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ABSTRACT Adaptive navigation of scalar fields is a compelling capability in which mobile robotic systems
make real-time navigation decisions based on sensed measurements of the environment. This capability
can enable efficient identification and location of specific features of interest within the field of interest,
potentially saving time and energy while also being responsive to changing conditions. Applications can
include finding the sources and impact zones of a pollutant, establishing hazard perimeters, finding safe
zones, and safe paths of travel. This paper presents new work that experimentally verifies several adaptive
navigation control policies for moving to/along critical scalar field features with a group of mobile robots.
Specifically, we demonstrate the use of a five robot cluster of sensor-equipped mobile robots to descend
ridges within a scalar field, to ascend trenches, and to move to and hold a position at saddle points. This is
done through the use of differential measurements across the cluster’s formation baselines and control laws
that have been previously demonstrated in simulation. This paper also incorporates a new state machine
within the adaptive navigation control architecture in order to monitor the performance of the individual
control primitives and to respond to conditions such as losing track of the feature of interest. Finally, this
paper is the first in which we have experimentally demonstrated control of a five robot group of robots using
our cluster space control methodology. The experiments were conducted using a novel indoor multi-robot
testbed with the ability to establish customizable scalar fields printed in greyscale on large sheets that are
actively sensed by the robots to enable controlled experimental evaluation. Four different fields are used in
this study in order to demonstrate the new capabilities of interest.

INDEX TERMS Adaptive navigation, adaptive sampling, differential control, multi-robot formations,
formation control, cluster space control.

I. INTRODUCTION
In a traditional navigation scenario, the desired waypoints
or trajectory for the vehicle is known and prescribed. Alter-
natively, Adaptive Navigation (AN) provides the capability
to automatically adjust the route and/or destination based on
realtime information typically collected by the vehicle itself.
Obstacle avoidance is perhaps the simplest AN approach
and has been successfully demonstrated through the use
of artificial potential fields [1], fuzzy logic [2], tree-based
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approaches [3], and integrated path planning [4]. Objective-
based approaches include techniques for evading pursuers [5]
and managing building evacuation routes [6].

Another class of AN focuses on navigating to/along spe-
cific conditions of interest without prior knowledge of their
position. To date, most work of this nature has focused on
scalar fields, which are regions in which a single scalar
value of some characteristic of interest, such as temperature
or concentration level, is associated with every point in the
field. Features of interest within such fields include minima/
maxima, contours, ridges, trenches, and saddle points. Such
features are critical for a variety of applications ranging
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from environmental monitoring to scientific exploration. For
example, for a disaster response application in which the
concentration of a toxic gas is being measured, moving to the
maximum point in the field is equivalent to finding a source
of the gas leak. Contour following can be used to define the
extent of the hazardous region in order to establish a safety
perimeter. Moving down a ridge allows one to follow the
plume to its impact region, while moving up a trench allows
one to move towards the source with the minimum possible
exposure. Finally, saddle points define safe passage gateways
between multiple leak sources.

Nearly all prior work on scalar field AN has focused on
finding extreme points or moving to/along contours or level
sets. Single vehicle approaches have been explored in sim-
ulation and include using a sliding mode controller [7] as
well as a bio-inspired plume casting strategy [8] for moving
to local maxima. Gradient-based extrema-finding approaches
have been demonstrated experimentally, but the need for
multidimensional scalar data typically requires the addition
of random lateral motions or sinusoidal perturbations to a
vehicle’s path [9], [10]. Single vehicle contour/level set nav-
igation has been explored for a time-varying field using a
sliding mode controller; this has been demonstrated with
simulated fields in order to actuate both simulated and real
land rovers [11], [12].

Multirobot scalar field AN offers performance advan-
tages compared to single vehicle approaches. These include
the ability to instantaneously gather distributed information,
to avoid inefficient dithering, to tune aperture size, and to con-
veniently exploit spatial characterization techniques beyond
gradient sensing. Multirobot AN for extrema-finding and
contour/level set following has been explored by a wide range
of groups over the past 15 years. Simulation has been used
to demonstrate bio-inspired and swarm methods [13], [14],
gradient-based approaches [15], [16], Hessian-based filter-
ing [17], and even the use of an image processing technique
known as the ‘‘snake algorithm’’ [18].

Lab-based experimental verification of multirobot AN
techniques can be difficult to accomplish, and field demon-
strations of such capabilities are rare. Two significant chal-
lenges relating to this limited experimental work include the
need to have a capable multirobot system and the desire to
have access to an arbitrary scalar field for which truth data
can be determined, which isn’t changing too quickly, and
which has the array of appropriately sized features of interest.
Lab-based experimental work generally consists of table-
top installations or a floor-based range, with workspaces
typically on the order of 4 m2 to 50 m2, respectively. These
testbeds are typically specific to a single scalar quantity, are
often instrumented with robot position tracking systems, and
use projected light for continuous fields or tape/floor mats
to create binary level-set regions. Examples of such work
include gradient-based source seeking systems [19], [20] and
robot groups using a tape-following algorithm to track a level
set boundary [21], [22].

For demonstrations of multirobot AN outside of a lab
environment, we are only aware of our own work. One
of these consisted of three land rovers operating within a
1, 000 m2 outdoor test range, with a scalar field consisting of
received signal strength of a radio signal. The field was cre-
ated and sensed by low-cost wireless radio transceivers, with
the robots capable of demonstrating gradient-based extrema-
finding [23]. The other demonstration was a collection of
field deployments in which a cluster of robotic kayaks was
used in Stevens Creek Reservoir in Cupertino, CA and in
Lake Tahoe, California. These kayaks used sonar sensors to
ascend/descend bathymetric gradients and to follow bathy-
metric contours [24]. These activities covered a workspace
of more than 75, 000m2 and used a naturally occurring scalar
field.

In addition to the limited amount of experimental work in
this field, the scope of work has been limited. While there
are a variety of critical features in a scalar field, essentially
all work performed to date has focused on extreme points
and contours. Our prior work in this regard has identified
the application-oriented importance of navigating to/along
other features, including down ridges, up trenches, and to
saddle points; furthermore, we have developed primitive
control laws for all of these capabilities, have developed
a unified control framework for implementing these laws,
and have demonstrated the control architecture in simula-
tion [25]. While this work highlighted the potential of these
strategies, it relied on a number of simplifications, to include
the assumption of a perfect formation, no individual robot
dynamics, smooth scalar fields without noise, no sensor
noise, no communication loss, etc. As the end goal is to use
these capabilities in the field, the next logical step was to test
ridge, trench, and saddle point navigation in a lab setting such
that all these real world effects could be included.

In this paper, we report on what we believe is the first
experimental demonstration of these multirobot AN capabil-
ities. We also describe an extension to the control architec-
ture presented in [25] consisting of the addition of a state
machine to switch between control primitives; the intent of
this was to handle situations when the system lost track of
the feature of interest (e.g., moved off a ridge such that it
was no longer straddling the feature), allowing the system
to backtrack in order to reacquire the feature and then con-
tinue. Section II discusses the extended control architecture
used to perform these experiments. Section III discusses the
experimental testbed, a small indoor system that establishes a
scalar field in the form of large mats printed with a greyscale
representation of the field. Experimental results are discussed
in Section IV along with performance evaluation. Finally,
Section V presents conclusions and proposes future work.

II. CONTROL ARCHITECTURE
In [25] we presented a multilayered control system that uni-
fied the execution of our AN controllers, each of which was
used to navigate to/along a critical feature of interest within
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FIGURE 1. The Adaptive Navigation Layered Control Architecture: Moving from right to left, in the lowest layer (right), individual robots execute closed
loop velocity commands. The next is a formation control layer that issues robot-level velocity setpoints in order to maintain a specified cluster geometry
and to drive the cluster as commanded. An adaptive navigation layer provides cluster geometric setpoints and drive commands based on scalar field
measurements and the selected navigation mode. Finally, there is a state controller that manages the transitions between different navigation modes
based upon the parameters of the current mission.

a scalar field. This allowed a multirobot cluster to move
down/up a ridge/trench assuming that the cluster was already
positioned on such a feature; it also allowed a cluster to hold
position at a saddle point if such a feature was found at the end
of a ridge or trench. This multilayered control architecture is
shown in Fig. 1 with an additional top-level state machine that
allows switching among control primitives. This allows more
general navigation through a field without the constraint of
our prior work requiring the cluster to be already positioned
on the feature of interest. Given this, the extended control
architecture enables the ability to sense, compute, and move
within a scalar field, switching primitives via a state-based
strategy to achieve the desired goal.

To date, the control primitives have been designed using
a minimal number of robots, instantaneous information,
and reactive bang-bang control laws. Without question, per-
formance and robustness can be improved with additional
robots, temporal filtering, and more sophisticated controllers.
The simple approach used here, however, serves as an imple-
mented baseline which to our knowledge is the first exper-
imental demonstration of ridge/trench descent/ascent and
saddle point positioning.

The control architecture is implemented in four layers,
as seen in Fig. 1. The robots themselves implement closed
loop velocity control based on velocity commands issued by
the cluster control layer. The cluster control layer issues those
commands in order to maintain a prescribed cluster formation
(shape and size, using robot position feedback) and to move
the aggregate formation as specified by the AN layer. The
AN layer implements the control strategy appropriate to the
selected ANmaneuver, using environmental sensor and robot
position data to compute the local scalar field characteristics
required for the control law. Finally, the state machine selects
the appropriate maneuver to be executed based on the overall
navigation objective.

A. ROBOT CONTROL LAYER
In general, the robot controller first converts specified robot-
level translational and rotational velocity commands to

wheel-specific rotational speed commands via the robot’s
vehicle-to-wheel inverse kinematics function. Wheel speed is
implemented via a closed loop PID function that uses wheel
encoder information to estimate actual speed. Specific to the
experiments performed for this paper, robot layer control is
computed on-board the robot, and a three wheeled omnidrive
robot is used.

B. CLUSTER SPACE CONTROL LAYER
Formation control is implemented via the cluster space con-
trol methodology, an operational space control approach in
which the multirobot formation is represented as a virtual-
ized full degree-of-freedom articulatingmechanism [26]. The
controller accepts position or velocity specifications for clus-
ter level parameters, which are formally defined as the cluster
position, the cluster shape, and the relative orientation of
robots with respect to the cluster. These cluster level parame-
ters, defined by EC , and their derivatives constitute the cluster
state space for the system. Kinematic transforms for n robots
withm degrees of freedom, provided in Equations (1) and (2),
relate these variables to conventional robot-specific position
variables, defined by ER, and their derivatives. For a planar
cluster, ER contains xi, yi, and θi for i = 1 : n robots.

EC =


c1
c2
...

cmn

 = KIN (ER) =


g1 (r1, r2, · · · , rmn)
g2 (r1, r2, · · · , rmn)
...

gmn (r1, r2, . . . , rmn)

 (1)

ĖC = J (ER) ĖR (2)

Robot position variables are transformed to cluster variables
via forward kinematic relationships in order to generate
cluster space errors. Compensation commands are computed
in the cluster space, which leads to smooth, well-behaved
motions of the formation. For the resolved rate controller
used in these experiments, the cluster velocity commands
are transformed to robot-specific velocity set-points via the
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inverse Jacobian function, J−1(ER);1 this function depends
on the pose of the system and must therefore be updated
continuously.

Lyapunov stability criteria for this control technique given
arbitrary goal trajectories, such as those issued by the adaptive
navigation layer, are derived in [28]. Because a state machine
switches between these individually stable controllers, over-
all stability is still a challenge since poor switching choices
can drive a system unstable even if individual controllers are
stable. This can be addressed via a ‘‘slow switching’’ strategy
in which the system is allowed to settle prior to switching to a
different control primitive. Less conservative approaches are
often possible; for example, we have proven switched stabil-
ity in cases where we have moved robots between multiple
sub-clusters of a system under the condition that the cluster
space commanded rate is less than or equal to the current rate.

Furthermore, obstacle avoidance at both the robot and
cluster level can be implemented, although such capability
was not used for the experiments presented here. Inter-robot
collisions are prevented by the formation controller, barring
initial conditions with extremely poor formations. The for-
mation would be singular if any two robots were collocated,
however in practice this cannot physically occur, and the
tracking system used for the presented experiments generates
positioning errors smaller than the size of the robot chassis,
so it is unlikely to occur as a result of sensor error as well.

FIGURE 2. Five Robot Cluster Pose Definition: Cluster space pose
variables for a five robot cluster with the cluster frame assigned to the
rear-center robot and the position of the other robots defined serially
within two different chains of the virtual mechanism.

The ridge/trench descent/ascent and saddle point position-
ing capabilities demonstrated in this article use a multidi-
rectional differential control strategy requiring a five robot
cluster, as shown in Fig. 2. As a planar, five robot system,

1Full dynamic control is possible through the use of a controller that
computes force/torque compensations, in which case a Jacobian transpose
transform is used to convert these compensations to robot-specific force and
torque inputs. For details, see [27]

it has 15 degrees of freedom, all of which are con-
trolled during AN operations. The cluster space pose vec-
tor, EC , includes the position and orientation of the cluster
frame (xc, yc, θc), seven distance and angle shape variables,
(d2, d3, d4, d5, β3, β4, β5), and five relative robot orientation
variables, φi, for i = 1-5. For the AN experiments performed,
desired cluster parameters were held constant, with φi = 0,
βi = 0, and constant values for the di parameters were
selected based upon the size of the feature being navigated.

Our previous work defined the cluster variables, however
the full mathematical framework was not required as the
simulation assumed a perfect formation at all times. This
is the first time this particular cluster formation has been
implemented in full, so this work included the derivation
of the applicable forward kinematics and inverse Jacobian.
The forward position kinematic functions for this cluster are
provided in Appendix A.

C. DIFFERENTIAL-BASED CONTROLLERS
The Adaptive Navigation layer issues aggregate cluster trans-
lational and velocity commands in accordance with the spe-
cific control primitive associated with the AN function of
interest. In general, these functions include extrema finding,
contour following, ridge descent / trench ascent, and saddle
point positioning. The control primitives themselves compute
aggregate cluster motion commands based on estimates of
local field characteristics such as the gradient or differentials
across the span of the cluster. These estimates are computed
in realtime based on measurements of the scalar field made
by each robot.

FIGURE 3. Differential Drive Compensation Signals for Ridge Following:
The cluster is straddling the ridge but has both a lateral and rotational
offset. Longitudinal scalar differences indicate the desired direction of
travel along the ridge. Additionally, lateral scalar differentials can be used
in a differential drive strategy to align the cluster laterally and
rotationally [25].

As detailed in [25], the ridge/trench descent/ascent and
saddle point MAN control primitives use differential mea-
surements in order for the cluster to properly straddle, align
with, and move with respect to the desired feature. Four
robots are required for this strategy, meaning that the sensor
data from these robots are used to generate the necessary
differential measurements; in particular, these are robots 2
through 5 in Fig. 3.
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The differential sensor measurements computed by the
sensors on robot pairs 2-4 and 3-5 are (z2− z4) and (z3− z5),
respectively, and are termed the ‘‘longitudinal’’ differentials.
Conversely, sensors on robot pairs 2-3 and 4-5 are used
to compute (z2 − z3) and (z4 − z5), termed the ‘‘lateral’’
differentials. Qualitatively, non-zero longitudinal differen-
tials designate the desired direction of travel (e.g., down
a ridge indicated by positive longitudinal differentials, and
up a trench indicated by negative longitudinal differentials).
Lateral differentials are used to adjust lateral displacement
with respect to the ridge (the sum of the differentials indicates
a net bias to one side or the other of the feature) as well as to
rotationally align the cluster with the local direction of the
feature (the difference of the differentials indicates angular
misalignment).

Given this qualitative strategy, there is ambiguity that must
be resolved. For ridge/trench following, instantaneous anal-
ysis of the sensor data from the four robots alone does not
guarantee that the robots are on the feature; an additional
robot, robot 1 in Fig. 3, is used to ensure that the ridge/trench
is being straddled. The condition for this is that the sensor
reading for robot 1 should be greater than both robots 2 and 3
for ridge, and vice versa for a trench.2

Given these strategic considerations, the AN control laws
are given by Equations (3-5), where vx , vy, andωz are constant
velocity setpoints for each velocity component, and s sets
the direction of travel based upon the state of the system.
In all experiments presented in this work, vx = 0.1 m/s,
vy = 0.1 m/s, and ωz = 0.3 rad/s. d = 1 for ridge descent,
d = −1 for trench ascent, and s = 1 when the cluster is prop-
erly straddling the feature. As per the qualitative discussion
of the control strategy, Equation (3) moves the cluster down
the ridge or up the trench, and Equations (4) and (5) are used
to laterally place and rotationally align the cluster with the
feature. By changing the value of s to 0 or −1, longitudinal
travel of the cluster can be halted or reversed; the rationale
for this is discussed in the next subsection.

(ẋc)des = s× d × vx {sgn [(z2 − z4)+ (z3 − z5)]} (3)

(ẏc)des = d × vy {sgn [(z2 − z3)+ (z4 − z5)]} (4)(
θ̇c
)
des = d × ωz {sgn [(z4 − z5)− (z2 − z3)]} (5)

D. STATE MACHINE-BASED CONTROLLER SWITCHING
The fourth layer of our unified control architecture is a new
element of our work; a finite state machine switches between
feature-specific control primitives based on task performance
and mission objectives. In [29], it was used to implement a
sequence of primitive maneuvers in order to achieve objec-
tives such as methodically exploring local extrema in a region
of interest and to navigate between points while maintaining a
minimum service level (such as wireless communication link
signal strength).

2Satisfying this criteria guarantees proper straddling of the feature for
idealized features. Margins can be incorporated to account for noise. Inter-
estingly, we note that failure to satisfy this criteria does not guarantee that
the cluster is not straddling the feature.

For the experiments presented here, we use this control
law/mode switching capability to address feature ambiguity
in ridge/trench following, thereby improving robustness of
this objective. The case that the cluster may no longer be
straddling the ridge is indicated when either of the criterion
below is violated:

Ridge Criteria: (z1 > z2) AND (z1 > z3) (6)

Trench Criteria: (z1 < z2) AND (z1 < z3) (7)

If violated, travel down/up the ridge/trench should be ceased.
Strategically, longitudinal travel can be halted or even
reversed by changing the controller state, and therefore the
value of the parameter s to 0 or −1, respectively. By halting
or reversing longitudinal travel, the lateral and alignment
controllers can continue to move the cluster in an attempt to
unambiguously re-acquire the ridge/trench. For our experi-
ments, we used s = −1 in order for the cluster to travel up
the scalar surface until proper feature acquisition is achieved.
Given this strategic approach, the Next State Computation

block in Fig. 1 assigns the value of 1 or −1 to the s variable
in Equation (3) based on realtime sensor data and the appro-
priate Criteria from Equations (6) or (7); if the criteria is true,
s = 1, and if false, s = −1. This value is propagated almost
immediately given that the State Update process occurs at the
servo rate common to the State Control, Adaptive Navigation,
and Cluster Control layers; for the experiments described in
Section IV, this rate was approximately 10 Hz.

III. DESCRIPTION OF TESTBED
Prior work implemented the new MAN controllers via sim-
ulation, however these simulations were limited in scope,
lacking modeling of individual robot dynamics, and missing
real world effects like sensor noise, communication drop outs,
and noise in the scalar field itself. As our ultimate goal is
to incorporate them into our field-grade multirobot systems
in order to perform real applications, the next logical step
was to implement and verify the controllers in an exper-
imental setting. There are a variety of groups conducting
multirobot research in various forms, many of which have
developed their own testbeds. Some examples include the
Kilobot testbed, designed to allow for a very large swarms
of affordable robots [30]; the Robotarium, a swarm testbed
designed to allow researchers to operate it remotely [31];
and IRIS, a multirobot testbed designed to facilitate internet
of things research, complete with sophisticated communica-
tions equipment [32].
For this step in our multirobot adaptive navigation

research, we used a simplified, small-scale indoor multirobot
testbed to evaluate and verify the functionality of the control
techniques. This testbed uses small, custom-built omnidrive
robots, one of which is shown in Fig. 4; twelve of these
robots are available, although only five were required to
demonstrate the capabilities presented in this article. Each
robot has two levels of computation, a linux based processor
for managing high level tasks like communication with a

62954 VOLUME 7, 2019



R. T. McDonald et al.: Experimental Implementation and Verification of Scalar Field

FIGURE 4. One of the five robots used to conduct the experiments.

stationary workstation, and a lower level microcontroller for
handling sensing and encoder feedback.

A distinguishing element of this testbed is the manner
in which it provides measurable scalar fields that can be
tailored in size and shape in order to demonstrate capabilities
of interest. This is done by having the robots drive over a
surface of printed sheets with greyscale patterns representing
the scalar value of interest. This enables the creation of fields
with all of the critical types of scalar field features and pro-
vides knowledge of the ‘‘truth’’ for the field, which is critical
for experimental verification. Each robot has a reflectivity
sensor in its bottom and measures the greyscale scalar field
value at its location. There is some noise introduced by the
quality of the print, however, it does not significantly impact
the experimental results as long as the robot cluster is sized
appropriately, and the features incorporate a large range of
greyscale values.

The robots operate in a field approximately 5 m by 5 m
in size, and are tracked by an Optitrack, camera-based, six
degree of freedom, rigid body localization system. The track-
ing performance of the system was characterized by dis-
tributing five robots throughout the workspace and recording
position data over time. The region of worst performance had
a standard deviation of 7.26 mm and 3.66 mm in the x and
y directions respectively. The regions with the best tracking
quality produced values of 0.058 mm and 0.069 mm.
The robots accept robot-level translation and rotation

velocity commands and implement these via on-board closed
loop velocity control. The robots communicate via WiFi with
a workstation that accepts the sensed scalar field values from
each robot as well as position data for each robot from the
Optitrack system, and acts as a centralized controller. The
Matlab/Simulink-based controller computes compensation
commands at a 10 Hz servo rate and issues velocity com-
mands to each robot. Poor network performance was another

source of error throughout these tests, as packet loss was
frequently high enough to impact the quality of the formation
control, however it was still good enough to accomplish the
navigation objectives.

The design of this testbed is detailed in [33]; the description
in that article reviews the mechanical and embedded system
design of the robot, characterizes the reflectivity sensor as a
mechanism for measuring arbitrarily printed greyscale scalar
fields, describes the implementation of the control software
and the internet-based data distribution system, and presents
an integrated virtual reality display to visualize scalar fields
as they are explored.

IV. EXPERIMENTAL RESULTS
Multiple experiments were conducted for several different
ridge/trench configurations. Shapes used included a linear
trench, a parabolic trench, a wide cubic ridge, and a signif-
icantly narrower cubic ridge terminating in a saddle point.
Several trials with different initial conditions were tested for
each experiment, including configurations where the robots
began on the feature, off the feature, aligned and misaligned
with the ultimate direction of travel, as well as with different
initial cluster poses.

FIGURE 5. Experimental data for five robots navigating up a trench with a
linear path, superimposed upon a rendering of the grey scale scalar field.

A. LINEAR TRENCH
The first scalar field is a trench that follows a linear route
upward. According to our sensor convention, darker portions
of the printout constitute a lower reading, and lighter portions
represent higher values; therefore, the robot cluster starts near
the darkest end of the trench, and travels up to the lighter end.
This behavior is shown in Fig. 5, which plots the location
of all five robots in the cluster as it ascends the trench. The
absolute value of the tracking error for this test is presented
in Fig. 6. Excluding the time spent aligning with the feature,
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FIGURE 6. Time history for the absolute value of the tracking error for the
trial depicted in Fig. 5.

FIGURE 7. Controller state as the robots travel the path in Fig. 5.

the RMS tracking error of this trial was 82.14mm. The initial
position of the cluster was offset enough to violate the criteria
in Equation 7, so rather than immediately ascending the
trench, the cluster first aligns with the feature, then continues
upward. This is indicated by Fig. 7 which contains the value
of s over time, and shows that this initial correction lasts for
about four seconds.

As an indication of formation control quality during this
maneuver, Fig. 8 shows the time history for each of the intra-
robot separation distances, di, which were all commanded to
a setpoint of 0.7 m. Table 1 summarizes the performance of
these, and the formation angle parameters, βi, by providing
the RMS error for each parameter. Note that all of these errors
are small, indicating the formation performance was more
than adequate for these experiments.

Fig. 9 displays the paths of the clusters3 for five trials on
the linear trench, each with different initial conditions, with
the cluster starting off the feature for several of these. As seen
from the figures the clusters of robots consistently move to
(if necessary) and then ascend the trench. The RMS error was
calculated for each run using the tracking error time history
once the controller first enters the on-ridge condition (s = 1).
This tracking error was computed by determining the distance
between robot 1 and the principle line of the trench. The RMS
error values for each trial are listed in Table 2. Each of these

3As specified in Fig. 2, the cluster’s position is defined to be at origin of
the cluster frame, which for this definition is at the location of Robot 1.

FIGURE 8. Time history of the di values for the test presented in Fig. 5.

TABLE 1. Cluster parameter error for the straight trench test presented
in Fig. 5.

FIGURE 9. Experimental data for the cluster center from multiple runs as
robots navigate up a trench with a linear path, superimposed upon a
rendering of the grey scale scalar field. The blue path is the same run
depicted in Fig. 5.

is less than an order of magnitude lower than the total width
of the cluster (d1 + d2 = 1.4 m) as it straddles the ridge.

B. PARABOLIC TRENCH
The next set of tests required the robot cluster to track a trench
with a parabolic shape. This demonstrates an additional chal-
lenge for the controller, as it must follow a changing spatial
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TABLE 2. The RMS trenchline tracking error for all five trials plotted
in Fig. 9.

FIGURE 10. Experimental data for five robots navigating up a trench with
a parabolic path, superimposed upon a rendering of the grey scale scalar
field.

TABLE 3. Cluster parameter error for the parabolic trench test presented
in Fig. 10.

input. Fig. 10 depicts a single test run including the positions
of each individual robot in the cluster as they travel, and
Table 3 displays the RMS error of the cluster parameter
set points throughout this test. Fig. 11 shows the paths of
the cluster for several tests with varying initial conditions.
In all cases the performance is better when the trenchline is
straighter, which is expected since this condition is easier to
track.

The RMS tracking error values for this set of experiments
are displayed in Table 4, which are again small when com-
pared to the cluster width of 2di = 1.4 m. This indicates
that the tracking was not quite as good as the linear trench,

FIGURE 11. Experimental data for the cluster center from multiple runs
as robots navigate up a trench with a parabolic path, superimposed upon
a rendering of the grey scale scalar field.

TABLE 4. The RMS trenchline tracking error for all five trials plotted
in Fig. 11.

likely due to the ramp input to the controller resulting from the
curved path. Nevertheless, this error is still much smaller than
the width of the cluster, indicating that the robots successfully
followed the feature.

C. WIDE CUBIC RIDGE
The third set of tests were run on a ridge with a wide profile
and a principle path with a cubic shape. This required a larger
cluster size (di = 0.8 m) to ensure it could track the feature
despite noise in the sensor data. Fig. 12 depicts the paths
of all five robots for a single trial. The formation keeping
performance for this trial can be found in Table 5. The paths
of the cluster for five different trials are presented in Fig. 13.
It can be discerned from Figs. 12 and 13 that the highest
tracking error occurs near the inflection point at the midpoint
of the feature caused by the cubic shape.

The RMS tracking error values after reaching the ridgeline
for these runs are listed in Table 6. Because both this feature
and the associated cluster of robots were wider than the
others, higher tracking errors can be tolerated without losing
the crest of the ridge. Once again, the error was much lower
than the width of the cluster, indicating that the ridgeline was
followed successfully.
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FIGURE 12. Experimental data for five robots navigating down a ridge
with a cubic path, superimposed upon a rendering of the grey scale scalar
field.

TABLE 5. Cluster parameter error for the wide ridge test presented
in Fig. 12.

D. NARROW CUBIC RIDGE WITH SADDLE POINT
The final set of tests was conducted on another ridge with
a cubic shape, however this one is much narrower, and ter-
minates in a saddle point. The cluster size used for these tests
was smaller, with di = 0.5m, so that it could track the smaller
feature more closely; see Table 7 for formation performance.
The paths of the robots are presented in Figs. 14 and 15. The
average ridge tracking RMS error was 70.85 mm, and this
smaller value is expected given the size of the cluster.

In all cases the robot cluster settles on the saddle point
of the scalar field. There is some oscillation about the point
due to the discrete nature of the velocity controller. The
time responses in Fig. 16 provide the scalar differentials in
the cluster x̂ direction. As we would expect, these values
are mostly positive until we reach the saddle point, which
occurs at around 70 s into the trial. While there is substantial
noise from the sensors, the results do show that after reach-
ing the saddle region, the differentials oscillate about zero,
as we would expect given the robot behavior displayed in
Figs. 14 and 15.

FIGURE 13. Experimental data for the cluster center from multiple runs
as the robots navigate down a ridge with a cubic path, superimposed
upon a rendering of the grey scale scalar field.

TABLE 6. The RMS ridgeline tracking error for all five trials plotted
in Fig. 13.

TABLE 7. Cluster parameter error for the test presented in Fig. 14 with a
cubic ridge terminating in a saddle point.

TABLE 8. The RMS ridgeline tracking error for all five trials plotted
in Fig. 15.

E. SUMMARY OF PERFORMANCE AND ERROR SOURCES
In general, tracking errors arose from several sources.
To begin, the trajectories being followed varied, requiring
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FIGURE 14. Experimental data for five robots navigating down a ridge
with a cubic path until they come to rest at a saddle point, superimposed
upon a rendering of the grey scale scalar field.

FIGURE 15. Experimental data for the cluster center from multiple runs
as the robots navigate down a ridge with a cubic path until they come to
rest at a saddle point, superimposed upon a rendering of the grey scale
scalar field. In each case, the robot cluster oscillates around the location
of the saddle point.

the controllers to track the equivalent of a ramp input.
In addition, the tight spacing of the cluster led to amplified
cluster space errors for small errors in robot position. Lim-
itations on print quality led to banding on the scalar field
printout that injected spatial noise into the scalar field on the
order of tenths of a scalar unit. Furthermore, sensor noise
included scalar sensor errors on the order of thousandths of a
scalar unit and robot tracking errors with standard deviation
of errors in range that were no more than 7.26 mm. Finally,
although the control loop executed at 10 Hz, occasional

FIGURE 16. Time histories of the scalar differentials between
robots 2 and 4 (top), and robots 3 and 5 (bottom), for the run presented
in Fig. 14. Includes both the unfiltered values used in the control
computation, and the result after filtering with the response with a
50 sample moving average.

delays and packet dropouts resulted in servo loop latencies
of up to 1 sec due to traffic on the local network. Ongoing
work with the testbed includes further characterization of
the sensors, better printouts with less banding, and improved
communication. These improvements would allow us to set
faster robot velocities, tighter formations, and track more
complicated features.

V. CONCLUSION
Multirobot Adaptive Navigation is a powerful technique for
navigating and exploring environments, and has many poten-
tial applications. To our knowledge, we have presented here
the first experimental verification of adaptively descending
scalar ridges, climbing trenches, and holding on saddle points
using a multirobot formation; this was a large step forward
from our past work, as it required full development of the
five robot formation, and introduced many real-world effects.
These strategies are powerful capabilities for a number of
applications, including navigating to areas impacted by pol-
lutants, making minimum exposure approaches, et cetera.
We have also extended our unified multirobot adaptive navi-
gation control architecture with a state machine technique for
switching between different adaptive navigation controllers
based upon sensed local field characteristics and the desired
navigation tasks. Finally, we have described our experimental
testbed, analyzed the results of our experiments, and charac-
terized the resulting performance.

In ongoing work we are using adaptive sizing of the clus-
ter based on the nature of the field, state-based switching
between navigation strategies to support more complex mis-
sions, and the ability to navigate three dimensional scalar
fields. We will also be pursuing field demonstrations of these
techniques in order to validate their capability in real world
applications.
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APPENDIX A
FORWARD CLUSTER KINEMATICS
The forward kinematics for the cluster formation presented
in this work are listed in this section. Note that while the
fractions inside the inverse tangent functions could mathe-
matically go to infinity, this does not occur in practice because
it would require multiple robots to be in exactly the same
location. Additionally, the noise in the tracking system is
smaller than the size of the robot chassis, so this condition did
not, and could not occur during the experiments. Through-
out the experiments, these values were computed using the
MATLAB atan2() function to provide additional robustness,
and account for Cartesian quadrants.

xc = x1 (8)

yc = y1 (9)

θc = tan−1
(
x1 − x2
y2 − y1

)
(10)

φ1 = θ1 − θc (11)

d2 =
√
(x2 − x1)2 + (y2 − y1)2 (12)

φ2 = θ2 − θc (13)

d3 =
√
(x3 − x1)2 + (y3 − y1)2 (14)

φ3 = θ3 − θc (15)

β3 = tan−1
(
x3 − x1
y1 − y3

)
− θc (16)

d4 =
√
(x4 − x2)2 + (y4 − y2)2 (17)

φ4 = θ4 − θc (18)

β4 = tan−1
(
y4 − y2
x4 − x2

)
− θc (19)

d5 =
√
(x5 − x3)2 + (y5 − y3)2 (20)

φ5 = θ5 − θc (21)

β5 = tan−1
(
y5 − y3
x5 − x3

)
− θc (22)

APPENDIX B
SCALAR FIELD EQUATIONS
The general equation for the scalar fields used is:

z =
h(xsy+ 1+ yn1)(xsx + 1)

(d/dhv)2)+ 1
where h is the height of the scalar field at the origin, ys is
the slope in the y direction, yn1 is the nonlinearity in the y
direction, xs is the slope in the x direction, d is the minimum
distance from a point (x, y) to the centerline of the feature,
and dhv is half the value distance for the feature (the distance
from the feature’s centerline which cuts the feature’s height
in half).

All scalar fields were created in Matlab with a domain
and range of ±2. The z values were used to create greyscale
ranging from 0 (black) to 1 (white). In order to reduce sensor
saturation, the minimum and maximum grey values were
sometimes limited, as seen in the table below.Also in the table
is the resolution used for the grascale colormap.

TABLE 9. The parameters for the scalar field equations for each
experiment.

TABLE 10. Greyscale ranges for the scalar fields.

During the printing process the size of the fields were
increased to approximately ±2.5 m.
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