
Received March 12, 2019, accepted April 21, 2019, date of publication May 15, 2019, date of current version June 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2916996

Latent: A Flexible Data Collection Tool to
Research Human Behavior in the
Context of Web Navigation
CATIA CEPEDA 1,2, RICARDO TONET1, DANIEL NORONHA OSORIO 1,
HUGO P. SILVA3,4,5, (Senior Member, IEEE), EDOUARD BATTEGAY2,6,
MARCUS CHEETHAM2,6, AND HUGO GAMBOA1, (Senior Member, IEEE)
1LIBPhys (Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa,
2829-516 Caparica, Portugal
2Department of Internal Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
3PLUX - Wireless Biosignals, S.A., 1050-059 Lisbon, Portugal
4IT - Instituto de Telecomunicações, 1049-001 Lisbon, Portugal
5EST/IPS - Escola Superior de Tecnologia do Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
6University Research Priority Program ‘‘Dynamics of Healthy Aging’’, University of Zurich, 8006 Zurich, Switzerland

Corresponding author: Catia Cepeda (c.cepeda@campus.fct.unl.pt)

This research was funded by the Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland and by the Portuguese
Fundação para a Ciência e Tecnologia (FCT) grant I&D 2015-2020 ‘‘iNOVA4Health - Programme in Translacional Medicine’’
(UID/Multi/04462/2013).

ABSTRACT Internet usage has grown dramatically since the early years of its inception. The rich field of
data provided by internet users in interaction with digital media content can provide insight into web-based
navigation behavior and underlying psychological dimensions. Human–computer interaction in the web is
an underutilized source of data for understanding human online behavior. While researchers and usability
testing services do use these sources to analyze human behavior and user experience, access to the diverse
range of other potentially useful data available during web-based interaction for research is limited. In this
paper, we propose a novel tool in the form of a web browser extension, referred to as Latent, which can be
used to simultaneously capture information from different sources while users interact with digital content.
The data acquisition capabilities of Latent makes it suitable for various research purposes, ranging from
studies of usability to decision-making and personality. A particular advantage of Latent is that the method
and control of data acquisition is completely transparent to the user. We present the architecture of the web
browser extension, describe the data that can be acquired, and report on the residual impact of the tool on
the user’s computer processing resources.

INDEX TERMS Browser extension, data acquisition, Human–computer interaction, web search.

I. INTRODUCTION
Since Sir Tim Berners-Lee’s invention of the World Wide
Web in 1989, internet usage has increased from a few thou-
sand users to more than four billion [1]. The number of
searches per day has reached 2 trillion in Google alone [2],
the content has become more complex, and websites and
applications have become more sophisticated. Today, it is
normal for companies, products and services to have a digital
website or a webstore presence and the Internet provides an
essential platform for social gathering and sharing of content
and experiences.

The associate editor coordinating the review of this manuscript and
approving it for publication was You Yang.

The surge of e-commerce platforms, social media, web-
sites and online services has been accompanied by extensive
efforts to enhance user-friendly experiences, retain customers
and users, inform customization, and conduct targeted mar-
keting. Several tools and services allow online website track-
ing in order to follow users’ behaviour, preferences and
habits and analyse user interactions with websites and stores.
Generally, these tools collect information on traffic data, most
visited pages, user time per page, activity heat maps and other
user-relevant data. This is done using a script embedded in
the webpage content that sends data to the web service’s
server. The website owner then accesses a dashboard to view
user interaction statistics. For research purposes, one possible

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

77659

https://orcid.org/0000-0002-2998-976X
https://orcid.org/0000-0001-7375-3917

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

drawback with existing approaches is that they only provide
a limited set of functionalities, restricted to a limited number
of user interaction events, such as the number of hovers
or clicks in a specific area of interest. Due to the use of
specific scripts for each website, online browsing tracking is
limited to supported websites, sometimes without the user’s
knowledge. Furthermore, it is often not possible to evaluate
user interactions during sessions in which the web behaviour
moves across several websites.

Some research has analysed human behaviour based on
web browsing data [3]. Typically, previous work is based
on features such as the duration of the visit or clickstream
to model the consumer search [4], or researchers compare
behaviours within and across websites [5]. Some researchers
take a more complex approach to evaluate users’ browsing
behaviour, such as the application of text classification [6] or
an algorithm to calculate the weight of a particular web page
based on related actions [7]. Several scientific studies have
focussed on the extraction of personality traits from keyboard
and mouse behaviour [8]–[11], while others have detected
and described repeated mouse movement patterns [12]. The
necessary raw data for these kinds of analyses are not nor-
mally available on most tracking tools and services, which
depending on the goals, are more dedicated to analysis of
e-metric values or specific behaviours. Opportunities for
research on users and human browsing behaviour are often
hindered by the lack of flexibility of existing tools that do
not therefore enable the researcher to tap into and acquire the
relevant data.

This paper presents a new data collection tool to monitor
web browsing behaviour, referred to as Latent. We focus in
the present paper on the tool’s flexibility and its impact on
system performance. Latent consists of a web browser exten-
sion that is able to monitor and record all browsing behaviour.
The tool does not process the data and data analysis resides
with the user, thus allowing for a high degree of flexibility.

Taking into consideration that sensitive data are present
in many web search activities, features are incorporated into
our tool to safeguard privacy and security. For example,
the extension provides the user with themeans to control what
parameters are recorded, allowing greater transparency. This
tool has a wide range of potential applications, such as stud-
ies of user interfaces, website-specific navigation behaviour,
decision-making processes or personality traits.

In the following sections, we present, firstly, related work
about web browsing data acquisition tools. Second, we intro-
duce the proposed tool in detail, focusing on the architecture
data that can be acquired. Third, a validation is performed by
studying the impact of the system on the computer resources.
Finally, we summarize the possible information that can
be extracted with the tool and present possible use case
scenarios.

II. RELATED WORK
The interaction of the user during regular computer use
can be recorded by programs like ViewletBuilder [13] from

Qarbon, Camtasia from TechSmith, and CamCorder [14]
from Microsoft Office. These systems record a video that
could be edited in the end.

A wide variety of tools were developed to improve user
experience. Web developers and web designers use these
tools to test their websites and evaluate them according
to the reports and visualization tools usually produced.
Most of these software include the acquisition of mouse
movement tracking and clicks, and record the session
to further replay [15]–[18]. Some tools include specific
reports, related to psychological analysis. CrazyEgg [15]
and MouseFlow [19], for example, relate time with attention,
while ClickTale [20] evaluates optimal mindset or mindstate
changes. Although several tools already exist to analyse user
behaviour, these are paid services used for limited purposes.

Some extensions can also be installed to monitor user
activity on the web. HYFY Recorder [21] is an extension that
records a video with the screen, face and voice. Remouse [22]
is an extension capable of replaying the mouse movements,
but without returning the original values.

Gamboa [23] developed a client-server application for web
pages monitoring called WIDAM. This system has a client
application that sends a message to a server for each input of
the mouse or keyboard event. The message includes informa-
tion about the event, the mouse position, the DOM-Object
identification and time. In contrast with previous services
described, this has the advantage of recording raw mouse
movements data easily used by others in different studies.

A detailed comparison between the existing tools and
Latent is presented in Table 1.

III. OVERVIEW OF LATENT
Latent is a data acquisition platform which gathers web
browser interaction data. The architecture consists of three
layers: web browser extension, web server and database
(Fig. 1).

FIGURE 1. Latent platform architecture. The browser extension
communicates with the web server via web sockets, which then saves the
data to a database.

The main component of the platform is the web browser
extension, which handles all the tasks related to data acqui-
sition. The current version consists of a Google Chrome
browser extension, although the concept works for different
browsers.

The web server layer consists of a Python script that uses
Tornado as the web server library [24]. Lastly, the database
layer is provided by aNoSQLMongoDB database. These two
layers can be replaced by custom developed layers according
to the researchers’ needs. The communication between a

77660 VOLUME 7, 2019

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

TABLE 1. Comparison table of related work.

browser extension and the web server is made via secure
WebSockets [25].

A. WEB BROWSER EXTENSION
The web browser extension layer is organized into three
components that communicate via amessaging system. These
components, which depend on the Google Chrome exten-
sion architecture, are the background, the foreground and the
pop-up (Fig. 2).

FIGURE 2. Latent web browser extension components. The components
communicate via a messaging system. The pop-up exerts control on the
background and foreground components. The background is responsible
for acquiring media data, and the foreground for acquiring browser
interaction data.

The background is always running and is responsible for
the extension main logic. It has access to all browser exten-
sion APIs. It is responsible for managing the extension state,

FIGURE 3. Latent web browser extension acquisition control UI. On top,
from left to right, the buttons are: Open options page; turn on/off the
acquisition preview; open the acquisition results page; ‘‘about’’
information. The bottom button is to start/stop the acquisitions.

to acquire media devices dependent data, and also to access
geolocation data. The foreground runs within each browser
window tab and is responsible for acquiring navigation spe-
cific data. The pop-up consists on the user interface (UI) for
acquisition control (Fig. 3). The extension also has an options
page to configure the acquisition methods and media devices
used (Fig. 4).

B. DATA ACQUISITION
The goal of Latent is to be as flexible as possible, allowing
the highest number of possible use cases to be derived from
the data collected. For that reason, we chose to enable the
collection of all the available data we could collect from
a web browser interaction experience. The Latent exten-
sion enables the collection of the following data: mouse
interaction; keyboard interaction; geolocation; browser tab
screenshots; audio from microphone; video camera snap-
shots; Document Object Model (DOM); and browser and

VOLUME 7, 2019 77661

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

FIGURE 4. Latent web browser extension options page UI. Each icon
represents an acquisition data type. When selected for acquisition they
are blue, and when not selected they are grey. The Audio, Snapshots and
Screenshots have extra options symbolized by the downward arrows.

FIGURE 5. Latent web browser extension acquisition data types. Each
data type can be configured for acquisition and will be sent from the web
browser to the server over the Internet.

tab settings. All these sources can be configured, except
browser and tab settings. The user has the flexibility to choose
what to collect in any acquisition session (Fig. 5).

1) MOUSE INTERACTION
The mouse is the main computer peripheral used to interact
with the web browser. For that reason, it can provide most of
the relevant data from user browsing behaviour. The exten-
sion collects the mouse position on the browser window;
the buttons clicked (left and right); and scroll behaviour
associated with the mouse wheel. These data are collected
within the context of five mouse events: mousemove, click,
contextmenu, wheel and scroll. The mousemove event is
triggered whenever the mouse moves, as the name indicates.
Whenever any button is clicked the click event is triggered.
The contextmenu event is triggered, when the user clicks the

right mouse button (depending on the mouse configuration),
or when pressing the context menu key on the keyboard. The
wheel event is associated with the movement of the mouse
wheel. The scroll event is not directly associated with the
mouse. It is triggered when the page is scrolled, vertically or
horizontally, by mouse or keyboard.

The mouse movement gives us an idea of the places the
user moved through. It is known that there is some relation
between the mouse pointer position and eye gaze [26]–[28].
Although this alignment may change under different circum-
stances, they are still generally related. This supports the
choice of using mouse movement as an indicator of user
focus. During the mouse movement the HTML hovered ele-
ment XPath [29] is also collected (see Table 2). The XPath is
only valid when the mouse hovers over a valid DOM element.
On the case of Flash websites, it is not possible to gather
this information since a Flash website is basically a kind
of animation video, so there is no available DOM tree that
represents most of the visible elements.

Data is collected via Javascript addEventListener method
calls applied to the document object. Each call is attached to
a specific event associated with the type of mouse interaction
we want collect (see Table 2). Within the context of the
addEventListener callback, the data is extracted from the
MouseEvent object (passed to the callback) properties and
sent to the web server.

2) KEYBOARD INTERACTION
The keyboard is the second main computer peripheral, and
the main tool for text introduction. Evaluating the keyboard
interaction is important to track user search profiles, form
filling, and other actions associated with text insertion. Aside
from the letters and numbers pressed, the Shift, Alt and
Control keys, and Caps Lock are also tracked (see Table 2).

To ensure protection when entering data-sensitive user-
name and password with the keyboard, data is never collected
when the KeyDown event detected and password input event
occurs. This prevents the acquisition of sensitive data that
could comprise user security.

As stated in the Mouse Interaction sub-section, the data
is also collected via a Javascript addEventListener method
call applied to the document object. In this case, the event
listened is keydown. Within the context of the addEventLis-
tener callback, the data is extracted from the KeyboardEvent
object (passed to the callback) properties and sent to the web
server.

3) GEOLOCATION
Geolocation is not browser navigation specific data but it is
sometimes important to know the physical location of the
user. This data is collected whenever a new browser tab is
created. This type of data is subject to browser permissions
approval on the extension installation (see Table 2).

The Javascript API used to collect the geolocation data
is window.navigator.geolocation which returns a Geoloca-
tion object. The method getCurrentPosition, belonging to the

77662 VOLUME 7, 2019

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

TABLE 2. Latent acquisition data types detailed information. The unit ‘‘px’’ correspond to pixels and the in italic format is identified each data type.

VOLUME 7, 2019 77663

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

previous object, is used to retrieve the geolocation data, which
is sent to the server after the acquisition.

4) SCREENSHOTS
To better analyse the user behaviour and intentions while
navigating, it is important to know what is being rendered on
the screen (see Table 2). For that reason, active browser tab
screenshots are collected every second, with the time interval
being a setting that can be configured.

Because the main goal is to have a general idea of what
the user is seeing, the quality of the JPEG image is low and
pixelated. The criteria were to reduce the data size as much
as possible but still allow the visual content to be perceived.

For screenshot capture, the Google Chrome tabs API
(chrome.tabs) is used, more specifically, the captureVisi-
bleTab method. Within its callback, the Base64 data is col-
lected and sent to the server.

5) AUDIO
The audio collected from the microphone is not browser
navigation specific data, but it can provide valuable insight
into user behaviour and environment during web browsing
(see Table 2). To be able to acquire audio, the user needs to
manually give the browser media permissions.

The collection of audio data is based on the Javascript
Web Audio API. A call to the method getUserMedia from
window.navigator.getMediaDevices interface asks for user
permission to collect audio media on the web browser,
and retrieves a Promise that resolves to a MediaStream
object. Within the context of the resolving callback a win-
dow.AudioContext object is created to which are attached
to the media stream and a script processor node. When-
ever there is audio data available on the buffer, the onau-
dioprocess event, belonging to the script processor node,
is fired with the buffer data. A callback method is attached
to that event where the data is gathered and sent to the
server.

6) SNAPSHOTS
One of the data acquired is video camera snapshots every
ten seconds (a time interval that can be configured). The snap-
shots are useful for research where the image allows to match
facial expressions with keyboard or mouse behaviour. It can
also be applied in usability tests or psychology experiments.
See Table 2 for additional information.

To acquire the snapshots we use a combination of Medi-
aDevices API and Canvas API. A call to the method getUser-
Media from window.navigator.getMediaDevices interface
asks for user permission to collect video media on the
web browser, and retrieves a Promise that resolves to
a MediaStream object. Within the context of the resolv-
ing callback, a canvas instance is created and a call to
the drawImage method captures a snapshot of the video.
Afterwards, the data is converted to Base64 and sent to the
server.

7) DOCUMENT OBJECT MODEL (DOM)
According to [30], the ‘‘Document Object Model is a
platform- and language-neutral interface that will allow pro-
grams and scripts to dynamically access and update the con-
tent, structure and style of documents. The document can
be further processed and the results of that processing can
be incorporated back into the presented page’’. The DOM
will be important to match XPath data with HTML document
structure (see Table 2).

The DOM is acquired using the serializeToString method
from the XMLSerializer interface, with the document object
as the argument. This method returns an XML string rep-
resenting a DOM tree. Taking into consideration the cur-
rent Javascript ecosystem with all the frontend frameworks
and asynchronous behaviours, we used theMutationObserver
interface to watch for changes on the DOM tree and capture
those changes.Whenever a change is detected the XML string
is captured and sent to the server.

8) BROWSER AND TAB SETTINGS
During a page reload or tab creation, some settings are col-
lected to allow a better definition of the conditions in which
the browsing experience is running (see Table 2).

This settings are collected via standard Web APIs. The
page URL is acquired via window.location.href; the browser
settings use the Window and Navigator interfaces proper-
ties. The browser tab information is gathered through the
chrome.tabs API.

C. DATA COLLECTION
After data acquisition, the Latent user needs to access the data
stored on the web server. There are several options available,
as long as the user knows how to program, but for the less
computer savvy user, we present two simple options: using
MongoDB’s GUI, Compass; or using Latent’s data extraction
script.

Compass is MongoDB’s standard GUI application and is
very simple to use. It allows data browsing, visualization
and exporting. It is possible to export the whole database or
just some documents (MongoDB’s table equivalent) to JSON
or CSV formats. It can run on the server machine or any
computer that can access the server remotely.

The data extraction script is a Python script that also
exports the data to CSV, but it creates a separate file for each
interaction. It runs on the server machine or any computer that
can access the server remotely. The DOMdata is not exported
on a CSV file because the XML string breaks the column
separation. Because of that, every DOM string is exported as
a TXT file. The Audio data is exported in CSV and also as a
WAV file.

IV. VALIDATION
The adherence to a new tool is dependent on its efficacy and
efficiency. The nature of the Latent platform imposes some
performance validation tests, on server requests, database

77664 VOLUME 7, 2019

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

space needs and impact on computer performance, more
specifically browser performance.

A. DATABASE SIZE
As previously stated, Latent generated data is stored in
a NoSQL database. For proper system dimensioning it is
important to have an idea of the hard drive space requirements
for common data acquisition tasks. The data formats stored
are audio blobs, base64 image data and general text. We shall
analyse each format in more detail and show its disk space
footprint.

1) AUDIO BLOB
The audio blobs consist of a list of numbers representing
sound intensities. With a fixed sample rate of 44100 Hz,
each sample takes about 2.268 × 10−5 seconds to acquire.
A buffer of 2048 samples is being used, so it takes about
4.645 × 10−2 seconds to sample the whole buffer (blob)
and send to the server. From this, we reach a value of about
21 blobs per second. Since each blob is about 0.02 MB,
every second it is generated around 0.42 MB of audio data.
For a clearer idea, using longer acquisition times we have:
• 1 minute : 25.2MB
• 30 minutes : 756 MB
• 1 hour : 1512 MB

2) BASE64 IMAGE DATA
Regarding image data, Latent collects screenshots and snap-
shots, both as Base64 data. The default sampling rates for
screenshots and snapshots are 1 Hz and 0.1 Hz, respectively.

The screenshots data size depends on the browser win-
dow size (which depends on the screen size for the upper
limit), pixel density and colour palette. A sample of different
screenshots taken from 50 random sites, using the browser
in full-screen size, on a 23 inches screen with 1920 × 1080
pixels of resolution, was collected. We used the Random
Website Machine1 to browse through the random websites.
The computed data size was, on average, 0.04 MB. The data
size for various acquisition times are:
• 1 minute : 2.4 MB
• 30 minutes : 72 MB
• 1 hour : 144 MB
The snapshots data size also depends on the same charac-

teristics as the screenshots. However, in this case, the image
has a fixed size of 640× 480 pixels. The image content will
depend on who or what is behind the camera. For data size
estimation, we collected around 70 samples with different
configurations: single person, multiple persons, no persons,
and different backgrounds. The computed data size was,
on average, 0.05 MB. The data size for various acquisition
times are:
• 1 minute : 3 MB
• 30 minutes : 90 MB
• 1 hour : 150 MB
1from whatsmyip.org [31]

3) STRUCTURED TEXT DATA
Within this category falls all other data stored as text. There
are two main types: HTML DOM data and other key-value
pair data.
The key-value pair data like the mouse, keyboard, geolo-

cation, and settings require an average of 200 bytes per
acquisition. The mouse is the one which produces more data
since it creates a data sample for each movement.
The HTML DOM string is a lot more data intensive and

depends on the page structure. This type of data is acquired
every time a page loads or whenever the DOM is updated.
To compare websites with distinct structures we collected
data from six pages, apparently different in terms of elements
and size. Google Search page and Youtube are two examples
included as opposite cases.
The estimated data size for the different types of pages, that

were merged into four groups similar in size, is:
• Light size2: ∼ 0.03MB
• Medium size3: ∼ 0.25 MB
• Heavy size4: ∼ 0.75MB
• Very Heavy size5: ∼ 1.1 MB

B. SERVER REQUESTS
In this section, we estimate the maximum number of requests
(i.e. messages sent via the WebSockets connection) per sec-
ond, that the extension sends to the server.
For every page load or reload, there are at least 5 requests

sent to the server. Firstly, the web socketconnection (a.k.a.
handshake) is established. Second, once this initial data
is sent, four requests (messages) are sent with data: tab
URL; browser settings; geolocation; and HTMLDOM string.
Finally, after all this initial data is sent, the extension starts
listening for mouse, keyboard, and DOM update events and
sending audio, screenshots and snapshots according to their
acquisition rates. As previously stated, there are 21 audio blob
requests per second, one screenshot request per second and
one snapshot request every 10 seconds. Mouse and keyboard
data do not have a fixed acquisition rate, hence not being
easily quantifiable.
To quantify more precisely the maximum number of

requests per second, we acquired data for 1 minute during
some random navigation experience. The estimated value is
the total number of requests during that time divided by the
time of the experience. The results were approximately 42
requests per second.
Besides this, we can also evaluate possible limitations asso-

ciated with the TCP/IP protocol, which allows 216 = 65536
connections per client IP. Since the web browser extension
only establishes a maximum of 4 web socket connections
with the server per tab at any given time, the web browser
would need to have∼ 16384 opened tabs to reach the protocol
connection limit. This large number allows us to comfortably

2https://www.tutorialspoint.com/
3https://www.google.com/
4https://www.youtube.com/
5https://www.google.com/search?q=content+heavy+sites&tbm=isch

VOLUME 7, 2019 77665

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

assume that the browser extensionwill not exceed any TCP/IP
protocol limitation.

To minimize possible lagging associated with data
production/sending rates, several WebSockets are cre-
ated to established dedicated communication channels
for data-heavy interactions. There are separate Web-
Sockets for audio, snapshots and screenshots. Mouse,
keyboard, geolocation, DOM and settings, all share the same
WebSocket.

C. BROWSER PERFORMANCE
To test how the extension affects the CPU usage percentage
and available memory, tests scripts were developed using
Python language. They consist of two threads running in
parallel: one sample the computer system usage data every
second, and the other runs the tests. The system utilization
data were collected with the Python module psutil. It col-
lected the CPU percentage, total virtual memory, and avail-
able virtual memory. The extension usage tests were created
using Selenium Python and Chrome WebDriver to control
Google Chrome.

Every test has the same structure. It starts with a
five-minute acquisition of system resources data (Pre-test
interval), followed by a five-minute test (Test interval),
and ends with another five-minute of system resources
data (Post-test interval). These two five-minute intervals
exist to acquire the system baseline before and after the
test. They also allow us to examine the browser activa-
tion/deactivation delays. During the Test interval, when the
extension is active, the following interactions are being cap-
tured: Geolocation; Screenshots; Audio; Snapshots; DOM;
and Browser and Tab settings. The tests consist of opening
one or several web pages at the same time and capture the
data associated with the interactions during the whole test
period.

Each test is ran 30 times and we compute the mean signal
for each characteristic and work with that signal for the
analysis. For all tests the web server was running on a desktop
PC with the following characteristics:
• Operating System: Ubuntu 18.04.1 LTS (64-bit)
• Processor: Intel R© CoreTM i5-6500 CPU @
3.20GHz× 4

• Memory: 7.7 GB
• Graphics: Intel R© HD Graphics 530 (Skylake GT2)

The computer running the browser had the following
characteristics:
• Operating System: Ubuntu 16.04 LTS (64-bit)
• Processor: Intel R©CoreTM i5-6500 CPU@3.20GHz×4
• Memory: 7.7 GB
• Graphics: GeForce GTX 960/PCIe/SSE2
• Web Browser: version 70.0.3538.67 (Official Build)
(64-bit)

• Chrome Driver: version 2.43
• Python: version 3.6.5
• Selenium Python: version 3.14.1

TABLE 3. Web browser test statistical features. The features are extracted
from the average signal of the 30 test runs.

1) WEB BROWSING WITH EMPTY TAB
The first test consists of just starting the web browser with an
empty tab and leaving it on for five minutes. The goal was to
measure the impact of the browser itself on the system. The
data gathered is presented in Fig. 6, 7 and Table 3.

FIGURE 6. Web browser test plots for CPU usage (top) and available
memory (bottom). The vertical lines define the limits of the intervals. The
first and last correspond to the system resources baseline (Pre-Test,
Post-Test), and the middle one corresponds to the static test (Test). The
grey dashed-dotted lines represent the average signal of the 30 test runs,
in black, plus or minus the standard deviation.

From Fig. 6 and 7 it is clear that the browser affects the
system resources, but not much. The CPU usage has a spike
on the moment the browser is opened but afterwards remains
stable (less than 1%) with small fluctuations. The memory
available decreases by 2% on average when the browser is
opened, as shown in Table 3. These results provide a baseline
behaviour of the system during the tests.

2) WEB BROWSING WITH ACTIVE TAB
In this case, the test starts the browser with one active tab
having a web page loaded. It runs with and without the exten-
sion to see the effect of the extension on the performance.

77666 VOLUME 7, 2019

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

TABLE 4. Web browser plus website test CPU usage statistics. The On and Off columns represent, respectively, tests using the Latent extension or not. The
features are extracted from the average signal of the 27 test runs.

TABLE 5. Web browser plus website test memory available statistical features. The On and Off columns represent, respectively, tests using the Latent
extension or not. The features are extracted from the average signal of the 27 test runs.

FIGURE 7. Web browser test box plots for CPU usage (top) and available
memory (bottom). The Pre-Test and Post-Test data corresponds to the
system resources baseline intervals data. The Test data refers to the test
itself. The data is obtained in relation to the average signal of
the 30 test runs.

Five different websites6 are also used to measure how the
extension’s behaviour may be affected by web page structure
and content. All the websites are dynamic and have large
content. Two websites belong to the e-commerce category,
another two are company websites, and the last one is a
multimedia repository. For this test we only consider 27 runs

6 Site 1: https://www.ebay.com
Site 2: https://www.youtube.com
Site 3: https://www.amazon.com
Site 4: https://www.apple.com
Site 5: https://www.microsoft.com

as opposed to the established 30, because 3 tests were invalid.
The data is presented in Fig. 10, 11, 12, and 13, as well as
Tables 4 and 5. The figures only show data from twowebsites,
the one with less variability (site 4) and the one with more
variability (site 5), during the Test interval. The tables have
the complete data for all websites.

Results show a stable behaviour between websites. Even
considering specific variability, the CPU usage and memory
available data follow the same patterns for every website on
the three intervals, hence, we can consider the variability only
between having the extension active and acquiring or not.
Comparing Fig. 6 and 10, we can conclude that having a
website loaded without the extension only consumes more
memory and eventually has more CPU usage variability asso-
ciated with specific website activities.
Comparing Fig. 10 and 11, it is clear that having the extension
on produces an effect on the system performance. The CPU
usage increases from an average of less than 3% to an average
of around 16%. This result is expected because when the
extension is acquiring data, many different activities start to
consume CPU resources. However, an increase of roughly
15% is not significant. When examining the maximum val-
ues, we have around 30%. Even for those cases where the
CPU usage still remains below 50%. Regarding the available
memory, we see it decreasing during the test until a minimum
value and then returning to the baseline value after the test
is finished. The behaviour is no longer constant, but the
difference between the baseline and the minimum value is
approximately 6%. When the extension is off, this difference
between baseline and the minimum value is around 3%. The
extension consumes only about extra 3% memory. In this test
scenario, the data shows that the extension has a relatively
low impact on the available memory and a bigger impact
on CPU usage, although this last one is not significant on
average.

VOLUME 7, 2019 77667

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

TABLE 6. Statistics for web browser usage with multiple sites and
multiple tabs. The values are computed from the average
signal of the 30 test runs.

FIGURE 8. Examples of information that can be extracted from the
acquired data.

FIGURE 9. Examples of mouse visualization techniques. On the left the
trajectory and on the right a heatmap.

3) WEB BROWSING WITH MULTIPLE SITES
AND MULTIPLE TABS
As new tabs are added to the web browser more system
resources area used. This test measures how the extension
may overload the system when using multiple tabs. Each tab
is loaded with a different website using the Random Website
Machine tool [31], to compensate the effects associated with
web page structure and content. The test data is shown on
Fig. 14 and 15, and Table 6.

Observing Fig. 14a (multiple tabs) and comparing it with
Fig. 10a (one tab), it becomes clear that having more tabs

FIGURE 10. Web browser plus website test plots, without the use of the
Latent browser extension, for CPU usage (first and third) and available
memory (second and fourth). The vertical lines define the limits of the
intervals. The first and last correspond to the system resources baseline
(Pre-Test, Post-Test), and the middle one corresponds to the static test
(Test). The first two graphs represent the data for the website with less
variability. The last two graphs correspond to the website with more
variability. The data corresponds to the average signal of the 27 test runs.

by itself increases the CPU usage. The memory available
also decreases when using multiple tabs (Fig. 14b) versus a
single tab (Fig. 10b). Comparing between having the exten-
sion active versus not active, there is an expected difference
in the system resources consumption (Fig. 14). The two
plots on the left (Fig. 14a,b) are related to the test without
the extension. The ones on the right (Fig. 14c,d) refer to
the test with the extension. Regarding the CPU usage, with
the extension active, there was a clear increase in relation
to the test without the extension. On average, the maximum
usage was around 40%. The grey lines indicate the standard

77668 VOLUME 7, 2019

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

FIGURE 11. Web browser plus website test plots, using Latent browser
extension, for CPU usage (first and third) and available memory (second
and fourth). The vertical lines define the limits of the intervals. The first
and last correspond to the system resources baseline (Pre-Test, Post-Test),
and the middle one corresponds to the static test (Test). The first two
graphs represent the data for the website with less variability. The last
two graphs correspond to the website with more variability. The data
corresponds to the average signal of the 27 test runs.

deviation for the 30 tests. We can see from those lines that,
with or without the extension there was at least one test that
had a peak event around 60%. However, having multiple tabs
opened with the extension uses 16.5±5.6 (%) of CPU, versus
5.5 ± 5.3 (%). It is an increase of around 11.2%. Looking
at the available memory (Fig. 14b vs. Fig. 14d), we see a
change on the behaviour of memory consumption. Without
the extension, the memory available decreases sharply when
the browser is open with multiple tabs and remains fairly

FIGURE 12. Web browser plus website test box plots, without the use of
Latent browser extension, for CPU usage (first and third) and available
memory (second and fourth). The vertical lines define the limits of the
intervals. The first and last correspond to the system resources baseline
(Pre-Test, Post-Test), and the middle one corresponds to the static test
(Test). The first two graphs represent the data for the website with less
variability. The last two graphs correspond to the website with more
variability. The data corresponds to the average signal of the 27 test runs.

constant during the whole time until the browser is closed.
When the extension is used, there is a first step associated
with the activation of the extension acquisition. Afterwards,
the memory continues to decrease slowly until a minimal
value. The difference between the maximum value during
Pre-test and the minimum value during Test intervals is about
6% and 8%, with the extension and without, respectively.
As before, we can see that the presence of the extension does
not have a significant impact on memory consumption.

VOLUME 7, 2019 77669

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

FIGURE 13. Web browser plus website test box plots, using Latent
browser extension, for CPU usage (first and third) and available memory
(second and fourth). The vertical lines define the limits of the intervals.
The first and last correspond to the system resources baseline (Pre-Test,
Post-Test), and the middle one corresponds to the static test (Test). The
first two graphs represent the data for the website with less variability.
The last two graphs correspond to the website with more variability. The
data corresponds to the average signal of the 27 test runs.

V. USE CASES
The Latent platform flexibility resides on the sheer volume
of different data that it can acquire. This diversity opens up
the possibility for many different data visualizations and pro-
cessing techniques. This section presents some of the possible
visualization techniques and information extracted from the
data acquired, as well as the different scenarios where we see
advantages on the use of Latent.

A. DATA VISUALIZATION TECHNIQUES
& INFORMATION EXTRACTED
Latent-acquired data allows the generation of commonly used
visualization strategies like Heatmaps, Scrollmaps or Spa-
tial Clicks Distribution. For example, with the data acquired
during the mouse move event, it is possible to create mouse
movement trajectories, analyse movement patterns, and eval-
uate aspects, such as speeds and accelerations. With the
screenshot data, we have the ability to reconstruct the brows-
ing session, estimate the time focused on a certain area of the
web page, etc. Fig. 8 shows some of the information that is
possible to extract from the various data types and in Fig. 9
are represented two visualization examples.

B. APPLICATION AREAS
Based on the diverse range of information, we can extract
from the data acquired by Latent, we propose the following
application areas:

• Web usability tests: With the data acquired it is pos-
sible to get the typical information used in usability
tests [32]–[34], allowing the user to test web pages or
web applications.

• Decision-making process analysis: In some scenarios,
it is more important to evaluate the thought process as
opposed to the result. If an experience is created on the
web [35], Latent is able to provide data to support the
analysis of the whole process from beginning to end.

• Psychology studies: This field of research is proba-
bly one that is most likely to benefit from this exten-
sion. Analysis of behaviour and personality are good
examples [36], [37]. This can include measures that
have received less attention, such as the evaluation of
mouse behaviour, which has some potential as an indi-
cator of personality traits.

• Human resources screening tests: Personal assess-
ment by recruitment agencies and employers, to apply,
e.g, technical tests as part of the applicant assessment
process. If these tests are applied on in online format
(like [38], [39]), it is possible to use Latent to extract
additional information about the applicant’s problem
solving approach, steps, or strategy.

• Serious games: These type of games are used in many
different contexts, from education to health. In health,
serious games are sometimes used for behavioural anal-
ysis in people with mental or learning disabilities [40].
Latent could provide a deeper insight into the game play
dynamics.

• Survey analysis: In cases where it is important to under-
stand how people fill surveys [12]. The collected data
may be used to infer personality traits, or to analyse how
the structure of the survey affects the way that the survey
respondent fills out the survey. Latent is flexible enough
to extract the necessary data for the analysis.

77670 VOLUME 7, 2019

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

FIGURE 14. Web browser with multiple sites and multiple tabs test plots for CPU usage (top) and available memory
(bottom). The left plots correspond to tests performed without using the extension, and right plots correspond to tests
done with the extension.

FIGURE 15. Web browser with multiple sites and multiple tabs test box plot for for CPU usage (top) and available
memory (bottom). The left plots correspond to tests performed without using the extension, and right plots correspond to
tests done with the extension.

VI. CONCLUSION
This paper presents the details and functionalities of a new
tool to monitor web browsing behaviour and its perfor-
mance. The main goal of this tool is to collect all possi-
ble information about the user and his/her interaction with
the computer while interacting with the web. In this field,
the existing services have restricted use and the raw data is not
usually available for further investigation. Latent provides the

necessary flexibility for customized data analysis, allowing a
large number of possible use cases to be derived from the data
collected.

In terms of performance, the impact of the platform on the
system’s architecture was assessed based on database size,
server requests and browser performance. This performance
analysis also serves the estimation of costs associated with
the resources consumption.

VOLUME 7, 2019 77671

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

As expected, the audio and images, that is, screenshots
and snapshots, are data types requiring more space, resulting
in approximately 1.7 GB during one hour of data acquisi-
tion. The data types that do not have a defined acquisition
frequency, such as the keyboard, require storage space that
depends on the specific user interaction. In relation to the
server load, the requests are below 50 per second.

The browser performance was tested by assessing the CPU
and memory consumption while using the browser extension.
For a more general assessment, the trials were done on a sin-
gle tab or multiple tabs configuration, using distinct websites
for each test/tab. As expected, there was an increase in the
CPU usage and memory consumption, although not to a sig-
nificant level which could compromise the user interaction.

In a next step, this tool should be improved and tested. For
example, some level of data compression should be applied
to reduce memory consumption. A real scenario test with a
detailed procedure should be considered to evaluate the plat-
form performance and errors when analysing, for example,
different ways, or user habits and preferences, of browsing the
web. This should also be assessed for multiple simultaneous
users of the platform.

ACKNOWLEDGMENT
Web browser, web server and database symbols made by
Smashicons from www.flaticon.com. Internet cloud symbol
made by itim2101 from www.flaticon.com. Websockets logo
was downloaded from worldvectorlogo.com. (Catia Cepeda
and Ricardo Tonet contributed equally to this work.)

REFERENCES
[1] Internet World Stats. (2017). Internet Growth Statistics 1995 to

2017—The Global Village Online. [Online]. Available: https://www.
internetworldstats.com/emarketing.htm

[2] Google. (2018). Google Search Statistics—Internet Live Stats. [Online].
Available: http://www.internetlivestats.com/google-search-statistics/

[3] E. Hehman, R. M. Stolier, and J. B. Freeman, ‘‘Advanced mouse-tracking
analytic techniques for enhancing psychological science,’’ Group
Processes Intergroup Relations, vol. 18, no. 3, pp. 384–401,
2015. [Online]. Available: http://journals.sagepub.com/doi/10.1177/
1368430214538325

[4] B. De Los Santos and A. Hortaçsu, ‘‘Testing models of consumer search
using data on Web browsing and purchasing behavior,’’ Amer. Econ.
Rev., vol. 102, no. 6, pp. 2955–2980, Oct. 2012. [Online]. Available:
www.netinst.org

[5] R. E. Bucklin and C. Sismeiro, ‘‘A model of Web site browsing behav-
ior estimated on clickstream data,’’ J. Marketing Res., vol. 40, no. 3,
pp. 249–267, 2003. [Online]. Available: http://journals.sagepub. com/
doi/10.1509/jmkr.40.3.249.19241 and http://journals.ama.org/doi/abs/10.1
509/jmkr.40.3.249.19241

[6] P. Shuxin, J. Fan, S. Yu, B. Wang, X. Jia, R. Hu, and Q. Zhu, ‘‘A method
of behavior evaluation based on Web browsing information,’’ in Proc. Int.
Conf. Smart Grid Electr. Autom. (ICSGEA), 2017, pp. 697–700. [Online].
Available: http://ieeexplore.ieee.org/document/8104482/

[7] Deepika, S. Juneja, and A. Dixit, ‘‘Improving search results based on
users’ browsing behavior using Apriori algorithm,’’ in Advances in Intel-
ligent Systems and Computing, vol. 731. Singapore: Springer, 2019,
pp. 73–82. [Online]. Available: http://link.springer.com/10.1007/978-981-
10-8848-3_7

[8] C. Doucet and R. M. Stelmack, ‘‘Movement time differentiates extraverts
from introverts,’’ Personality Individual Differences, vol. 23, no. 5,
pp. 775–786, 1997. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0191886997001049

[9] M. Kosinski and D. Stillwell, ‘‘Personality and Website choice,’’
in Proc. ACM Web Sci. Conf., 2012, pp. 251–254. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.296.
5575&rep=rep1&type=pdf

[10] C. Li, J. Wan, and B. Wang, ‘‘Personality prediction of social net-
work users,’’ in Proc. 16th Int. Symp. Distrib. Comput. Appl. Bus.,
Eng. Sci. (DCABES), Sep. 2018, pp. 84–87. [Online]. Available:
http://ieeexplore.ieee.org/document/8253041/

[11] I. A. Khan, W.-P. Brinkman, N. Fine, and R. M. Hierons, ‘‘Measuring
personality from keyboard and mouse use,’’ in Proc. 15th Eur. Conf.
Cognit. Ergonom. Ergonom. Cool Interact. (ECCE), 2008, p. 1.

[12] C. Cepeda, J. Rodrigues, M. C. Dias, D. Oliveira, D. Rindlisbacher,
M. Cheetham, and H. Gamboa, ‘‘Mouse tracking measures and move-
ment patterns with application for online surveys,’’ in Lecture Notes
in Computer Science (Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), vol. 11015. Cham, Switzerland: Springer,
2018, pp. 28–42. [Online]. Available: http://link.springer.com/10.1007/
978-3-319-99740-7_3

[13] ViewletBuilder—Easily Create Flash Tutorials and Simulations Using
Screen Capture Technology. Accessed: Nov. 28, 2018. [Online]. Available:
https://www.qarbon.com/presentation-software/viewletbuilder/

[14] Get GIF Camcorder—Microsoft Store. Accessed: Nov. 28, 2018.
[Online]. Available: https://www.microsoft.com/en-us/p/gif-camcorder/
9wzdncrdxxwr?activetab=pivot:overviewtab

[15] Crazy EggWebsite Optimization|Heatmaps &Amp; A/B Testing. Accessed:
Nov. 28, 2018. [Online]. Available: https://www.crazyegg.com/

[16] Inspectlet—Session Recording, Website Heatmaps, Javascript A/B Testing,
Error Logging, Form Analytics. Accessed: Nov. 28, 2018. [Online]. Avail-
able: https://www.inspectlet.com/

[17] Ferramenta Gratuita de Gravaç ão ParaWebsites e Aplicativos|Smartlook.
Accessed: Nov. 28, 2018. [Online]. Available: https://www.smartlook.
com/pt/

[18] Hotjar—Heatmaps, Visitor Recordings, Conversion Funnels, Form Analyt-
ics, Feedback Polls and Surveys in One Platform. Accessed: Nov. 28, 2018.
[Online]. Available: https://www.hotjar.com/home1?utm_expid=.Z6cvEiV7
SFmTDSpI1b1J-A.1&utm_referrer=https%3A%2F%2Fwww.google.pt%2F

[19] Session Replay, Heatmaps, Funnels, Forms &Amp; User Feedback—
Mouseflow. Accessed: Nov. 28, 2018. [Online]. Available: https://mouse-
flow.com/?gclid=CjwKCAiAlvnfBRA1EiwAVOEgfHnRX-MXU9pACop
LxprF8J–l46nlvUEOUmGrE9HxDlXmXx6U9N0WhoCGggQAvD_BwE

[20] Enterprise Experience Analytics|Conversions Optimization|Clicktale.
Accessed: Nov. 28, 2018. [Online]. Available: https://www.clicktale.com/

[21] HYFY Screen Video Recorder. Accessed: Nov. 28, 2018. [Online]. Avail-
able: https://www.hyfy.io/

[22] ReMouse—Mouse Recorder, Keyboard Recorder, GhostMouse, Auto
Clicker, AutoClick, Auto Mouse. Accessed: Nov. 28, 2018. [Online]. Avail-
able: https://www.remouse.com/

[23] H. F. S. Gamboa, ‘‘Multi-modal behavioral biometrics based on HCI
and electrophysiology,’’ Ph.D. dissertation, Dept. Elect. Comput. Eng.,
Instituto Superior Técnico, Lisbon, Portugal, 2008. [Online]. Available:
http://www.lx.it.pt/~afred/pub/thesisHugoGamboa.pdf

[24] Tornado Web Server—Tornado 6.0.2 Documentation. Accessed:
Jun. 17, 2019. [Online]. Available: http://www.tornadoweb.org/en/stable/#

[25] A. Lombardi, WebSocket: Lightweight Client-Server Communications.
Sebastopol, CA, USA: O’Reilly Media.

[26] J. Huang, R. White, and G. Buscher, ‘‘User see, user point: Gaze and
cursor alignment in Web search,’’ in Proc. ACM Annu. Conf. Hum. Factors
Comput. Syst. (CHI), New York, NY, USA, 2012, p. 1341. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2207676.2208591

[27] U. Demšar and A. Çöltekin, ‘‘Quantifying gaze and mouse interactions
on spatial visual interfaces with a new movement analytics methodol-
ogy,’’ PLoS ONE, vol. 12, no. 8, p. e0181818, 2017. [Online]. Available:
https://dx.plos.org/10.1371/journal.pone.0181818

[28] D. J. Liebling and S. T. Dumais, ‘‘Gaze and mouse coordination
in everyday work,’’ in Proc. ACM Int. Joint Conf. Pervasive Ubiq-
uitous Comput. Adjunct Publication UbiComp Adjunct, New York,
NY, USA, 2014, pp. 1141–1150. [Online]. Available: http://dl.acm.org/
citation.cfm?doid=2638728.2641692

[29] XPath|MDN. Accessed: Mar. 06, 2019. [Online]. Available: https://
developer.mozilla.org/en-US/docs/Web/XPath

[30] World Wide Web Consortium. (2006). W3C Document Object Model.
[Online]. Available: https://www.w3.org/DOM/ and http://scholar.google.
com/scholar?hl=en&btnG=Search&q=intitle:W3C+Document+Object+
Model#2

77672 VOLUME 7, 2019

C. Cepeda et al.: Latent: A Flexible Data Collection Tool to Research Human Behaviour in the Context of Web Navigation

[31] Random Website Machine/WhatsMyIP.org. [Online]. Available:
http://www.whatsmyip.org/random-website-machine/

[32] E. Arroyo, T. Selker, and W. Wei, ‘‘Usability tool for analysis
of Web designs using mouse tracks,’’ in Proc. Extended Abstr.
Hum. Factors Comput. Syst. (CHI EA), New York, NY, USA, 2006,
p. 484. [Online]. Available: http://dl.acm.org/citation.cfm?doid=1125451.
1125557

[33] N. Nakamichi, K. Shima, M. Sakai, and K.-I. Matsumoto, ‘‘Detecting
low usability Web pages using quantitative data of users’ behavior,’’
in Proc. 28th Int. Conf. Softw. Eng. (ICSE), New York, NY,
USA, 2006, p. 569. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=1134285.1134365

[34] M. M. Rahman and N. A. Abdullah, ‘‘A personalized group-based rec-
ommendation approach for Web search in E-learning,’’ IEEE Access,
vol. 6, pp. 34166–34178, 2018. [Online]. Available: https://ieeexplore.
ieee.org/document/8395492/

[35] A. Yanie, A. Hasibuan, I. Ishak, M. Marsono, S. Lubis, N. Nurmalini,
M. Mesran, S. D. Nasution, R. Rahim, H. Nurdiyanto, and
A. S. Ahmar, ‘‘Web based application for decision support system
with ELECTRE method,’’ J. Phys., Conf. Ser., vol. 1028, no. 1,
p. 012054, 2018. [Online]. Available: http://stacks.iop.org/1742-6596/
1028/i=1/a=012054?key=crossref.bc11a878192249389a76d1cfa8d74f33

[36] M. C. Chen, J. R. Anderson, and M. H. Sohn, ‘‘What can a mouse
cursor tell us more?’’ in Proc. Extended Abstr. Hum. Factors Comput.
Syst. (CHI), New York, NY, USA, 2003, p. 281. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=634067.634234

[37] M. Graff, ‘‘Individual differences in hypertext browsing strategies,’’Behav.
Inf. Technol., vol. 24, no. 2, pp. 93–99, 2005. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/01449290512331321848

[38] B. Pfieffelmann, S. H. Wagner, and T. Libkuman, ‘‘Recruiting on cor-
porate Web sites: Perceptions of fit and attraction,’’ Int. J. Selec-
tion Assessment, vol. 18, no. 1, pp. 40–47, 2010. [Online]. Available:
http://doi.wiley.com/10.1111/j.1468-2389.2010.00487.x

[39] U. D. Reips and R. Lengler, ‘‘TheWeb Experiment List: A Web ser-
vice for the recruitment of participants and archiving of Internet-based
experiments,’’ in Behavior Research Methods, vol. 37. New York, NY,
USA: Springer-Verlag, 2005, no. 2, pp. 287–292. [Online]. Available:
http://www.springerlink.com/index/10.3758/BF03192696

[40] L. Martini, F. Vannetti, L. Fabbri, F. Gerli, I. Mosca, S. Pazzi, F. Baglio,
and L. Bocchi, ‘‘GOAL (games for olders active life): A Web-application
for cognitive impairment tele-rehabilitation,’’ in IFMBE Proceedings,
vol. 68. Singapore: Springer, 2019, no. 3, pp. 177–182. [Online]. Available:
http://link.springer.com/10.1007/978-981-10-9023-3_32

VOLUME 7, 2019 77673

	INTRODUCTION
	RELATED WORK
	OVERVIEW OF LATENT
	WEB BROWSER EXTENSION
	DATA ACQUISITION
	MOUSE INTERACTION
	KEYBOARD INTERACTION
	GEOLOCATION
	SCREENSHOTS
	AUDIO
	SNAPSHOTS
	DOCUMENT OBJECT MODEL (DOM)
	BROWSER AND TAB SETTINGS

	DATA COLLECTION

	VALIDATION
	DATABASE SIZE
	AUDIO BLOB
	BASE64 IMAGE DATA
	STRUCTURED TEXT DATA

	SERVER REQUESTS
	BROWSER PERFORMANCE
	WEB BROWSING WITH EMPTY TAB
	WEB BROWSING WITH ACTIVE TAB
	WEB BROWSING WITH MULTIPLE SITES AND MULTIPLE TABS

	USE CASES
	DATA VISUALIZATION TECHNIQUES & INFORMATION EXTRACTED
	APPLICATION AREAS

	CONCLUSION
	REFERENCES

