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ABSTRACT A cloud platform provides users with shared data storage services. To ensure shared data
integrity, it is necessary to validate the data effectively. An audit scheme that enables group members to
modify data conducts the integrity verification of the shared data, but this approach results in complex
calculations for the group members. The audit scheme of the designated agent implements a lightweight
calculation for the group members, but it ignores the security risks between the group members and the
agents. By introducing Hashgraph technology and designing a Third Party Medium (TPM) management
strategy, a lightweight secure auditing scheme for shared data in cloud storage (LSSA) is proposed,
which achieves security management of the groups and a lightweight calculation for the group members.
Meanwhile, a virtual TPM pool is constructed by combining the TCP sliding window technology and
interconnected functions to improve agent security. We evaluate our scheme in numerical analysis and in
experiments, the results of which demonstrate that our scheme achieves lightweight computing for the group
members and ensures the data verification process for security.

INDEX TERMS Shared data, virtual TPM pool, lightweight calculation, agent security.

I. INTRODUCTION
Cloud computing is a new computing mode that was cre-
ated after peer-to-peer computing, grid computing, utility
computing and distributed computing. The core concept of
cloud computing is resource renting, application hosting and
service outsourcing [1]. Through virtualization technology,
it forms distributed computing nodes into a shared virtualiza-
tion pool in order to provide services for users.

With cloud computing technology, users and enterprises do
not need to spend much on the acquisition and maintenance
of hardware in their early stages. In addition, powerful com-
puting and storage capabilities also make users more willing
to rely on the cloud to handle a variety of complex tasks.
When users choose to deploy a large number of applications
and data to the cloud computing platform, the cloud comput-
ing system accordingly becomes the cloud storage system.
Cloud storage systems give users mass storage capacity at
a relatively low price, and provide a platform for sharing
data between users (data sharing means that a user in a
group uploads data to the cloud, and the rest of the group
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can access/modify the data) [2]. However, highly centralized
computing resources means cloud storage faces severe secu-
rity challenges.

According to a survey conducted by Gartner in 2009,
70% of CEOs of surveyed companies refused to adopt cloud
computing models on a large scale due to concerns about
the privacy of cloud data. Furthermore, in recent years the
security storage problem exposed by cloud operators has
aroused people’s concern. For example, in March 2011,
Google Gmail failed, which caused data loss to approxi-
mately 150,000 users. In the same year, Amazon’s enormous
EC2 cloud service crashed, permanently destroying some
users’ data. While the data loss was apparently small relative
to the total amount of data stored, anyone who runs a website
can immediately understand the horrible level of data loss [3].
Thus, the secure storage of data in the cloud has hindered
the large-scale use of cloud computing in the IT field [4].
To achieve the secure storage of cloud data, researchers have
developed the cloud data integrity verification scheme.

A. RELATED WORK
In 2007, Ateniese et al. first proposed a Provable Data Pos-
session (PDP) model, which can verify the integrity of cloud

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

68071

https://orcid.org/0000-0001-6541-4632


J. Tian, X. Jing: Lightweight Secure Auditing Scheme for Shared Data in Cloud Storage

data without retrieving all of the data [5]. Then, Juels et al.
proposed the Proofs of Retrievability (POR) scheme, which
enables a back-up or archive service to produce proof that the
data can be retrieved by the verifier [6]. In a subsequent study,
Ateniese et al. implemented a PDP scheme that supports
dynamic operations [7], which means that the data uploader
has full control over any operation performed on the cloud
data, including block deletion, modification, and insertion.
Then, Waters et al. proposed a full-dynamic PDP scheme by
utilizing the authenticated flip table [8].

Differing from these works, the following schemes
[9]–[14] focus on how to audit the integrity of the shared data.
In this scenario, users can easily modify and share data as a
group with the cloud services, where every group member in
the group is not only able to access and modify the shared
data but also share the version that he/she has modified with
the rest of the group [11].

In 2016, Yang et al. proposed a BLS-based signature
scheme supporting flexible management in the group [9].
Jiang et al. proposed data integrity based on the vector com-
mitment technique, which is resistant to collusion attacks of
a cloud service provider and a group member [10]. By com-
bining proxy cryptography with the encryption technique,
in 2017 Luo et al. proposed a scheme with secure user
revocation [11]. Recently, Huang et al. realized efficient key
distribution within groups based on the logical hierarchy
tree, thereby protecting the identity privacy of the group
members [12]. Huang et al. subsequently proposed a cer-
tificateless audit scheme by eliminating key escrow, which
further improved the user’s privacy security [13]. Following
Huang et al.’s pioneering work. Fu et al. proposed an audit
scheme that can restore the latest correct shared data blocks
by changing the binary tree tracking data in the group [14].

In the above scheme [9]–[14], in order to verify the
integrity of the shared data stored in the cloud, the group
members need to block the data and then calculate the data
authentication label for each block. Finally, the group mem-
ber uploads the shared data along with the corresponding
authentication labels to the cloud. The integrity verification
of the shared data relies on the correctness of these data
authentication labels. However, the cost of calculating the
authentication label is generally great, because the formula
requires a large number of exponentiations, e.g., when the
block size is 2 KB, the authentication label generation over-
head for a 10 GB file is nearly 18 hours. Therefore, it is
necessary to propose a lightweight auditing scheme to reduce
the resource utilization of users. Li et al. proposed a new
cloud storage auditing scheme with a cloud audit server and
a cloud storage server [15]. The cloud audit server generates
authentication labels for users before uploading them to the
cloud storage server. Although this scheme can reduce users’
computation overhead, it fully reveals the user’s private key
and the user’s data to the cloud audit server. As a result,
malicious cloud service providers can pass the verification
process without storing the user’s data. Guan et al. used
an indistinguishable confusing approach to build an audit

scheme for cloud storage [16], thereby reducing the time that
is required to generate authentication labels but increasing the
time to verify the integrity of the cloud data.Wang et al. intro-
duced agents to assist group members in generating authen-
tication labels and auditing data integrity [17], which allevi-
ated the computational burden for group members. However,
in order to guarantee data privacy, the group member needs
to encrypt the data before sending them to the proxy, which
inevitably increases the computational burden. Shen et al.
proposed a lightweight audit scheme by introducing the Third
Party Medium (called the agent) to replace group members
with generating authentication labels [18]. Different from
Wang et al.’s scheme, the scheme uses blind data instead
of encrypted data to generate authentication labels, further
reducing the computational burden on the group members.
Although the scheme protects the data privacy and the identity
privacy of group members in some ways, it does not consider
the possibility of illegal access to shared data. Since the
data of the malicious group member is also encrypted or
blinded, it cannot be detected even after other people’s data
is randomly modified. What is even worse is that malicious
group members can collude with agents for illegal profit.

B. MOTIVATION
Amalicious cloud server is able to discard all the shared data
and generate a valid proof of data possession by reserving
some intermediate results or a previous valid proof, which
we refer to as a replace attack and a replay attack, respec-
tively. A malicious group member is able to modify other
member’s data in that group without being discovered. A
malicious agent is able to collude with illegal group members
to steal user data and identity information. As far as we know,
the three points mentioned above are still open challenges to
design a secure integrity auditing scheme for shared data with
lightweight computing on the client side.

To solve those challenging problems, we proposed a
lightweight secure auditing scheme for shared data in
cloud storage (LSSA). Similar to the cloud storage audit
scheme [18], using the Third Party Medium (TPM) instead of
group members to calculate the authentication label and audit
data integrity results in lightweight calculations for the group
members. Differing from that scheme, we separated the group
members and the TPM through a group manager, to realize
the division and governance of the group members and the
TPM and eliminate the collusion between them. In terms
of group members, we employ a blind method to blind the
data in order to protect their privacy information. In addition,
by introducing a Hashgraph, the modified data records of the
group members can be recorded, which results in traceability
of the group membership, and illegal behaviours of the group
members can be contained through Hashgraph technology.
In terms of the TPM, a virtual TPM pool was designed, and
multiple TPMswere authorized by groupmanager to perform
computing tasks. The virtual TPM pool acts as a secret box
that is hidden from the outsideworld. Only the groupmanager
knows which TPMs are calculating in the box, and there is
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no correlation between TPMs. Thus, TPM security manage-
ment is realized. Additionally, the utilization of our proposed
auditing process, which is free from the replay and replace
attacks mentioned above, makes the auditing of our scheme
more secure.

Our research contributions can be summarized as follows:
(1) By introducing an efficient blind method, this paper

ensures the data privacy and identity privacy of the group
members. By introducing a Hashgraph, this paper avoids the
hidden security risks of group members, and simultaneously
makes the user identity traceable.

(2) The TPM management strategy is designed, and the
virtual TPM pool is built by the group manager. The strategy
ensures the security of agent (TPM) and results in lightweight
calculations for the agent. Using the TPM instead of group
members to calculate the authentication label and audit data
integrity results in lightweight calculations for the group
members.

(3) The security analysis of the scheme shows that the
scheme is safe and can resist both replace attacks and replay
attacks.

(4) The experimental evaluation of the scheme shows that
the scheme can achieve lightweight calculations for group
members and the TPM.

C. ORGANIZATION
The remainder of this paper is organized as follows: Section II
introduces the system model and design goals. Section III
covers the preparation knowledge. Section IV introduces the
main design idea of the LSSA. Section V covers a detailed
description of the LSSA scheme. Section VI covers the secu-
rity analysis. Section VII introduces the experiment evalua-
tion. Section VIII presents the conclusion.

II. SYSTEM MODEL AND DESIGN GOALS
A. SYSTEM MODEL
The system model of this scheme consists of four differ-
ent entities: the Group members (M), the Cloud, the Group
Manager (GM), and the TPM. As shown in Fig. 1, there are
multiple group members in a group. After the data owner
(the individual or organization that owns the original data)
creates the data file and uploads it to the cloud, any group
member can access and modify the corresponding shared
data. Note that the original data owner can play the role of
GM and there is only one GM in each group. The M play two
important roles: 1) blind data, and 2) record blind data and
broadcast within the group through a Hashgraph. The cloud
(e.g., iCloud, OneDrive, and Baidu Cloud) provides data stor-
age services for group members and provides a platform for
group members to share data. The GM plays three important
roles: 1) generate the TPM’s public-private key pair, 2) for-
mulate the TPM management strategy, and 3) generate the
secret seed that is used to blind the data for group members
and to recover the real data for the cloud. The TPM plays
two important roles: 1) generate data authentication label for

FIGURE 1. System model.

group members, and 2) verify the integrity of the cloud data
on behalf of the group members.

The execution procedure is divided into the data upload
stage and the audit stage. Before the group members make
a request to upload the modified data to the cloud, the data
are first blinded by the secret seed and recorded by the
Hashgraph, and then sent to the group manager. According to
the TPM management strategy, the group manager selects a
TPM from the virtual TPM pool (Section IV.B for details) for
authorization, and the authorized TPM calculates the corre-
sponding authentication labels for these blinded data within
the authorization time. Then, the blind data and authentica-
tion label are sent to the cloud. Before receiving these mes-
sages, the cloud will check whether or not the authorization
from the TPM is valid at the current time. If it is, he verifies
whether or not the authentication labels are correct. If they
are correct, he will recover the real data and compute their
authentication labels. Finally, the cloud stores these real data
and authentication labels. Before executing the auditing pro-
cedure, the group manager selects a TPM and creates the
authorization according to the TPM management strategy.
Then, the authorized TPM sends the challenge messages to
the cloud. Before receiving these messages, the cloud will
check whether or not the authorization from the TPM is valid.
If it is, the cloud generates a proof of possession of the shared
data. Finally, the TPM can verify the integrity of shared data
in the cloud by checking the correctness of the proof.

B. DESIGN GOALS
(1) Lightweight computing: This approach ensures that group
members do not need to perform time-consuming calcula-
tions during the generation of authentication labels or during
the audit of the shared data. Multiple TPMs take part in the
calculation, thereby ensuring a lightweight calculation of a
single TPM.

(2) Identity traceability: The modification of data by illegal
group members may lead to disputes among the group mem-
bers using the same shared data. This goal ensures that the
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GM can find and remove any illegal group members, thereby
achieving the security management of groups.

(3) TPMmanagement security: Each TPMworks indepen-
dently to ensure legal participation of the TPM. This goal
ensures that the cloud only accepts and stores the data of
TPMs that are authorized by the GM, and it only responds
to the challenge of the TPMs that are authorized by the GM.

(4) Data privacy and identity privacy: When the TPM
generates authentication labels instead of group members,
it is impossible to know the actual information of the data
block. The TPM cannot acquire the identity information of
group members at the stages of uploading data and auditing
data.

(5) Audit correctness and security: The TPM can verify
the integrity of the shared data through the audit process.
Malicious cloud service providers cannot complete the audit
process through replace or replay attacks.

III. PREPARATION KNOWLEDGE
The main preparation knowledge is as follows: bilinear
pair mapping, the Computational Diffie-Hellman (CDH)
problem, the Interconnection function, and Hashgraph
technology.

A. BILINEAR PAIR MAPPING [19]
Let G1 and G2 be two multiplicative loop groups with a large
prime order p, and g1 and g2 be the generators of group G1.
A bilinear pairing is a map e : G1 × G1→ G2
with the following properties:
(1) Bilinearity: for ∀g1, g2 ∈ G1 and a, b ∈ Z∗p ,

e(ga1, g
b
2) = e(g1, g2)ab;

(2) Non-degeneracy: e(g1, g2) 6= 1; and
(3) Computability: there is an efficient algorithm to com-

pute this pairing.

B. COMPUTATIONAL DIFFIE-HELLMAN (CDH)
PROBLEM [20]
For x, y ∈ Z∗p , given g, g

x , gy ∈ G1, we calculate gxy ∈ G1.
TheCDHassumption inG1 holds if solving the CDHproblem
in G1 is computationally infeasible.

C. INTERCONNECTION FUNCTION [21]
N input ports andN output ports are connected by an intercon-
nection function f, where f(x) = x, 0 ≤ x ≤ N − 1, and x is
the address of the port number, which is usually expressed in
n bits. Therefore, the interconnection function is represented
as f (xn−1xn−2 . . . x1x0).
For example, in the cube permutation functionCk (xn−1xn−2

. . . xk+1xkxk−1 . . . x1x0) = xn−1xn−2 . . . xk+1x̄kxk−1 . . . x1x0,
the interconnection function can be represented by
n = log2 N subfunctions of cube permutation. When the
number of members in the group is N = 8, the number
of cube permutation subfunctions is n = log2 8 = 3,
where C0(x2x1x0) = x2x1x̄0, C1(x2x1x0) = x2x̄1 x0, and
C2(x2x1x0) = x̄2 x1x0.

FIGURE 2. Hashgraph.

FIGURE 3. Event diagram.

Similar interconnection functions include the identity per-
mutation, exchange permutation, butterfly permutation, bit
reversal inversion permutation, shuffle-exchange permuta-
tion, and shift permutation. Each permutation function also
has some corresponding permutation subfunctions.

D. HASHGRAPH TECHNOLOGY [22]
As shown in Fig. 2, each circle in the figure represents an
event, which is then represented by a hash value. The earlier
Time vertices represent early events in the historical records,
and Mi represents the user i. The message is propagated in
the Hashgraph network in the Gossip mode. After event B
occurs, user M2 who generated B appends this event with its
own signature, Sign M2, and randomly sends it to user M1
randomly. User M1 receives this message and creates a new
eventA. EventA contains two event hashes (his own historical
event C and the user M2 gossip synchronized event B), and
user M1 attaches event A to his own signature, Sign M1, and
randomly sends it to other users.

IV. MAIN DESIGN IDEA OF THE LSSA
In this section, we use Hashgraph technology to propose the
design idea of group member management. By referring to
the TCP sliding window [23] and using the Interconnection
function, the design idea of the TPM management strategy is
proposed.

A. DESIGN IDEA OF GROUP MEMBER MANAGEMENT
When a user registers with the group, the group manager ran-
domly generates an account as the identity label of member
M of the group, where according to the account, the actual
identity of the group member can be determined. When the
group member is removed, the group manager removes the
account. For notational simplicity, we define the following
notations.
• m: The data files are divided into n blocks (m1,
m2,. . .mn), and each block is represented by mi, where
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FIGURE 4. Sending window.

mi is fragmented into s slices (mi,1,mi,2,. . .mi,s), and
each slice is represented by mij.

• m
′

ij: The blind data block corresponding to mij.
• idi,j: The public identifier information of the blind data

block m
′

ij.
• MOwner : The account (ID) of the data owner.
• hash: The hash function, e.g., SHA-1 and SHA-256.
• Sign: The signature on the ID of group members.

As shown in Fig. 3, before the data owner MOwner sends
the blind data block m

′

ij to the group manager, who calculates
the hash value hash(idi,j) of idi,j as the upload record (called
the transaction record) of the initial event and attaches the
signature SignMOwner . According to the Hashgraph technique
described in Section III.D, the group member or group man-
ager is randomly selected to synchronize this with initial
event, thereby sending the event to the nodes in the network.
The members in the group can access and modify the original
shared data, but the groupmembersMi that havemodified and
accessed m

′

ij since then need to update the identifier of the
blind block after use. Thus, the members calculate the hash
value of idi,j as a modify/access record (called a transaction
record) for a new event and attach the signature SignMi to
spread it within the group.

B. DESIGN IDEA OF THE TPM MANAGEMENT STRATEGY
After each group member sends a request to upload the
shared data, the group manager selects a TPM for autho-
rization. The port number address of the group member
Mi is ui(x0, x1, . . . , xθ ) (θ is the number of bits in the
binary address), and the port number address of the TPM
is TPMi(x0, x1, . . . , xθ ). The following describes the detailed
selection method.

(1) The group manager chooses the processing time of the
request.

Referring to the principle of the TCP sliding window,
the sending window is set for the input end, and the sending
window corresponds to a period of time. During this period,
the group manager receives the application sent by the group
member.

As shown in Fig. 4, the sending window has 3 pointers that
slide clockwise. The window that allows u1 to send is the time
between P1 and P3, and the current time is P2. Suppose that
the group manager divides a certain time period into 20 parts
as t1-t20. If group member M1 sends an application at t8,
which is in the allowable sending time of the sending window,

FIGURE 5. Virtual TPM pool construction diagram.

the group manager will then receive the sent application
from M1. According to the time frame rotation, if group
memberM1 does not send the request in the allowed sending
time, P2 slides clockwise to 1t

′

1, which corresponds to M1’s
port number address u1, and then 1t

′

1 becomes the time to
process the request of M1.

Therefore, the distance between P1 and P3 determines
the success rate of the application of the group members.
The group manager and the cloud protocol have a consistent
sending window that is updated periodically as needed.When
moving to the right between P1 and P3, the size of the
window changes. For group members who frequently use
shared data, the group manager assigns them more time and
cancels the allowed sending period for the revoked group
members.

(2) The group manager selects the output address TPMi
based on the time of the request that was processed and the
address ui of the input end.
To increase the possibility of selection, the group manager

selects f , f
′

i to be used. (f and f
′

i are the interaction function
and the interaction function sequence, respectively, and the
cloud service provider and the group manager negotiate con-
sistent f and f

′

i .)
As shown in Fig. 5, assuming that u2 sends the application

to the group manager at 1t1, the group manager selects
the interconnection function f = C1 and selects f

′

i = C0
from the sequence of interconnection functions. According to
the sending window in Fig. 4, the round is transferred to the
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time period 1t3, where the group manager can calculate the
output at the moment through u2, 1t3, and the interconnec-
tion function C0. That is, at that moment, the correspondence
between the input and output can be represented by a matrix

u1 u2 u3 u4
TPM11t3
TPM21t3
TPM31t3
TPM41t3


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 (i = 4), which indicates that the

group manager selects the output address TPM1 through u2
and C0 at 1t3.
(3) The group manager selects the time to authorize the

TPM.
Similar to the process of selecting the processing request

time, the group manager sets the sending window for the
output, where the output TPMi of the corresponding ui is valid
only at time 1ti. For an efficient and secure TPM, the group
manager allocates more time for it, and cancels the allotted
sending period for the removed TPM.

Therefore, after selecting the output address TPM1,
the group manager determines whether 1t3 corresponds to
TPM1 according to the sending window of the output end.
If it does,1t3 will be sent to the cloud as the time authorized
by the TPM; otherwise it will select the time authorized by
the TPM according to the time frame rotation.

Through the above strategy, the group manager is provided
with various execution modes. According to the time frame
rotation and the interconnection function, the group manager
can dynamically select TPMi. The group manager adjusts
the time according to the actual situation. After one rotation,
the group manager can send a new f to the cloud so that
both the output time and the function change. The group
member sends an application to upload data, and the group
manager ‘randomly distributes’ the computing task to the
selected TPMi according to the above rules. This approach
is equivalent to building a virtual TPM pool, such that
each TPM and each group member are independent of one
another.

V. DETAILED DESCRIPTION OF THE LSSA SCHEME
A. OVERVIEW
In the data upload phase, the group manager generates the
TPM’s public-private key pair. He also generates a secret
seed, and then sends it to the group members and the cloud.
Because the groupmanager’s port is the port connection point
between the group members and the TPMs, he can select the
send window and interaction functions, create the authoriza-
tion according to the TPM management strategy, and then
issue this authorization to the TPM. When the user wants
to upload data to the cloud, he first computes the blinding
factor using the secret seed to blind these data, then calculates
the hash value of the blind data as a transaction record for
a new event, then broadcasts it within the group, and then
sends them to the group manager. Before receiving these
messages, the group manager will check whether or not the
hash value from the member is valid. If it is, he will send

TABLE 1. Notations.

the authorization to the TPM. Then, the TPM will generate
the corresponding authentication labels for these blinded data
and upload these blinded data and their authentication labels
to the cloud together. Before recovering these messages,
the cloud will check whether or not the authorization from the
TPM is valid at the current time. If it is, he verifies whether or
not these authentication labels are correct. If they are correct,
he will recover the real data using the blinding factor and
compute their authentication labels. Finally, the cloud stores
these real data and the authentication labels.

Before executing the audit procedure, the group manager
selects the send window and interaction functions and creates
the authorization according to the TPMmanagement strategy
as described above. Then, the authorized TPM generates a
challenge message (CM) and sends it to the cloud. Before
receiving these challenges, the cloud will check whether or
not the authorization from the TPM is valid. If it is, then based
off the challenge message the cloud is able to generate a proof
of possession of the shared data. Finally, the TPM is able to
verify the integrity of the shared data in the cloud by checking
the correctness of the proof.

B. SCHEME DESCRIPTION
Table 1 shows the symbolic descriptions of this section.

We describe the interaction among the TPM, the cloud,
the group manager and the group members in our scheme
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FIGURE 6. Algorithm flowchart.

in Fig. 6. The data upload phase can be completed using steps
1-6, and the audit phase can be completed using steps 7-9:

STEP 1. (Key Generation):
1) The group manager randomly selects βi ∈ Z∗p , which

will act as the private key of TPMi. He then calculates gβi .
2) The group manager randomly selects k1 ∈ Z∗p and sends

it to the group members and the cloud.

3) The group manager randomly selects αj ∈ Z∗p , calcu-

lates gα
j
, and computes pkTPMi as the public key of TPMi:

pkTPMi = (gβi , gα
1βi , gα

2βi , . . . , gα
jβi ) (1)

4) The group manager selects the interconnection
function f, the interconnection function sequence f

′

i , and the
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sendingwindows of the input and output, and then sends them
to the cloud.

STEP 2. (Data Blind):
1) Group members use the secret seed k1 to calculate the

blind factor αi = ζk1 (i, name), which in turn calculates the
blind data m

′

ij, i.e.,

m
′

ij = mij + αi (2)

2) A group member sends a request to upload the data m
′

ij
to the group manager, calculates the hash value hash(idi,j),
and sends idi,j,m

′

ij to the group manager through the secure
channel. A new event is then created by the group member.
The hash(idi,j) will be used as a transaction record for the
new event and will be broadcasted within the group. After
receiving the request, the group manager verifies hash(idi,j)
according to the same hash algorithm and receives m

′

ij after
the verification is passed.

STEP 3. (Authorize):
1) The group manager calculates the output port TPMi in

the virtual TPM pool corresponding to the input port ui (the
requesting group member) according to the TPM manage-
ment strategy.

2) The group manager generates the authorization message
for TPMi as follows.{

(IDgroup||ui||1ti),1t
′

i

}
(3)

where IDgroup is the identity of the group manager, 1ti is the
time when the group manager processes the request, and 1t

′

i
is the time authorized by the group manager for the TPM.

3) The group manager calculates the valueH1 according to
the authorization message as follows.

H1 = H1((IDgroup||ui||1ti),1t
′

i ) (4)

4) The group manager then sends the authorization
message (3) to the cloud, and sends αj,βi,m

′

ij, and H1
to TPMi.
STEP 4. (Authentication label Generation):
1) After receiving the blind data block m

′

ij, TPMi uses
private key βi to generate authentication label σ

′

i of m
′

ij, i.e.,

σ
′

i = (H2(i) ·
∏s

j=1
(gα

j
)m
′

ij )βi (5)

e.g., if m
′

5 is the modified blind block, then σ
′

5 = (H2(5) ·∏s
j=1 (g

αj )m
′

5j )βi .
Then, TPMi send the data file (m

′

ij, σ
′

i ) and H1 to the
cloud.

2) After receiving the (m
′

ij, σ
′

i ) of the corresponding TPMi
and the authorization message (3) of the corresponding group
manager, the cloud first calculates the output port TPMi.
If TPMi just sends the message at 1t

′

i , then the cloud calcu-
lates H1((IDgroup||ui||1ti),1t

′

i ) and determines whether the
value is consistent with the value H1((IDgroup||ui||1ti),1t

′

i )
from TPMi. If they are consistent, STEP 5 is executed; other-
wise the execution is refused.

STEP 5. (Authentication label Check):
The cloud verifies the correctness of label σ

′

i using the
following equation:

e(σ
′

i , g) = e(H2(i) ·
∏s

j=1
(gα

j
)m
′

ij , gβi ) (6)

If the equation is true, (m
′

ij, σ
′

i ) is received and stored;
otherwise it is rejected.

STEP 6. (Data Recovery):
The cloud calculates αi = ζk1 (i, name) based on k1, and

then computes the real data mij using the following equation:

mij = m
′

ij − αi (7)

The cloud calculates the real authenticator label σi accord-
ing to pkTPMi , i.e.,

σi = σ
′

i ·
∏s

j=1
(gα

jβi )−αi = (H2(i) ·
∏s

j=1
(gα

j
)mij )βi (8)

Finally, the cloud stores the real data blocks mij =
(mi1, mi2,. . . ,mis) and their corresponding real authenticator
labels σi.

STEP 7. (Challenge):
When the group manager wants to initiate a challenge

to the cloud, he randomly selects 1t as the authorization
time to TPMi, where 1t corresponds to the ui of sending
window on the input side. The group manager then sends
an audit authorization command to the TPMi through ui at
1t , and sends

{
IDgroup||ui||1t

}
as the audit authorization

information to the cloud.
After receiving the authorization command from the group

manager, the TPMi implements the audit process.
1) TPMi randomly selects c blocks from all blocks of the

shared data and denotes the indexs of the selected blocks
as L.

2) TPMi generates two random numbers o, r ∈ Z∗p , and
calculates X = go and R=gr .
3) TPMi calculates {Xα

j
}1≤j≤s.

4) TPMi outputs the challenge information:

CM = {L,R, {Xα
j
}1≤j≤s} (9)

Then, TPMi sends CM to the cloud.
STEP 8. (Proof Generation):
After receiving the challenge information CM, the cloud

first calculates the output port TPMi according to{
IDgroup||ui||1t

}
. The cloud then uses the method in STEP

4 to verify the authorization message
{
IDgroup||ui||1t

}
. The

cloud then generates the proof of possessing shared data as
follows:

1) The index set L of the selected blocks is divided into
subsets L1, . . . ,Ld , where Li is the subset of the selected
blocks that are signed by TPMi.

2) For each subset Li, the cloud server calculates
uij =

∑
l∈Li mlj and πi =

∏
l∈Li

e(σl,R) = e(
∏
l∈Li

H2(l)
∏s

j=1

gα
j∑

l∈Li
mlj , g)βir , where 1 ≤ i ≤ d and 1 ≤ j ≤ s.
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3) The cloud server calculates wi =
s∏
j=1

Xα
juij and

π =
d∏
i=1
πi. Then it returns prf as a response to the challenge

message from the TPMi, i.e.,

prf = {{wi}1≤i≤d , π} (10)

STEP 9. (Proof Check):
Based on the received prf and the challenge message CM,

TPMi verifies the integrity of the shared data by checking the
correctness of the following equation:

d∏
i=1

e(ηoi , pk
r
TPMi

) · e(wi, pkrTPMi
) =πo (11)

where ηi =
∏
l∈Li

H2(l), 1 ≤ i ≤ d . The above equation can be

further rewritten as (
d∏
i=1

e(ηoi wi, pkTPMi ))
r
= πo.

If the equation is true, then TPMi outputs True; otherwise
False is returned. In other words, if the selected block in
the challenge has been tampered with, the cloud service
provider cannot generate valid evidence, and the cloud ser-
vice provider will not be able to pass the audit process from
the TPMi.

VI. SECURITY ANALYSIS
This section performs the security analysis separately from
the audit correctness, audit security, data privacy, identity pri-
vacy, TPM security, and traceability of the groupmembership
analyses.

A. AUDIT CORRECTNESS
When the shared data is properly stored in the cloud
server, if the cloud provides a valid integrity certificate
prf= {{wi}1≤i≤d , π}, the validation procedure can then verify
the integrity of the data.
Proof: According to the nature of bilinear mapping,

the right side of the equation can be derived from the left side
of the equation to prove the correctness of equation (11):

d∏
i=1

e(ηoi , pk
r
TPMi

) · e(wi, pkrTPMi
)

=

d∏
i=1

e(
∏
l∈Li

H2(l)o, gβir ) · e(
s∏
j=1

(go)α
j∑

l∈Li
mlj , gβir )

=

d∏
i=1

e(
∏
l∈Li

H2(l), g)oβir · e(
s∏
j=1

gα
j∑

l∈Li
mlj , g)oβir

=

d∏
i=1

e(
∏
l∈Li

H2(l)
s∏
j=1

gα
j∑

l∈Li
mlj , g)oβir

=

d∏
i=1

πoi = (
d∏
i=1

πi)o = πo

Therefore, as long as the evidence comes from complete
data, the validation equation will hold.

B. AUDIT SECURITY
The malicious cloud service provider cannot complete the
audit process through replace attacks or replay attacks.
¬ Because each time the TPM initiates a challenge both
L = {L1, . . . ,Ld } and X = go are randomly generated,
the cloud service provider cannot calculate uij =

∑
l∈Li mlj

and wi =
s∏
j=1

Xα
juij in advance, and therefore cannot

implement a replace attack. ­ Cloud service providers must
calculate ηo (η =

∏
l∈L

H2(l) ∈ G1) if they want to imple-

ment replay attacks. Suppose that the cloud service provider
chooses ψ ∈ Z∗p to meet η = gψ . Since the CDH problem
is computationally infeasible, the cloud service provider still
cannot calculate gψo based on gψ , g and go.

C. DATA PRIVACY AND IDENTITY PRIVACY
¬ In the user upload data phase, the TPM cannot extract the
real data mij through the blind data block m

′

ij. This finding is
observed because the TPM receivesm

′

ij = mij+αi(j ∈ [1, s]),
where αi = ζk1 (i, name) is generated by group members
through a random function.­The TPMmanagement strategy
is flexible and secure. This strategy expands the method to
select TPMi and solves the problem of insufficient computing
power of a single TPM. Each TPM independently performs
computing tasks and cannot find more valuable information
about group members through randomly distributed blind
data blocks.

D. TPM SECURITY
The TPM public key is used to verify the integrity of the
shared data. The final authentication label of the data block
is actually encrypted using the TPM private key. Therefore,
it is necessary to prevent the TPM from leaking the private
messages for some reasons. ¬ A malicious group member
may collude with the TPM. To this end, the group manager
specifies multiple TPM, and each TPM works independently
and distributes different private keys for it, which avoids the
above problems. ­ It is necessary to prevent the TPM from
being maliciously attacked for some reason. By constructing
a virtual TPM pool, only the group manager can calculate
TPMi, and those outside cannot find the target of the attack.

E. IDENTITY TRACEABILITY
Through Swirld’s Hashgraph Consistency Algorithm [25],
group members agree on the order of events (that is, the order
of transaction records within the event) and the timestamp
for each event (transaction record). The transaction records
of each event can be determined in chronological order
according to the Hashgraph. Once a member of the group
maliciously modifies the data block, the dirty data block may
be discovered by other group members. Once such a data
dispute is generated, the group member may trace the usage
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history of the modified data block according to a Hashgraph.
Legal group members can open the data block information
to prevent the illegal group members from collapsing the
structure, and finally the group member whose data block
information has illegal data is designated as an illegal group
member.

VII. EXPERIMENT EVALUATION
According to the analysis of Section VI, the scheme of this
paper avoids potential security risks through a more secure
method. In the audit scheme of shared data, group mem-
bers are more concerned with the efficiency problem when
using data [18]. This section first analyses the computational
overhead of the LSSA scheme, and then evaluates it in the
specific operating environment. The final results prove that
the scheme can achieve lightweight calculations for group
members, and that LSSA has high security compared with
similar audit schemes.

A. ANALYSIS OF CALCULATION OVERHEAD
For the convenience of the analysis, the following symbols
are used to indicate the specific operations in the scheme:
MulG1 ,MulG2 , andMulZp represent the multiplication time in
G1,G2, and Z∗p , respectively; ExpG1 and ExpG2 represent the
exponential operation times inG1 andG2, respectively;AddZp
represents the addition time in Z∗p , and Pair represents the
calculation time e : G1 × G1→ G2 of a bilinear pair.
In the data upload phase, group members need to blind

the data, the cost of which is n · s · AddZp . In addition,
hash(idij) needs to be calculated. The TPM needs to calculate
the authentication label of the blind data, the cost of which is
(s+ 1)ExpG1 + sMulG1 .
In the audit phase, the computational overhead of the chal-

lenge initiated by the TPM is (s+2)ExpG1 . The TPM verifies
the evidence from the cloud, where the computational over-
head is cExpG1 + cMulG1 + cPair + (d − 1)MulG2 + 2ExpG2 .

B. EXPERIMENT RESULTS
The experiment was implemented using the Ubuntu
16.04 operation system with an Intel Core i7 3.4 GHz proces-
sor and an 8GB memory. The programme is written in C, and
it uses the library functions in the Pairing-Based Cryptogra-
phy (PBC) library to simulate the cryptographic operations,
where the benchmark threshold is 512 bits, the size of the
element is |p| =160 bits in Z∗p , and the size of the shared data
is 20 MB. The experimental results are the averages of the
10 experiments.

1) OVERHEAD IN THE AUDIT PHASE
Due to the powerful computing power of the cloud, more
attention is often paid to the overhead of the TPM in the
process of a data integrity audit. According to Section V,
we know that the auditing task of the TPM is divided into
two phases: the challenge generation and proof verifica-
tion. To effectively evaluate the auditing computation over-
head of our scheme, we analyse the time cost of the two

FIGURE 7. TPM audit overhead.

above phases. The experimental results are presented
in Fig. 7. We choose to challenge different blocks from 100 to
500 in intervals of 50 and set the number of TPMs to d= 20.
As shown in Fig. 7, The time overhead of the challenge
phase is constant, which is approximately 31 ms. The running
time of the proof verification ranges from 80 ms to 260 ms.
In step 8, H2(l) (l ∈ Li, where L has c elements) is linear with
the value c. Thus, the computation overhead of the proof ver-
ification linearly increases with the number of the challenged
blocks. As we know, a greater number of challenged blocks
results in a more accurate integrity verification. However, this
will incur more computational overhead. Thus, it is desirable
to find a trade-off between auditing computational cost and
integrity guarantee.

2) OVERHEAD IN THE DATA UPLOAD PHASE
(1) The time overhead of the hash algorithm

To test the time complexity of the hash algorithm, exper-
iments are performed by calculating the hash values of dif-
ferent idi,j sizes. The tested hash algorithm selects the best
current SHA-1 and SHA-256 algorithms. As shown in Fig. 8,
as the size of idi,j increases, the time overhead also increases.
When the size of idi,j increases from 0 to 14 bits, the time
overhead of calculating the hash algorithm increases slowly.
Therefore, in order to reduce the computational burden of the
group members and group manager, the size of idi,j is set
to 14 bits, which is enough to record the public identifier
information of the shared data. When the id size is set to
14 bits, the time overheads of the two algorithms are 0.011 s
and 0.012 s, respectively.

(2) Calculation overhead of authentication label generation
As shown in Fig. 9, the experimental results show that the

time overhead of the authentication label generation increases
linearly with the number of shared data slices s. When the
data slice s = 500, the time overhead of the authentication
label generation is 720 ms. Fig. 9 also shows that the time
required for blinding data by group members is very small,
and it therefore can be ignored.

We used a test to illustrate the effect of our scheme in a big
data scenario. For each block size (from 1KB to 1000KB), we
tested the overhead of the authentication label generation for
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FIGURE 8. Time overhead of the hash algorithm.

FIGURE 9. Calculation overhead of the blind data and the authentication
label generation.

2 GB data, 20 GB data and 200 GB data. As shown in Table 2,
the cost of the authentication label computation for the same
file decreases almost linearly with an increase in the block
size. According to our authentication label computation for-
mula (5), we can see that each authentication label generation
involves (s + 2) exponentiations, which are the main over-
head for computing the authentication label. For same size
data, a larger block fragmentation means less authentication
labels and therefore less exponentiations. However, in actual
scenarios the group members usually divide a smaller block
fragmentation to achieve a flexible operation of the cloud
data, including block deletion, modification, and insertion.
This increases the computational burden of the TPM. The
scheme of this paper adopts the TPM management strategy.
The group manager can allocate the computing tasks to each
TPM, which can reduce the computational burden of a single
TPM. As shown in Fig. 9, if 500 data slices are uploaded
to d TPMs, the average computing overhead of each TPM
is 720/d ms.
In summary, the experiment is evaluated using two better

hash algorithms, and the optimal digits of the id are selected.
At this time, the calculation overhead of the group member is
the sum of the time overheads for the hash algorithm and for
blinding the data, which is lightweight for group members.
Moreover, we can find that multiple TPMs takes part in the
calculation, thereby achieving the lightweight calculation of

TABLE 2. Authentication label generation time overhead with different
block sizes.

TABLE 3. Comparison table.

a single TPM during the generation of authentication labels.
Nevertheless, it is worth to note that the group size and
the number of TPMs is specified by the group manager,
which enables us to formulate flexible strategies to control
the throughput according to the actual scenario, to achieve a
better application of our scheme.

We describe a high-level comparison between LSSA and
existing studies [15]–[18] as shown in Table 3. We can see
that LSSA supports identity privacy, traceability, data privacy,
agent security, a lightweight overhead, and it can resist the
replace and replay attacks.

VIII. CONCLUSION
In this paper, we proposed a provable shared data possession
for a lightweight and security audit process in cloud stor-
age. By introducing a Hashgraph, the traceability of group
membership is achieved, and the illegal behaviours of group
members can be contained through Hashgraph technology.
By specifying multiple TPMs for calculation and manage-
ment according to the TPMmanagement strategy, each group
member and each TPMare independent of one another, which
ensures that the cloud data verification process is secure and
achieves a lightweight calculation of the TPM. Through a
security analysis, the scheme in this paper can avoid replay
attacks and replace attacks while protecting the identity pri-
vacy and data privacy of group members and ensuring secure
storage of the shared data. Therefore, this scheme has impor-
tant significance and value for the secure storage of shared
data.
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