection named seqDPP which heeds the inherent sequential
structure of videos and overcomes the deficiency of stan-
dard determinantal point processes (DPP). More flexible and
powerful features are also used to represent frames in [8].
DPP are also exploited in [4], where the authors propose a
novel method to summarize videos based on bidirectional
LSTM, and take the diversity of selected frames into con-
sideration using DPP. Besides, [4] mediates the demand that
LSTMs require a large number of annotated samples by
augmenting the training data with domain adaption, which
reduces the data distribution discrepancy among datasets.
Reference [6] proposes a novel supervised learning technique
to select frames for video summarization by learning non-
parametrically to transfer summary structures from training
videos to test ones and generalizes the method to shot level
summary. Reference [12] segments the video into super-
frames and select them according to their interestingness
scores to form the summary of the video and introduces a
benchmark (SumMe) that allows for automatic evaluation
of video summarization methods. Reference [7] proposes a
static video summarization method named VSUMM based
on color feature extraction from video frames and k-means
clustering algorithm. Besides, two annotated datasets, OVP
and YouTube, are introduced in [7]. Reference [13] presents
a highlight detection model by combining two deep convolu-
tional networks architectures on spatial and temporal stream,
followed by the pairwise deep ranking model for the training
of each DCNN structure. Reference [14] combines semantic
attributes and visual features as representations of frames,
and uses bundling center clustering (BCC) to cluster video
segments and pick a certain length of segments to generate
summary. Generally speaking, supervised approaches per-
form better than those unsupervised since the summarizer
can learn the deeper structure of video guided by human
annotations.

In addition to exhibiting the work on video summariza-
tion, we refer to a few successful applications of CRNN.
The idea of combining CNN and RNN has been proposed
in other tasks, such as text recognition [26], video classifi-
cation [27], human activity recognition [32]–[34], keyword
spotting [28] and so on. Reference [26] considers an image
with texts as a sequence, using CRNN to extract features and
model sequential structure in the same time, greatly improv-
ing the performance of text recognition in natural scene.
Reference [27] uses AlexNet and GoogLeNet to extract fea-
ture of each frame, and those features are processed for-
ward and upwards through time and LSTMs respectively,
where a softmax layer is added after LSTMs to predict
the video class at each step. Reference [32] develops a
sequential vector of locally aggregated descriptor (VLAD)
to combine with CRNN architecture, which achieves

good performance on UCF10 [35] and HMDB51 [36].
Based on VLAD, [33] proposes trajectory pooling and line
pooling to address the problem in action recognition that
the networks used are relatively shallow, which is the state-
of-the-art method on UCF101. Reference [34] presents a
generic deep framework for multimodal wearable activity
recognition, which is base on CNN and LSTM, and the exper-
iments demonstrate the satisfying efficacy of the framework.
Reference [28] employs CRNN to exploit local structure
and long-range context, making great progress in the task of
key spotting. Overall, CRNN reveals its tremendous power
for semantic-and-sequential-related tasks, which makes us
conceive the thought of introducing CRNN into video sum-
marization. We are the first to utilize CRNN in video sum-
marization to the best of our knowledge. Moreover, there
exist several spatiotemporal modeling methods that do not
use CRNN but achieve great performance.

III. THE PROPOSED METHOD
In this section, we elaborate our approach of video summa-
rization. First we explain the task mathematically and define
some notations. Then we give a brief introduction to CRNN
and 3D CNN. Next, we propose our distinctive architecture,
viz., CRSum. At last, we show the limitation of traditional
loss for video summarization and present a novel loss func-
tion called ‘‘Sobolev loss’’.

A. PROBLEM FORMULATION
A video is composed of consecutive frames. In this paper,
a video is considered as an ordered set of frames and it is
denoted as

V = {f 1, f 2, . . . , f n},

where f i represents the i-th frame of the video and n is the
number of frames. The purpose of video summarization by
keyframe is to select a subset of V , which has shorter length
and contains almost all the important frames in V . To achieve
this purpose, a typical way is to assign an importance score
to every frame and pick those frames with high scores.
Apparently, this task can be divided into importance score
prediction and summary generation.

In order to make that process of generating clear, a concept
inmathematical statistics is adopted. Given a random variable
X obeying certain population and ∀α ∈ (0, 1), xα is α-upper
quantile for variable X if

P{X ≥ xα} = α. (1)

Using upper quantile, the process of creating a summary
by importance scores can be easily described. Assuming a
video V is labeled with scores s = {s1, s2, · · · , sn}, we treat
s as a sample from certain population of discrete values.
∀α ∈ (0, 1), the α-upper quantile of s, sα , can be calculated
by definition. A subset of V is created as follows,

Vsα = {f i ∈ V |si > sα, i = 1, 2, . . . , n}. (2)
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FIGURE 1. The basic CRNN structure. The compact structure of CRNN is in
the left. Given a sequence of frames, CRNN directly figures out the scores
of them. A certain frame is processed by 2D CNN first. The CNN outputs
the features denoted by a vector. Then the features are sent to RNN. RNN
combines the information of the current step and that of the last step,
outputting the score of the current frame. The expanded structure is in
the right, which demonstrates how CRNN works. The CNN/RNN blocks
share the same state.

Vsα is the generated summary of V based on scores s with
synopsis ratio α.

B. CONVOLUTIONAL RECURRENT NEURAL NETWORK
As aforementioned, the essential of video summarization is
quantifying importance. Approaches purely based on manu-
ally defined criteria have obvious weaknesses, because dif-
ferent people could share distinctive points of view and the
human understanding of this task has limitations. A wise idea
to deal with that problem is to let the machine learn the rules
by the auxiliary of human. DNN reveals its power to handle
sophisticated tasks due to its distinguished representation
and fitting ability. In our method, we use CRNN, a special
architecture of DNN, to achieve the task.

A basic structure of CRNN is exhibited in Fig. 1. Compared
with traditional DNN, CRNN owns several distinctive advan-
tages: 1) It directly learns from sequence of frames and labels,
requiring no detailed annotations. 2) It has the same prop-
erties of learning informative representations directly from
original frames as 2D CNN does, requiring neither hand-craft
features nor pretraining steps. 3) It has the same properties
of modelling temporal structure of video as RNN does. 4)
It is naturally capable of handling videos in arbitrary lengths.
5) It is an end-to-end trainable network,making it easy to train
and evaluate.Mathematically, the basic CRNN is presented as

si = RNN (CNN (f i), si−1), i = 1, 2, . . . , n, (3)

which is an iterative procedure. CRNN combines the advan-
tages of CNN and RNN, making itself quite effective for spa-
tiotemporal modelling and applicable to video understanding.

C. 3D CONVOLUTIONAL NEURAL NETWORK
Previous methods utilize 2D CNNs to extract features of
each frame. Spatial information contained in frame is easily
obtained. However, video summarization task needs compre-
hensive understanding of the whole video instead of each
single frame. 3D convolutional neural networks has been
drawing attention to many researchers recently. It shows the
power of extracting effective spatiotemporal features of video

FIGURE 2. The process of 3D convolution. The blue cube is the input
video volume. The yellow cube represents the 3D kernel that slides
spatially and temporally in the video. The green cube is the output 3D
feature. In this paper, we use padding to ensure the output feature has
the same depth as the input volume does.

in many tasks, such as action recognition [37], [38], action
similarity labeling, scene recognition [31], video classifica-
tion [39], etc.

3D CNNs use 3D kernels to operate convolutions on the
video cube spatially and temporally as shown in Fig. 2.
It takes the whole video as input and outputs the features
of video instead of features of each frame. Empirically,
3D CNNs achieve comprehensive understanding of video.
D. CRSUM FOR VIDEO SUMMARIZATION
Based on CRNN and 3D CNNs, we build our distinctive
CRSum. Owning all the advantages of CRNN and 3D CNNs,
it is especially designed for video summarization. The struc-
ture of CRSum is demonstrated in Fig. 3. As shown in Fig. 3,
it is composed of 3D CNNs, RNNs and a multi-layer percep-
tron (MLP), taking the whole video as input and importance
scores as output.

Three characteristics of the CNNs in CRSum are worth
mentioning. 1) We use 3D CNNs instead of 2D CNNs to
extract spatiotemporal features directly from video for video
summarization. Previous methods extract features of each
frame by 2D CNNs, which means the obtained features only
contain the spatial information of each frame. By 3D CNNs,
the local temporal dependencies are effectively exploited so
that our network is capable of perceiving short-term structure
in video. 2) Two 3D CNN blocks are utilized in our model.
One has 3 layers for extracting shallow features while another
one has 8 layers for deep ones. The shallow CNN is respon-
sible for extracting low-level features. The deep CNN is
applied to digging up the high-level information, i.e., seman-
tic meanings, in video. 3) The parameters in our 3D CNNs
are learnable while other methods use fixed deep features
as the descriptors of frames. Hence the outputs of our 3D
CNNs change adaptively according to different tasks. By the
learnable features, the proposed network explores solutions
in a broader solution space and generates summaries that
contain more meaningful context. Further, both CNN blocks
use (3, 5, 5) kernels with stride (1, 2, 2) and padding (1, 2, 2).
As the depth of the 3D feature map is the same as the length

of video, we slice it along the depth dimension to obtain the
feature of each frame. Learnable deep feature and shallow
one are fused by concatenation before being sent into RNNs,
which makes a more comprehensive representation of video.
CRSum involves both kinds of feature so that a thorough
understanding of video is obtained.
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FIGURE 3. The structure of CRSum. It takes the whole video cube as input. First,
the 3D CNNs extract deep and shallow features from the video (we use padding to
ensure that the depth of the 3D feature map is the same as the length of video). Then
the sliced 3D feature is sent to RNNs. The RNNs process the features and output a
vector per step. At last, the vector is converted to a scaler (important score) by a MLP.

A bidirectional long short-term memory (LSTM) [40]
block is utilized to model the sequential structure implied
in video. A simple RNN struggles to learn long-term depen-
dencies in video [41]. But LSTM [42], a special kind of RNN,
is explicitly designed to avoid that problem. LSTM reveals
its powerful ability of modelling such long-term depen-
dencies in many fields. Moreover, compared with normal
LSTM, a bidirectional LSTM owns one more block respon-
sible for processing the inverse temporal information so as
to fully exploit deeper informative structure in sequential
data.

After passing through the RNNs, the features are con-
verted by the MLP (with one hidden layer and activated by
Sigmoid function) to a scalar ranging from 0 to 1, i.e., the
importance score. Moreover, theMLP increases the represen-
tation and fitting ability of CRSum. The number of hidden
units of LSTMs and the size of hidden layer of MLP are
both 256.

E. SOBOLEV LOSS
A significant problem in machine learning is how to design
an appropriate loss function coinciding with a specific task.
For video summarization, the most widely used loss function
are MSE loss and cross entropy loss.

Cross entropy loss models the task as a binary classifica-
tion problem: whether to choose a certain frame. However,
the information of frame is not fully exploited by cross
entropy, making the summary quality relatively poor [4].
Besides, MSE loss has evident shortcomings for our task
either, which is explained as follows.

Mathematically, MSE loss of continuous form quan-
tifies the distance between two functions in L2 space.

Namely, assuming s, t ∈ L2(�)(� ⊂ Rd ), the MSE loss of s
(predicted score) and t (target) is

MSE(s, t) = ‖s− t‖2L2(�) =
∫
�

(s− t)2d�. (4)

As shown in Fig. 4, we consider t as the target curve
while s1, s2 are two regression results of t . According to their
conditions, we derive

MSE(s1, t) = MSE(s2, t), (5)

which means s1 and s2 are equally fine estimations of t under
MSE criterion. However, we prefer s1 because it has the same
trend as t does. In other words, the derivatives of them are
closer, directly making the generated summary more accurate
(the summary from s1 overlaps more with that from t than s2
does as demonstrated in Fig. 4).

In order to constrain the derivatives of sequential data,
we introduce a novel gradient-based content loss function
named Sobolev loss. The proposed loss is based on Sobolev
space [43] which is a function space equipped with a norm
that is a combination of L2-norms of the function itself and
its derivatives. Rigorously, H (�) is Sobolev space if

H (�) =
{
u ∈ L2(�)

∣∣∣ ∂u
∂xk
∈ L2(�), k = 1, 2, . . . , d

}
, (6)

and the norm in H (�) is defined as

‖u‖H (�) =

(
‖u‖2L2(�) +

d∑
k=1

∥∥∥∥ ∂u∂xk
∥∥∥∥2
L2(�)

) 1
2

=

[ ∫
�

u2d�+
d∑
k=1

∫
�

( ∂u
∂xk

)2
d�
] 1

2

. (7)
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FIGURE 4. A toy example to show the limitation of MSE. The left figure includes three functions, s1, s2
and t , drawn by synthesis data. We force them to satisfy s1(x) ≡ s2(x) ≡ t(x), x ∈ [0,50] ∪ [250,300]
and s1(x)− t(x) ≡ t(x)− s2(x), x ∈ [50,250]. It is to easy to prove ‖s1 − t‖2L2([0,300]) =

‖s2 − t‖2L2([0,300]). The right one demonstrates the process of generating summaries using different
regression results.

The norm defined in H (�) includes terms corresponding
to derivatives, indicating that the distance between two func-
tions under Sobolev criterion is affected by their derivatives.
A fitting result is better when the distance between the orig-
inal data and the distance between the derivative data are
shorter simultaneously. Hence, this criterion quite agrees with
our motivation.

Therefore, we define a novel loss function named Sobolev
loss based on Sobolev space as follows,

SobLoss(s, t) = ‖s− t‖2H (�). (8)

MSE loss considers frames as unrelated individuals and
ignores their dependencies. Compared to MSE loss, Sobolev
loss includes the constraint of derivatives which relate frames
with their neighbors. So the local temporal dependencies are
modeled in our loss function. Sobolev loss is more applicable
to sequential data because it models the temporal structure
more sophisticatedly by introducing a term corresponding to
the derivatives, leading to more precise predictions.

Particularly, when s = {si}ni=1 and t = {ti}
n
i=1 are discrete,

SobLoss(s, t) =
1
n

n∑
i=1

(si − ti)2

+
1

n− 1

n−1∑
i=1

[(si+1−si)−(ti+1 − ti)]2. (9)

It is Eq. (9) that we use to train CRSum. Video summariza-
tion needs temporal modelling of video. So we involve the
sequential character in the loss function.

IV. EXPERIMENTS
A. EXPERIMENT SETUPS
In this section, we conduct a series of experiments to
demonstrate the effectiveness of the proposed method. First,
we explain the experiment setups. Then, the proposedmethod
is evaluated and compared with several existing methods on
two public datasets. In addition, we carry out further anal-
ysis of our method from different aspects by well-designed
experiments.

1) DATASETS
Two public datasets for video summarization are commonly
used: SumMe [12] and TVSum50 [25]. SumMe includes
25 videos, each of which is annotated by 15 to 18 people.
They give segment summaries for each video and according
to the segments, every frame is assigned an important score
computed as the ratio of selections over views. The lengths
of videos in SumMe vary from dozens of seconds to a few
minutes and the topics include sports, sceneries, stuffs in
life, etc., captured by egocentric, moving or static cameras.
TVSum50 includes 50 videos collected from YouTube, each
of which is annotated by 20 people. Each uniform length
subshot of videos is assigned 20 importance scores and
the ground truth score is the average of them. We use the
scores of subshots as the frame scores. Video lengths in
TVSum50 range from 2 to 10 minutes and 10 categories
are covered. VTW [49] is a larger dataset that is originally
proposed for video captioning. It contains 18,100 videos
and 2,529 of which are annotated with shot-based video
highlights, which are transferred into importance scores for
evaluation.

2) EVALUATION METRICS
Plainly, a generated summary is deemed to be better when it
is more similar to the ground truth one. We use F-measure
to quantify the similarity of two summary. Given a gen-
erated summary Vsα and the ground truth summary Vgα ,
the precision (P) and the recall (R) are defined as

P =
|Vsα ∩ Vgα|
|Vsα|

, R =
|Vsα ∩ Vgα|
|Vgα|

, (10)

where |·| is the counting measure of finite set. The F-measure
is the harmonic mean of P and R, denoted as

F = 2 ·
P× R
P+ R

, (11)

where F is defined to be 0 when P = R = 0. Obviously,
F = 0 when Vsα and Vsα have no common element, and
F = 1 when Vsα and Vsα are the same. It is F-measure that
we use to quantify the performance of a certain method.
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TABLE 1. Performance (F-measure) of several video summarization
methods. The best and the second best results on two datasets are in
bold and underlined respectively.

3) EXPERIMENT DETAILS
For each dataset, we use 5-fold cross-validation strategy to
train and evaluate our model. Each video is sub-sampled
every 60 frames in consideration of the similarity between
adjacent frames, and resized to 256 × 256 for the lim-
itation of GPU memory. The synopsis ratio is 15% as
in [4], [12], [25]. As for optimization, we use mini-batch
Adam algorithm [50] with initial learning rate 10−3 and
β = (0.9, 0.999). The batch size is set to 8. The proposed
model is trained for 10000 epochs. The learning rate is halved
every 2000 epochs. Our method is implemented by PyTorch
on NVIDIA GeForce GTX 1080 Ti.

B. MAIN RESULTS
The proposed method is compared with nine previous typical
video summarization methods on SumMe and TVSum50.
We use common canonical setting [4] to conduct thosemeth-
ods and report the results in Table 1. The compared methods
are different in many ways. LiveLight [24] and TVSum [25],
DR-DSN [44] are unsupervisedmethods, while VSUMM [7],
dppLSTM [4], SUM-GAN [5], Transfer [6], Framework [45],
H-RNN [46], SASUM [48] (the state-of-the-art method),
re-seq2seq [47] and our method are supervised methods of
video summarization. In addition, DR-DSN [44], dppLSTM,
H-RNN, SUM-GAN, SASUM, re-seq2seq [47] and our
method utilize DNN to predict the importance scores for
summary generation, while other methods formula the task
as optimization problems.

As shown in Table 1, our method achieves the best per-
formance on SumMe and the second best on TVSum50.
On SumMe, CRSum surpasses SASUM by 4.4%, which is
a significant improvement on video summarization, while
SASUM surpasses our method by only 0.3%, which can
be ignored in practice. It is worth mentioning that SumMe
contains relatively less videos, leading to the lack of training
samples when conducting experiments on it. But CRSum
still outperforms other methods, which indicates that it is
capable of learning the inner structure of video from small
amounts of samples and has strong generalization ability.
We compare our method with three typical methods on VTW.

The results show that our method surpass previous methods.
The experiments on VTW indicate that our method is also
capable of dealing with large-scale datasets. Examples of
generated summaries by our method is shown in Fig. 5.
As show in Fig. 5, our method is capable of selecting frames
with high scores while maintaining diversity in summaries,
which directly demonstrates the effectiveness of our method.

C. FURTHER ANALYSIS
The effectiveness of the proposed method is evident accord-
ing to above experiments. Furthermore, we discuss more
details to analyze our method from different aspects.

How important is Sobolev loss?
In order to clarify the effectiveness of Sobolev loss, we extend
the definition of Sobolev loss as follows,

SobLossλ(s, t)

=
1
n

n∑
i=1

(si − ti)+
λ

n− 1

n−1∑
i=1

[(si+1 − si)− (ti+1 − ti)]2,

(12)

where λ is introduced to control the effect of derivatives. The
extended Sobolev loss equals the original one when λ = 1
and equals MSE loss when λ = 0. λ is set to different values
to illustrate how Sobolev loss affects the performance. The
results are shown in Fig. 6 (log 0 def

= −∞).
CRSum trained by Sobolev loss with appropriate values

of λ surpasses that trained by pure MSE loss (i.e., λ = 0).
It proves the effectiveness of the proposed loss function.
Sobolev loss models temporal structure of video, while MSE
loss does not take the temporal structure into consideration.
However, a bigger λ does not achieve a better result neces-
sarily. Sobolev loss with λ = 100 actually leads to poorer
F-measure than MSE loss does on TVSum50 as shown
in Fig. 6. The best performance is achieved when λ = 1 on
both datasets.

What kind of feature matters?
In CRSum, two 3D CNN blocks are utilized to extract fea-
tures from video. CNN 1 is composed of three convolutional
layers and aims to extract shallow features, while CNN 2
is responsible for extracting deep features, viz., semantic
meanings. We conduct a series of experiments to dig out the
potential significance of different kinds of feature. To make
this study clear, we define CRSum(i, j) as variants of CRSum,
where

i =

{
1, CNN 1 is pretrained on UCF101
0, Otherwise,

(13)

j =

{
0, CNN 2 is abandoned
1, Otherwise.

(14)

CRSum(0, 0) is the baseline model. Obviously, CRSum(0, 1)
is the original model. Performance of CRSum(i, j) are shown
in Table 2.
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FIGURE 5. Four examples of generated summaries of the videos SumMe and TVSum50 by CRSum. The upper two are from SumMe, while
the bottom two are from TVSum50. The blue bar indicates the ground truth importance score, and the orange bar indicates being chosen
as summary.

FIGURE 6. Performance of different λ on two datasets.

TABLE 2. Performance of variant models on two datasets.

As shown in Table 2, CRSum(0, 0) reaches the level of
some previous supervised methods such as VSUMM [7],
which proves the effectiveness of the proposed structure.
CRSum(0, 0) achieves the poorest performance among four
variants because the structure of CRSum(0, 0) is too sim-
ple to handle such sophisticated task. As for CRSum(1, 0),
though the deep feature extractor (CNN 2) is removed
from our model, the network still achieves respectable
results which are just slightly poorer than those of the
original CRSum. This phenomenon reveals a quite fact:
the deep features are not necessary in video summariza-
tion and certain appropriate shallow features still work in
this task. Besides, CRSum(1, 1) achieves the best perfor-
mance as we expected because we give more prior to
the network before training. However, the improvement by

CRSum(1, 1) is not that remarkable compared to the original
model.

V. CONCLUSION
In this paper, we present a novel method for video sum-
marization. Our method utilizes CRNN, a special type of
DNN, to adaptively extract spatiotemporal features and accu-
rately predict the importance scores in an end-to-end fashion.
In the proposed network (CRSum), the learnable 3D deep
features and shallow features are fused to make comprehen-
sive descriptions of video. Additionally, a new loss function
(Sobolev loss) is defined for video summarization, aiming
to exploit potential temporal structure of video and achieve
better performance. We compare our method with several
existing ones on two public datasets and the experiments
prove its effectiveness. Moreover, we further analyze our
method from different aspects.
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