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ABSTRACT This paper investigates the finite-time synchronization problems of complex spatiotemporal
networks with time delays and diffusion terms. First, a boundary controller based on Lyapunov stability
theory, Wirtinger’s inequality, and finite-time analysis is designed. Subsequently, sufficient conditions for
finite-time synchronization are obtained, and the setting time of finite-time synchronization is estimated.
Finally, a simulation example is given to demonstrate the effectiveness of the obtained result.

INDEX TERMS Finite-time synchronization, complex network, time delay, diffusion term, boundary
control.

I. INTRODUCTION
Complex dynamic networks (CDNs) include sensor net-
works [1], multiagent systems [2], and neural networks [3].
In recent years, complex networks have been widely used in
various fields, such as mathematics, finance, Internet, society,
and biology, and yielded outstanding achievements. Mean-
while, synchronous control of complex networks has become
a research hotspot in many disciplines because of its practical
and potential implications, such as intelligent control [4] and
communication encryption [5], which can be classified as
synchronous control problems. In the past 10 years, many
synchronization concepts have been widely proposed, such
as asymptotic synchronization [6], full synchronization [7],
projection synchronization [8], lag synchronization [9], phase
synchronization [10], approximate synchronization [11], pin-
ning synchronization [12], finite-time synchronization [13],
hybrid synchronization [14], cluster synchronization [15],
and outer synchronization [16]. Outstanding achievements
continue to emerge in this research field. However, delay
remains inevitable in practice. For example, information
transfer in a network is often accompanied by delay, which
is a primary cause of system instability. Therefore, studying
the stability of time-delay systems has become an important
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topic in control theory, as validated by various previous
studies [17]–[24].

Many phenomena occur in the real world in different fields,
such as chemical engineering, neurophysiology, and biody-
namics, in which state variables depend not only on time
but also on spatial location. Additionally, many complex spa-
tiotemporal dynamical networks (CDNs) with time and space
characteristics are present in nature and subject areas [25].
Therefore, the study of complex spatio-temporal dynamic
network synchronization has attracted considerable attention.
Synchronous control of complex space–time dynamic net-
works (CSDNs) is difficult to study because of its infinite
dimensionality, but it has attracted many researchers in the
past few decades with respect to such fields as matrix pro-
portional [26], P-sD [27], pulse [28], intermittent [29], [30],
activation control [31], linear separation [32], sliding mode
control [33], and adaptive control [34]. These controllers are
based on state feedback and require sensors and drivers dis-
tributed throughout the space domain. These characteristics
make the application of these controllers difficult in situations
where the state is unknown. Boundary control can solve this
problem, and in the past few years, it has been applied to the
synchronization of complex networks. For example, Liming
Wang studied the asymptotic synchronization problem of
coupled time-delay systems with boundary control in [35].
Jinde Cao discussed the nonlinear CSDN cluster
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synchronization control problem with cluster structure
through boundary control in [36].

Complex networks must not only be synchronized but
also have sufficient synchronization performance. Most of
the control methods that have been proposed in the liter-
ature for complex network synchronization control issues
require infinite time but ignore complex network time syn-
chronization. In practical applications, systems often need
to reach stable synchronization within finite time. Recently,
researchers have proposed a control method that can achieve
complex network synchronization in finite time according
to real-time requirements and produced positive results. For
example, Jinde Cao studied the finite- and fixed-time syn-
chronization problems of time-varying inertial memristive
neural networks in [37]. Lu solved the problem of over-
lapping cluster synchronization of coupled complex net-
works by adaptive finite-time control in [38]. Wu studied
the finite-time boundary stabilization problem of reaction–
diffusion neural networks without time delay in [39]. Wang X
investigated the synchronization problem of a class of fully
complex-valued networks with coupling delay by using lin-
ear feedback control in finite time in [40]. Espitia studied
the stability problem of event-triggered boundary-controlled
hyperbolic partial differential equations in [41]. However,
the finite-time synchronization of complex networks based
on boundary-controlled delay-diffusion delays has not been
studied.

Based on the above analysis and the problems to be
solved, this study considers the finite-time boundary control
problem of CSDNs with diffusion terms and space–time
characteristics. At present, results have not been reported
for the finite-time boundary control of complex networks
with reaction–diffusion time delay. The main difficulty is the
design of finite-time boundary controllers under Neumann
boundary conditions. On this basis, a complex network with
coupled time delay and the dynamic behavior of system nodes
with time delays are given, and sufficient conditions for the
finite-time synchronization of the boundary controller are
obtained. Finally, numerical simulations verify our theoret-
ical results.
Notation: All the notations used in this study are standard.

For x ∈ Rn, let ‖x‖ denote the Euclidean vector norm, i.e.,
‖x‖ =

√
(xT x). For A ∈ Rn×n, let ‖P‖ indicate the norm

of P induced by the Euclidean vector norm, i.e., ‖P‖ =√
λmax(PTP), where λmax(PTP) is the maximum eigenvalue

of PTP. I denotes the identity matrix with appropriate dimen-
sions, Rm×n denotes the set of all m × n real matrices,
and Rn is the n-dimensional Euclidean space. For sym-
metric matrices A and B, the notation A > B(A ≥ B)
means that the matrix A − B is positive definite (nonneg-
ative). The superscript ‘‘T ′′ stands for the transpose of a
vector or a matrix. diag {. . .} is used to denote the block
diagonal matrix, yi,t means dyi

dt , yt means dy
dt , yi,xx means

∂2yi,xx
∂x2

, and means ∂2yxx
∂x2

, and yx(x, t)
∣∣b
a means yx(a, t) −

yx(b, t).

II. FINITE-TIME SYNCHRONIZATION OF COMPLEX
NETWORKS BY BOUNDARY CONTROL

gi,t (x, t) = 21gi,xx(x, t)+ f (gi(x, t))

+

n∑
i=i
aij01gj(x, t)+

n∑
i=i
bij01gj(x, t − τ )

gi,x(x, t)
∣∣x=0 = 0, gi,x(x, t) |x=L = Cui(t)

gi(x, 0) = gi,0(x)

(x, t) ∈ [0,L]× [0,∞]

(1)

where gi (x, t)
1
= [gi1 (x, t) , gi2 (x, t) , . . . ,

gin (x, t)]T ∈ Rn are the states. x ∈ [0, L] ∈ R and
t ∈ [0,∞) are the spatial and time variables, respectively.
The subscripts x and t are the partial derivatives with respect
to x and t , respectively. ui (t) ∈ Rn denotes the boundary
control inputs. Dispersal matrices 21 ∈ Rn×n are assumed
to be positive. C is a negative number, and τ is the time delay.
f (gi (x, t)) represents the nonlinear perturbation of time and
spatial variables. A 1

=
(
aij
)
N×N ,B

1
=
(
bij
)
N×N describe

the diffusive topological structure of the CSDN, defined as

aij > 0, bij > 0(i 6= j), aii = −
N∑

j=1,j 6=i
aij, bii = −

N∑
j=1,j 6=i

bij,

i ∈ N .
st (x, t) = 21sxx(x, t)+ Bs(x, t)+ f (s(x, t))

sx(x, t) |x=0 = sx(x, t) |x=L = 0
s(x, 0) = s0(x)
(x, t) ∈ [0,L]× [0,∞],

(2)

where s (x, t) may be an equilibrium point, a periodic
orbit, or a chaotic orbit.

Denote the synchronization errors ei (x, t)
1
= gi (x, t) −

s (x, t) , i ∈ N . The synchronization error system
of the i − th node can be obtained from (1) and (2)
as

ei,t (x, t) = 21ei,xx(x, t)+ f̃ (gi(x, t))

+

n∑
i=i
aij01ej(x, t)+

n∑
i=i
bij01ej(x, t − τ )

ei,x(x, t)
∣∣x=0 = 0, ei,x(x, t) |x=L = Cui(t)

ei(x, 0) = ei,0(x)

(x, t) ∈ [0,L]× [0,∞],

(3)

where f̃ (gi (x, t))
1
= f (gi (x, t)) − f (s (x, t)).

The synchronization error system (15) can be rewritten in
a compact manner as

et = (21 ⊗ In) exx+(A⊗ 01) e+ f̃ (g(x, t))

+B⊗ 02e(x, t−τ )

ex |x=0 = 0, ex |x=L = Cu(t)

e(x, 0) = e0(x)
(x, t) ∈ [0,L]× [0,∞],

(4)
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where

e(x, t−τ ) ,
[
eT1 (x, t−τ ), e

T
2 (x, t−τ ), . . . , e

T
n (x, t − τ )

]T
,

u(t) ,
[
uT1 (t), u

T
2 (t), . . . , u

T
n (t)

]T
,

e(x, t) ,
[
eT1 (x, t), e

T
2 (x, t), . . . , e

T
n (x, t)

]T
.

We design the following boundary controller for the ith
node of the system (1):

u(t) =
∫ L

0
ke(x, t)dx,

+
e(L, t)

‖e(L, t)‖2
·
k
2

[∫ L

0
eT (x, t)e(x, t)dx

+

∫ L

0

∫ t

t−τ
eT (x, t)e(x, t)dsdx

]β
. (5)

Let f̃ (gi(x, t)) = f (gi(x, t))− f (s(x, t)), where C is a negative
number, and K is the gain coefficient to be determined and
satisfies 0 < β < 1, |e|2 = eT e.
Remark 1: Controller (5), which is located at the boundary

position, requires only one actuator at x = L, whereas the
controllers located in the systems require an array of actuators
all over the spatial domain, that is, x ∈ [0,L].
Lemma 1 (see [42]): Assume that a continuous, positive-

definite function V (t) satisfies the following differential
inequality:

V̇ (t) ≤ −αV η(t), t ≥ t0, V (t0) ≥ 0,

where α > 0, 0 < η < 1. For any given t0, V (t) satisfies the
following inequality:

V 1−η(t) ≤ V 1−η(t0)− α(1− η)(t − t0), t0 ≤ t ≤ T ,

and

V (t) ≡ 0 for all t ≥ t0,

where t1 = t0 +
V 1−η(t0)
α(1−η)

Lemma 2 (Wirtinger’s inequality [39]): Given a square
integrable vector function z(x) with z(0) = 0 or z(L) = 0,
for any symmetric matrix S > 0, the following inequality
holds:∫ L

0
zT (s)Sz(s)ds ≤ 4L2π−2

∫ L

0
(dz(s)/ds)T S(dz(s)/ds) ds.

Lemma 3 (see [36]): For two square integrable vector
functionsa(x), b(x), x ∈ [0,L],the following inequality holds
for any scalar α > 0:

2
∫ L

0
aT (x)b(x)dx ≤ α

∫ L

0
aT (x)a(x)dx

+α−1
∫ L

0
bT (x)b(x)dx.

Assumption 1:Assume that the nonlinear function f (g) satisfy
the Lipschitz condition, i.e., for any ς , γ , there exist scalars
l1 > 0 satisfying

‖f (ς )− f (γ )‖ ≤ l1 ‖ς − γ ‖ .

Definition 1: If a settling time T > 0 exists depending on
the initial value, lim

t→T
‖xi(t)− s(t)‖ = 0 for all ∀i, j, t ≥ T ,

and t > T , then ‖xi(t)− s(t)‖ ≡ 0 is established. The
complex network reaches finite-time synchronization.
Theorem 1: Consider dynamics (4). When positive num-

bers L and l1, negative number C , and positive definite
matrix 2 exist, we have(

5 [(2⊗ In)Ck]T

(2⊗ In)Ck −
π2

2L2 (2⊗ In)

)
< 0, (6)

where

5=
(
2 (A⊗ 01)+ (B⊗ 02)2+(2l1+1)In − 2(2⊗ In)Ck

)
.

Then, estimation error e(x, t) converges in finite time to zero,
and the settling time for FTS can be given by

t1 = t0 +
V 1−β (t0)

2(2⊗ In)Ck(1− β)
,

where k is the gain coefficient to be determined and satisfies
0 < β < 1.
Proof: Consider the following Lyapunov function for the

system (1):

V (t) =
∫ L

0

n∑
i=1

eiT (x, t)ei(x, t)dx

+

∫ L

0

∫ t

t−τ

n∑
i=1

eiT (x, t)ei(x, t)dtds (7)

let f̃ (gi(x, t)) = f (gi(x, t))− f (s(x, t)), and computing the
derivative of V (t) along the solution trajectories of the error
system (4), we obtain

V̇ (t) = 2
∫ L

0
eT (x, t)et (x, t)dx +

∫ L

0
eT (x, t)e(x, t)dx

−

∫ L

0
eT (x, t − τ )e(x, t − τ )dx

= 2
[∫ L

0
l1eT (x, t)e(x, t)dx

+

∫ L

0
eT (x, t) (A⊗ 01) e(x, t)dx

]
+ 2

[∫ L

0
eT (x, t) (B⊗ 02) e(x, t − τ )dx

+

∫ L

0
eT (x, t) (21 ⊗ In) exx(x, t)dx

]
+

∫ L

0
eT (x, t)e(x, t)dx−

∫ L

0
eT (x, t−τ )e(x, t−τ )dx

=

∫ L

0
eT (x, t)

(
2 (A⊗ 01)+ (B⊗ 02)2

+ (2l1 + 1)In) e(x, t)dx

+ 2
∫ L

0
eT (x, t) (21 ⊗ In) exx(x, t)dx (8)

Given that 2 > 0,we can obtain (2⊗ In) > 0.
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By integrating parts and considering the boundary con-
ditions, Lemma 1, Lemma 2, Assumption 1, and taking to
α→ 1+ we can find that

2
∫ L

0
eT (x, t) (2⊗ In) exx(x, t)dx

= 2eT (x, t) (2⊗ In) ex(x, t)
∣∣∣L0

− 2
∫ L

0
exT (x, t) (2⊗ In) ex(x, t)dx

= −2e(L, t)(2⊗ In)Cu(t)

−
π2

2L2

∫ L

0
ēT (x, t) (2⊗ In) ē(x, t)dx

= 2
∫ L

0
(ē(x, t)− e(x, t))(2⊗ In)Cke(x, t)dx

− 2(2⊗ In)Ck
[∫ L

0
eT (x, t)e(x, t)dx

+

∫ L

0

∫ t

t−τ
eT (x, t)e(x, t)dsdx

]β
−
π2

2L2

∫ L

0
ē(x, t) (2⊗ In) ē(x, t)dx (9)

where ē(x, t) 1= e(x, t)− e(L, t) and then ē(L, t) = 0,

V̇ ≤
∫ L

0
eT (x, t) (5+ 2(2⊗ In)Ck) e(x, t)dx

− 2
∫ L

0
eT (0, t)(2⊗ In)Cke(x, t)dx−2(2⊗ In)CkV β (t)

−
π2

2L2

∫ L

0
ēT (x, t) (2⊗ In) ē(x, t)dx

= 2
∫ L

0
ēT (x, t)(2⊗ In)Cke(x, t)dx

−
π2

2L2

∫ L

0
ēT (x, t) (2⊗ In) ē(x, t)dx

+

∫ L

0
eT (x, t)5e(x, t)dx − 2(2⊗ In)CkV β (t)

=

∫ 1

0

(
e
ē

)T ( 5 [(2⊗ In)Ck]T

(2⊗ In)Ck −
π2

2L2 (2⊗ In)

)(
e
ē

)
dx

− 2(2⊗ In)CkV β (t)

≤ −2(2⊗ In)CkV β (t) (10)

where

5=
(
2 (A⊗ 01)+ (B⊗ 02)2+(2l1+1)In − 2(2⊗ In)Ck

)
.

The settling time is:

t1 = t0 +
V 1−β (t0)

2(2⊗ In)Ck(1− β)
. (11)

The proof is complete.
Remark 2: The boundary conditions given in many com-

plex network synchronization problems with diffusion terms
are often Dirichlet boundary conditions, that is, directly
giving values at the boundary, such as [44]. By contrast,

the present work discusses complex boundary conditions.
Thus, we adopt the Neumann boundary condition, which is
the partial derivative value given at the boundary. The study
of Dirichlet boundary conditions in this type of study is more
complex.
Remark 3: O. M. studied the finite-time stability prob-

lem with diffusion-term neural networks in [45]. M. Syed
indeterminedMarkov complex dynamic networkswithmixed
time-varying delays and reaction–diffusion terms in [46] for
the finite-time robust random synchronization problem. The
controller designed in the above article is a global controller,
which means that it is placed at every point in the spatial
domain. Placing every point of the controller in the spatial
domain is difficult in engineering practice. For reaction–
diffusion complex network systems, the use of boundary
control to achieve finite-time synchronization is an effective
way to proceed to engineering applications.
Remark 4: Wu studied the boundary finite-time stabiliza-

tion problem of a reaction–diffusion neural network in [39]
and found important results. However, the author did not
consider the effect of time delay on the studied system. In fact,
many complex network systems have time lags, which often
negatively affect such systems. On the contrary, the current
study considers the coupled time delays and the dynamic
behavior of system nodes with time delays and their effect
on the synchronization of the system.

In Theorem 1, we consider a complex network model with
time delays. We consider a complex network model without
time delays as a simplified case.

yi,t (x, t) = 2yi,xx(x, t)+ Byi(x, t)+ f (yi(x, t))

+

n∑
i=i
aij01yj(x, t)

yi,x(x, t)
∣∣x=0 = 0, yi,x(x, t) |x=L = Cui(t)

yi(x, 0) = yi,0(x)
(x, t) ∈ [0,L]× [0,∞]

. (12)

We design the following boundary controller for the ith node
of the system (4):

u(t) =
∫ L

0
K1ē(x, t)dx+

∫ L

0
K2e(x, t)dx+

∫ L

0
e−η(x, t)dx,

(13)

where K1 and K2 are the gain coefficients to be determined
and satisfy K2 ≤ K1.
Let f̃ (yi(x, t)) = f (yi(x, t))− f (s(x, t)).
Corollary 1: Consider dynamics (1). When positive num-

bers c1 and l1,negative number C , and positive definite
matrix 2 exist, we have

B⊗ In + c1A⊗ 01 + l1In − (2⊗ In)CK2

−
(2⊗ In)T (2⊗ In)

2
< 0, (2⊗ In)CK1

+
C
2
(2⊗ In)T (2⊗ In) < 0. (14)
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Then, estimation error e(x, t) converges in finite time to
zero, and the settling time for FTS can be given by

t1 = t0 −
2V 1−η

C(1− η)
,

where K1 and K2 are the gain coefficients to be determined
and satisfy K2 ≤ K1, 0 < η < 1.
Remark 5:Wu investigated the synchronization problem of

coupled linear partial differential systems with boundary con-
trol in [35]. Wang evaluated the asymptotic synchronization
problem of coupled time-delay partial differential systems
with boundary control in [43]. Jinde Cao discussed the cluster
synchronization control problem of a nonlinear CSDN with
cluster structure in [36]. These works presented important
results in CSDN boundary control but studied the synchro-
nization of complex network systems at infinity instead of
considering synchronization in finite time. In actual engi-
neering, systems are often expected to synchronize in limited
time. Unlike the aforementioned related literature, we achieve
system stability by designing a finite-time boundary con-
troller, which has better practicability than those in the above
studies.

In Corollary 1, we studied the finite-time synchronization
problem of complex networks with time-delay and diffusion
terms. At the same time, delays usually occur in the dynamic
behavior between nodes. So, we will discuss the finite-time
synchronization problem of complex networks with node
dynamics with time-delay in Theorem 2. Consider the fol-
lowing complex network model:

et = (21 ⊗ In) exx + (A⊗ 01) e+ f̃ (g(x, t − τ ))
+B⊗ 02e(x, t − τ )

ex |x=0 = 0, ex |x=L = Cu(t)
e(x, 0) = e0(x)
(x, t) ∈ [0,L]× [0,∞]

(15)

We design the following boundary controller for the ith
node of the system (15):

u(t) =
∫ L

0
ke(x, t)dx +

∫ L

0
ge(x, t − τ )dx,

+
e(L, t)∣∣e(L, t)2∣∣ · k2

[∫ L

0
eT (x, t)e(x, t)dx

+

∫ L

0

∫ t

t−τ
eT (x, t)e(x, t)dsdx

]
. (16)

Let f̃ (gi(x, t−τ )) = f (gi(x, t−τ ))−f (s(x, t−τ )), where is
a negative number, and k > 0, g > 0 are the gain coefficients
to be determined and should satisfy 0 < β < 1, |e|2 = eT e.
Theorem 2: Consider dynamics (15). If there exist positive

numbers L and l1,negative number C , and positive definite
matrix 2 such that 51 [(2⊗ In)Ck]T 0

(2⊗ In)Ck − π2

2L2 (2⊗ In) 0
0 0 2Cg+ 2l1

 < 0, (17)

where

51 = 2 (A⊗ 01)+ (B⊗ 02)2 + In − 2(2⊗ In)Ck,

then, estimation error e(x, t) will converge in finite time to
zero, and the settling time for FTS can be given by

t1 = t0 +
V 1−β (t0)

2(2⊗ In)Ck(1− β)
,

where k > 0, g < 0 are the gain coefficients to be determined
and satisfy 0 < β < 1.
Proof: Consider the following Lyapunov function for the

system (15)

V (t) =
∫ L

0

n∑
i=1

eiT (x, t)ei(x, t)dx

+

∫ L

0

∫ t

t−τ

n∑
i=1

eiT (x, t)ei(x, t)dtdx (18)

Let f̃ (gi(x, t)) = f (gi(x, t))− f (s(x, t)), and computing the
derivative of V (t) along the solution trajectories of the error
system (15), we obtain

V̇ (t) = 2
∫ L

0
eT (x, t)et (x, t)dx

+

∫ L

0
eT (x, t)e(x, t)dx−

∫ L

0
eT (x, t−τ )e(x, t−τ )dx

=

∫ L

0
eT (x, t)

(
2 (A⊗ 01)+(B⊗ 02)2+In

)
e(x, t)dx

+ 2
∫ L

0
eT (x, t) (21 ⊗ In) exx(x, t)dx

+

∫ L

0
eT (x, t − τ ) (2l1) e(x, t − τ )dx (19)

Given that 2 > 0,we can obtain (2⊗ In) > 0.
By integrating by parts and considering the boundary con-

ditions, Lemma 1, Lemma 2, Assumption 1, and taking to
α→ 1+ we can find that

2
∫ L

0
eT (x, t) (2⊗ In) exx(x, t)dx

= 2eT (x, t) (2⊗ In) ex(x, t)
∣∣∣L0

− 2
∫ L

0
exT (x, t) (2⊗ In) ex(x, t)dx

= 2e(L, t)(2⊗ In)Cu(t)

−
π2

2L2

∫ L

0
ēT (x, t) (2⊗ In) ē(x, t)dx

= 2
∫ L

0
(ēT (x, t)− eT (x, t))(2⊗ In)Cke(x, t)dx

− 2(2⊗ In)Ck
[∫ L

0
eT (x, t)e(x, t)dx

+

∫ L

0

∫ t

t−τ
eT (x, t)e(x, t)dsdx

]β
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−
π2

2L2

∫ L

0
ēT (x, t) (2⊗ In) ē(x, t)dx

+ 2
∫ L

0
(ē(x, t)− e(x, t))(2⊗ In)Cge(x, t − τ )dx

(20)

where ē(x, t) 1= e(x, t)− e(L, t) then ē(L, t) = 0,

2
∫ L

0
(ēT (x, t)− eT (x, t))(2⊗ In)Cge(x, t − τ )dx

= 2
∫ L

0
ēT (x, t)(2⊗ In)Cge(x, t − τ )dx

− 2
∫ L

0
eT (x, t)(2⊗ In)Cge(x, t − τ )dx

≤ Cg
∫ L

0
ēT (x, t)(2⊗ In)2ē(x, t)dx

+ 2Cg
∫ L

0
eT (x, t − τ )e(x, t − τ )dx

+Cg
∫ L

0
eT (x, t)(2⊗ In)2e(x, t)dx

≤ 2Cg
∫ L

0
eT (x, t − τ )e(x, t − τ )dx (21)

We have

V̇ ≤
∫ L

0
eT (x, t)

(
2 (A⊗ 01)+ (B⊗ 02)2+In

)
e(x, t)dx

+ (2Cg+ 2l1)
∫ L

0
eT (x, t − τ )e(x, t − τ )dx

−2
∫ L

0
e(0, t)(2⊗ In)Cke(x, t)dx

−2(2⊗ In)CkV β (t)−
π2

2L2

∫ L

0
ēT (x, t)(2⊗ In) ē(x, t)dx

= 2
∫ L

0
ēT (x, t)(2⊗ In)Cke(x, t)dx

−
π2

2L2

∫ L

0
ēT (x, t) (2⊗ In) ē(x, t)dx

+(2Cg+ 2l1)
∫ L

0
eT (x, t−τ )(x, t−τ )dx

+

∫ L

0
eT (x, t)

(
2 (A⊗ 01)+ (B⊗ 02)2

− 2(2⊗ In)Ck) e(x, t)dx − 2(2⊗ In)CkV β (t)

=

∫ 1

0

 e
ē
eτ

T  51 [(2⊗ In)Ck]T 0
(2⊗ In)Ck − π2

2L2 (2⊗ In) 0
0 0 2Cg+ 2l1


×

 e
ē
eτ

 dx − 2(2⊗ In)CkV β (t)

≤ −2(2⊗ In)CkV β (t) (22)

The settling time is:

t1 = t0 +
V 1−β (t0)

2(2⊗ In)Ck(1− β)
(23)

The proof is complete.

Remark 6: In [31], Yang studied the synchronization
problem of a class of nonlinear multidelay complex
spatiotemporal networks modeled by semilinear parabolic
partial differential equations. Wang X investigated the syn-
chronization problem of uncertain complex networks with
time-varying node delays and multiple time-varying coupled
delays in [49]. In the present study, we assume that all delays
in the system are the same. Given that different delays can
be handled by their maximum bounds, time-varying delays
can also be handled in this way. Although such a treatment
will increase the conservativeness of the system, the computa-
tional complexity of determining the limited synchronization
time and the amount of calculation of the system will be
greatly reduced.
Remark 7: For time-delay partial differential systems with

spatiotemporal features, Bq Yang proposed a boundary con-
troller to achieve finite-time stability in [32]. However, in the
system discussed in this study, only the transmission time
lag was included. By contrast, we study the finite-time syn-
chronization of complex network systems with time delay.
The system we adopt includes coupled time delays and the
dynamic behavior of system nodes with time delays.
Remark 8:According toTheorems 1 and 2, the constants k

and β are contained in Controllers (5) and (16), respectively.
These constants affect the settling time. Therefore, we can
choose the right k and β to obtain the required settling time.

III. NUMERICAL SIMULATION
In this section, the exponential synchronization conditions
obtained in this paper is illustrated with an example.

Consider a general complex dynamical network con-
sisting of dynamical nodes with linear couplings system
in Theorem3.

et = (21 ⊗ In) exx + (A⊗ 01) e+ f̃ (g(x, t − τ ))
+B⊗ 02e(x, t − τ )

ex |x=0 = 0, ex |x=L = Cu(t)
e(x, 0) = e0(x)
(x, t) ∈ [0,L]× [0,∞]

and consider a complex network systemwith 4 nodes, each of
which is a 4-dimensional linear systemWhere β=0.5; τ=0.1;
L=3; C = −1;l1=0.4; I = diag {1, 1, 1, 1};

01 = 02 = diag {2.8, 3.1, 1.5, 2.9} ;

A =


−0.5 0.2 0 0.3
0.2 −0.6 0.2 0.2
0 0.2 −0.2 0
0.3 0.2 0 −0.5

 ;

B =


−0.3 0.1 0 0.2
0.1 −0.4 0.2 0.1
0 0.2 −0.2 0
0.2 0.1 0 −0.3

 .
The initial conditions be e1(3, :) = 2 sin(x)+ cos(x),
e2(3, :) = exp(x + cos(x)) and e3(3, :) = 2 sin(x)− cos(x),
e4(3, :) = 5 sin(x)+ 3 cos(x), x ∈ [0, 3], respectively.
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FIGURE 1. The state of the node e1 with controller.

FIGURE 2. The state of the node e2 with controller.

FIGURE 3. The state of the node e3 with controller.

Figure 1, 2, 3, 4 is the node 1, 2, 3, 4 status curves with
controller.

As can be seen from the figure, after a period of time,
where time unit is s, the system state is synchronous, and

FIGURE 4. The state of the node e4 with controller.

the feasibility and effectiveness of the control method are
demonstrated

IV. CONCLUSIONS AND DISCUSSIONS
This study presents a problem of the finite-time synchro-
nization of complex spatiotemporal networks with diffusion
terms and proposes a method of boundary control that can
be used to achieve finite-time synchronization for complex
network systems. We provide a basis for future research
directions, such as achieving synchronization through lenient
conditions and generalizing existing methods to the synchro-
nization problems of complex networks with event-triggered
controllers. Thus, we will consider these goals in the future.
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