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ABSTRACT Magnetic resonance imaging (MRI), which assists doctors in determining clinical staging and
expected surgical range, has high medical value. A large number of MRI images require a large amount of
storage space and the transmission bandwidth of the PACS system in offline storage and remote diagnosis.
Therefore, high-quality compression ofMRI images is very research-oriented. Current compressionmethods
for MRI images with high compression ratio cause loss of information on lesions, leading to misdiagnosis;
compression methods for MRI images with low compression ratio does not achieve the desired effect.
Therefore, a fast fractal-based compression algorithm for MRI images is proposed in this paper. First,
three-dimensional (3D) MRI images are converted into a two-dimensional (2D) image sequence, which
facilitates the image sequence based on the fractal compression method. Then, range and domain blocks
are classified according to the inherent spatiotemporal similarity of 3D objects. By using self-similarity,
the number of blocks in the matching pool is reduced to improve the matching speed of the proposed method.
Finally, a residual compensation mechanism is introduced to achieve compression of MRI images with high
decompression quality. The experimental results show that compression speed is improved by 2–3 times,
and the PSNR is improved by nearly 10. It indicates the proposed algorithm is effective and solves the
contradiction between high compression ratio and high quality of MRI medical images.

INDEX TERMS MRI, image compression, fractal compression, spatiotemporal similarity, lossy compres-
sion.

I. INTRODUCTION
Medical imaging has become one of the most active and
rapidly evolving fields in medical research and clinical
diagnosis. Medical images display the internal structure of
the human body in an intuitive form, providing clinicians
with intuitive and accurate basic information on anatomy,
pathology and function. Typical imaging modalities include
magnetic resonance imaging (MRI), computer-assisted
tomography (CT), ultrasound (US), computer-assisted X-ray
(CR), digital subtraction angiography (DSA), et al. With
continuous advancement of medical imaging technology,
especially the resolution of imaging devices, the amount of
medical image data will continue to grow. Existing bandwidth
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conditions are difficult to meet the real-time transmission
requirements of large data volumes. To meet effective storage
and transmission of medical images, it is not only necessary
to expand storage space and transmission bandwidth, but also
to study how to efficiently compress medical data. Therefore,
it is necessary to implement effective compression of various
medical images using an image compression algorithm.

Medical image compression methods are generally classi-
fied into lossless compression and lossy compression. Loss-
less compression provides medical diagnostics with image
information of the same quality as the original image. How-
ever, the compression ratio of lossless compression is usu-
ally low, which is difficult to meet the actual transmission
requirements of medical images. Lossy compression pro-
vides a higher compression ratio by losing some information.
Increase in compression inevitably brings a certain degree of
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FIGURE 1. Spatiotemporal correlation of MRI medical images.

degradation to medical images. In the future of telemedicine
applications, lossless compression will be difficult to provide
a low bit rate required for image transmission, while relying
on lossy compression to achieve real-time transmission of
images. At present, lossy compression technology for med-
ical images has become a research hotspot at domestic and
international, and its research goal is to improve the recon-
struction quality of images as much as possible under a given
code rate.

MRI medical images contain rich temporal and spa-
tial correlations. As shown in Fig. 1, three similar image
blocks 1, 2, and 3 are respectively derived from three adjacent
MRI medical image slices. The spatiotemporal correlation
means that in a MRI image slice, its adjacent fields of a
certain pixel (region) in a layer of image (several layers
before and after) have a strong similar relationship with
the pixel (region). This spatiotemporal correlation makes a
large amount of (local) self-similar information contained in
MRI images. Therefore, it is considered to compress this
type of medical image using the fractal compression idea.
Fractal image compression is based on Iterated Function
System (IFS), omitting the image content, and only retain-
ing self-similarity parameters of the local image content to
complete data compression. It has advantages of high com-
pression ratio, reconstruction at any scale, and fast decoding.
However, traditional fractal compression algorithm fails to
fully consider the spatiotemporal relationship ofMRI images,
resulting in inefficient and poor results. Therefore, a fast
fractal-based compression algorithm for MRI images is pro-
posed in this paper.

In this study, our contribution is to apply sequence
image-based fractal compression method to compress
three-dimensional MRI images. Besides, to get better per-
formance of compression, we proposed two improvements.
First, range blocks and domain blocks are classified accord-
ing to the spatiotemporal similarity feature. A range block
only needs to search for the optimal matching block in a
certain type of domain block. Compression process is acceler-
ated by reducing the capacity of matching pool. Second, the
residual compensation mechanism is introduced to achieve

approximate lossless compression ofMRI images. The exper-
imental results show that the proposed method improves
compression efficiency under the premise of ensuring image
quality of MRI.

The rest of this paper is organized as follows. In Section 2,
we review the progress of medical image compression
research from both ROI coding and non-ROI coding.
Section 3 elaborates on a fast fractal-based compression
method for MRI image. In Section 4, we verify feasibil-
ity of the proposed method through experiments. Finally,
Section 5 summarizes our work and describes future research
directions.

II. RELATED WORKS
Under application conditions such as telemedicine, the com-
pression ratio of lossless compression is difficult to meet
transmission requirements for real-time images. It is neces-
sary to resort to a lossy compression method. At the expense
of image portion information, a target bit rate required for
real-time transmission is exchanged. Selective image com-
pression technology is gaining an increasingly important
role in telemedicine or medical imaging applications with
large storage needs. Its production effectively alleviates the
contradiction between high compression ratio and lossless
compression of medical images. The compression method
based on region of interest (ROI) has become an important
selective image compression technology, which accounts for
a large proportion in published literatures. This paper will
review the research progress of medical image compression
from both ROI coding and non-ROI coding.

A. ROI CODING
Medical image compression algorithm based on ROI cod-
ing first divides an image into ROI and background (BG),
wherein the ROI region usually adopts lossless or near loss-
less compression, and the BG region usually performs a
large degree of lossy compression. Bruckmann and Uhl [1]
compared the performance of lossy compression based on
wavelet transform and JPEG in selective image compres-
sion techniques. Experimental results show that the selec-
tive compression performance of wavelet transform was
better than JPEG. Based on the ROI coding provided by
JPEG2000, Tahoces et al. [2] proposed a selective coefficient
mask displacement coding algorithm. The wavelet coeffi-
cients belonging to different sub-bands were shifted to imple-
ment ROI coding. Zhang et al. [3] proposed a classification
method based on neural network. Hosseini and Naghsh-
Nilchi [4] proposed context-based vector quantization (CVQ)
algorithm to achieve high-fidelity compression of medical
ultrasound images. The algorithm used the region growing
method to separate ROI andBG in an image, and then used the
proposed CVQ scheme to compress the two parts separately.
In the algorithm proposed by Sophia and Anitha [5], the ROI
part of an image is losslessly compressed by run-length cod-
ing, Huffman coding or arithmetic coding, and the BG part is
subjected to lossy compression based on vector quantization.
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The algorithm proposed by Kaura and Wasson [6] used the
fractal algorithm to perform lossy compression on BG, and
performs lossless compression based on context tree weight-
ing (CTW) on ROI.

Lesions in medical images and other infected sites have
a more important diagnostic significance than the overall
image. Schelkens et al. [7] combined the embedded zerotree
wavelet (EZW) coding algorithm with the multi-ROI gen-
eral protocol to improve scalability of the embedded code
stream. Sridhar [8] proposed a dual ROI coding algorithm for
medical images in which the lesion area was considered to
be the ROI, and the surrounding lesion (usually susceptible
area) was the secondary ROI, giving the two ROIs different
levels of priority. Hu et al. [9] proposed a multi-ROI medical
image compression algorithm based on edge feature protec-
tion. The algorithm used the Canny operator to extract use-
ful image edge information, combined JPEG2000 to reduce
the ROI losslessly, and used a multi-level tree set split in
hierarchical tree (SPIHT) to compress the BG. For vascu-
lar images, Firoozbakht et al. [10] proposed a compression
algorithm based on context and multi-ROI coding. The algo-
rithm divided a vascular image into a primary ROI (vas-
cular stenosis region), a secondary ROI (other important
areas of blood vessels), and BG. The main ROI usually
needed to be manually selected, while the secondary ROI was
automatically detected by the regional growth method. The
component priority-based ROI coding method proposed by
Bartrina-Rapesta et al. [11] utilized the optimal rate distortion
technique and combined a simple and effective ROI code
rate allocation strategy to achieve coding of multiple ROIs
at different priorities.

For stereoscopic medical images, multidimensional
wavelet transforms are typically used to remove cor-
relations in various directions in the image. Agrafio-
tis et al. [12] extended 3D SPIHT algorithm to enable
three-dimensional ROI coding. Wang and Cuhadar [13]
proposed the use of unbalanced three-dimensional tree
structure to achieve three-dimensional ROI coding of
medical images, and achieved multi-ROI and multi-quality
control. Victor et al. [14] proposed an improved three-
dimensional scalable compression algorithm for medical
images based on the optimal volume of interest (VOI) coding.
Nguyen et al. [15] proposed an efficient compression algo-
rithm using hierarchical vector quantization and motion
compensation. The algorithm used three-dimensional motion
estimation to create uniform pre-processed data, and used a
three-dimensional compression algorithm based on hierarchi-
cal vector quantization to compress the pre-processed data.
Sanchez [16] proposed a lossy compression algorithm for
medical images based on multiple 3D ROI. The use of joint
source channel coding enabled multiple three-dimensional
ROIs to achieve higher transmission priorities in the context
of wireless transmission. Sid Ahmed et al. [17] proposed an
embedded image encoder based on efficient reversible dis-
crete cosine transform (RDCT). The proposed rearrangement
structure was well coupled to a lossless embedded zerotree

wavelet encoder (LEZW). The background was compressed
using a set partitioning algorithm in hierarchical tree (SPIHT)
technology. Yee et al. [18] applied a lossless BPG compres-
sion algorithm to the ROI region and a lossy BPG for the
non-ROI region.

B. NON-ROI CODING
Sridhar and Prasad [19] combined the integer DCT-based
SPIHT algorithm with context adaptive variable length cod-
ing (CAVLC) to encode important coefficients of medical
images. Then, only these important coefficients were trans-
mitted instead of transmitting the entire image data, thereby
achieving compression effect. Based on the curled DCT
(Warped DCT, WDCT), Prabhu et al. [20] proposed a 3D
warped DCT (3D WDCT), by means of which a complete
medical image compression scheme was presented. Bhavani
and Thanushkodi [21] compared the performance of several
fractal coding algorithms on MRI compression, including
fractal coding standards, quasi-lossless fractal coding, and
improved quasi-lossless fractal coding. Based on this, a novel
quasi-lossless fractal compression algorithm was proposed,
which effectively retained important features in the image.
A machine learning method was used to reduce encoding
time of the algorithm and improve compression performance.
Juliet et al. [22] proposed a medical image compression
algorithm based on Ripplet transform, which introduced an
anisotropic Ripplet transform to represent singular points
on an arbitrary shape curve, and encoded its important
coefficients by SPIHT algorithm. Automatic and accurate
classification of MRI images is important for the analysis and
interpretation of these images. Zhang et al. [23] combined
two successful techniques: pseudo Zernike moment and ker-
nel support vector machine to pathological brain detection.
This approach performed better than eleven state-of-the-art
smart pathological brain detection methods in three open
datasets.

In addition, Juliet et al. [24] proposed using sparse repre-
sentation to explore the geometrical rules of image structure,
and based on this, proposed a medical image compression
algorithm. Geometric flow indicated the direction in which
the gray level of the image changed regularly. The image
was further refined along the direction of geometric flow
by Bandelet transform. Bandelet coefficients were encoded
by SPIHT algorithm, and then the global thresholding pro-
cess combined with fixed coding was performed. Selvi and
Nadarajan [25] proposed a fast compression method for
four-dimensional fMRI images. The method utilized data
recombination, Contourlet transform, and improved binary
array technology. The test results for fMRI showed that per-
formance of the algorithm was better than SPIHT or SPECK,
and had lower complexity. Zhang et al. [26] proposed anMRI
image classifier based on Particle Swarm Optimization and
kernel support vector machine. Juliet et al. [27] proposed a
projection-based medical image compression algorithm. Dis-
crete radon transform (DRT) was used to effectively represent
direction information of the image, and RANHT was used
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to encode Randon transform coefficients. The test results for
MRI and CT showed that compression performance of this
algorithm was better than other types of SPIHT algorithms.

Patbhaje et al. [28] proposed a medical image compression
technique based on adaptive scanning wavelet differential
reduction (ASWDR). ASWDR technology utilized different
wavelet filters and achieved different compression efficien-
cies based on unique sparse characteristics. Selvi and Nadara-
jan [29] proposed a fast two-dimensional lossy compression
technique using wavelet-based contourlet transform (WBCT)
and binary array technique (BAT) for computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) images.
Pathak et al. [30] analyzed various prediction methods using
spatial correlation properties of neighborhood pixels to min-
imize prediction errors. Experimental results showed that the
support prediction method improved compression ratio and
maintained marginal PSNR and minimum absolute error. The
new method proposed by Amri et al. [31] combined image
reduction and extension techniques, digital watermarking and
lossless compression standards such as JPEG-LS (JLS) and
TIFF formats. Zhang et al. [32] developed a novel machine
learning system that automatically diagnoses Alzheimer’s
disease from MRI images. Parikh et al. [33] established an
acceptable HEVC compression range for medical imaging
applications based on established medically acceptable JPEG
2000 compression ranges. The complexity of diagnostically
acceptable lossy compression and high depth medical image
compression was investigated.

From the above review to research progress of medical
image compression, it can be seen that the ROI-based com-
pression method has received extensive attention and has a
large proportion in published literatures. Purpose of introduc-
ing ROI coding is to protect some of the information useful
for subsequent medical diagnosis under limited transmission
bandwidth conditions. Transform-based method has been
widely used in medical image compression. The currently
used transformation method is still DWT. The adoption or
design of more advanced transformation methods is expected
to further improve compression performance. The proposed
method improves compression speed of MRI images while
ensuring image quality. Experimental results show the effec-
tiveness of this method.

III. FAST FRACTAL-BASED COMPRESSION METHOD FOR
MRI IMAGES
A. FRACTAL MRI IMAGE COMPRESSION BASED ON
SEQUENCE IMAGE
Three-dimensional MRI image is essentially a data cube
that adds third-dimensional information to a common two-
dimensional image. For the form in which three-dimensional
image has a data cube, we convert three-dimensional MRI
image into two-dimensional sequence images for compres-
sion. First, the image to be compressed is divided into a series
of fixed size N × N pixel sub-blocks. They do not overlap
each other and cover the entire image, which is called a range
block (R block). Subsequently, the image to be encoded is

FIGURE 2. Flow chart of fractal MRI image compression based on
sequence image.

again divided into domain blocks (D blocks) having a size of
2N × 2N , and D blocks may overlap. Before the encoding,
D block is averaged by the four neighboring pixels, and
its size is reduced to be the same as the size of R block.
The averaged sampled D block is subjected to eight kinds
of equidistant transformations, and the transformed whole
constitutes codebook �. For each R block, it is necessary to
find its best matching D block in the codebook �. Each R
block is then approximated by the luminance transform of
its best matching block D ∈ �, that is R = s • D + o • 1.
Where 1 is a unit matrix of N × N, and s, o are the contrast
and brightness adjustment factors of D block, respectively.
Fractal MRI image compression process based on sequence
image is shown in Fig. 2.

The following are specific steps of fractal MRI image
compression algorithm based on sequence image:

Input: MRI image F of size M ×M .
Output: Fractal encoded file dx, dy, t, s, o.
Step 1: Perform fixed block partitioning on MRI image F ,

and divide it into a range block (R block) whose size is N×N
but does not overlap each other.

Step 2: The 2N × 2N intercepting window is moved in
horizontal and vertical directions of the imageF by a step size
δ, and the intercepted block after each movement constitutes
a domain block (D block).

Step 3: Perform average sampling and eight equidistant
transformations on all D blocks to form a codebook �.

Step 4: For an arbitrary range block Ri, find the best
matching block D

′

j that satisfies Eq.1 in codebook �.

d
(
Ri,Wi

(
D
′

j

))
= min

∥∥∥Ri − (si · (tk (D′j))+ oi)∥∥∥2 (1)
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In Eq.1, D
′

j is the domain block after average sampling. tk ∈
{t1, · · · , t8} are eight isometric transforms. si and oi are con-
trast factor and luminance factor of gradation transformation,
respectively, and are calculated according to Eqs.2-3. n is the
total number of pixels, and rp, dp are the p-th pixel values of
range block and domain block, respectively.

s =
n
∑n

p=1 dprp −
∑n

p=1 dp
∑n

p=1 rp

n
∑n

p=1 d
2
p −

(∑n
p=1 d

)2 (2)

o =
1
n

 n∑
p=1

rp − s
n∑

p=1

dp

 (3)

B. CLASSIFICATION OF MRI IMAGE SUB-BLOCKS
In traditional fractal MRI image compression algorithm, each
range block needs to perform a global search on the entire
codebook � to find the best matching block, which is the
main reason for long compression time [34]. In order to effec-
tively solve this problem, we classify image blocks according
to the spatiotemporal similarity feature. It makes matching
range of range block greatly reduced. Moreover, continuous
m-layer MRI images are combine them into one large image
matrix for overall compression. The ’codebook’ is expanded
from a single frame image to a number of consecutive frames.
When matching a range block, it is no longer limited to a
single frame. Make full use of the inter-frame correlation
to expand the matching pool. Matching error is reduced and
compression quality is improved.

First, set the number m of classes, and then set a set of
threshold sequences {σi}, i = 1, 2, · · · , σ1 = 0. Find the
mean DA =

(
hA1, hA2, · · · , hA2b

)
of gray-scale feature vec-

tors for all remaining domain blocks (excluding the former
i-1 class) as the initial cluster center of the i-th domain block
in Eq.4, where b is the number of bits per pixel, n is the total
number of pixels.

hA1 =
1
n
(h11 + h21 + · · · + hn1)

hA2 =
1
n
(h12 + h22 + · · · + hn2)

· · ·

hA2b =
1
n

(
h12b + h22b + · · · + hn2b

)
(4)

Secondly, domain block D
′

j =
(
hj1, hj2, · · · , hj2b

)
is taken

out one by one from domain block set
{
D
′

1,D
′

2, · · · ,D
′

n

}
. The

distance to cluster center DA is calculated according to Eq.5.

dis
(
DA,D

′

j

)
= [

2b∑
k=1

(
hAk − hjk

)2]/2b (5)

Again, let the initial threshold be σp (σp is the median of
threshold sequence {σi}, and the i-th class domain block CDi
corresponds to the threshold σDi = σp. Then, the domain
block whose distance is less than or equal to σDi is divided
into the i-th class CDi.

FIGURE 3. Flow chart of classified MRI image compression.

Suppose the class CDi contains a number of domain
blocks of ωi. If ωi � (M−2N

δ
+ 1)

2
/m, the threshold is

adjusted to σDi = σ p−1, where σp−1 is an order of magnitude

smaller than σp. And so on until
∣∣∣ωi − (M−2N

δ
+ 1)

2
/m
∣∣∣ ≤

10(log10 ωi−1) or
∣∣∣ωi − ω′i∣∣∣ ≥ 10(log10 ωi−1).

Similarly, if ωi � (M−2N
δ
+1)

2
/m, the threshold

σp is adjusted to σp+1. Until
∣∣∣ωi − (M−2N

δ
+1)

2
/m
∣∣∣ ≤

10(log10 ωi−1) or
∣∣∣ωi − ω′i∣∣∣ ≥ 10(log10 ωi−1). Adjustment of the

threshold is stopped, and the i-th class domain block CDi is
determined.

Finally, m classes of domain blocks CD1,CD2 · · ·CDm are
obtained.

After getting domain block class, we also classify range
blocks.

According to above steps of finding the initial cluster cen-
ter, class centers c1, c2 · · · cm for m classes of domain blocks
are obtained. Calculate the Euclidean distance between
range block Rn and each class center c1, c2 · · · cm, select
the class with the smallest distance to perform a matching
search, and obtain corresponding m class of range blocks
CR1,CR2 · · ·CRm. In this way, each class of range blocks
only needs to perform matching search in the same class
of domain blocks, for example, the m-th range block class
CRm and the m-th domain block class CDm is matched. The
matching process between different classes of range blocks
is performed independently. Reduction of matching range
effectively reduces encoding time. The flow chart of MRI
image compression in this paper is shown in Fig. 3.

The following are specific steps of classified MRI image
compression algorithm in this paper:
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Input: continuous m-layer MRI image {F1,F2, · · · ,Fm}.
Output: Fractal encoded file dx, dy, t, s, o}.
Step 1: Take out continuous m-layer images
{F1,F2, · · · ,Fm} in MRI image slices, and combine them
into one large image matrix F for overall compression. Split
F into N × N range blocks that do not overlap each other.

Step 2: In a window of 2N × 2N , a step size δ intercepts
domain blocks along F . Shrink domain blocks and perform
eight equidistant transformations.

Step 3: According to above method, domain blocks are
classified and the corresponding class of range blocks is
obtained.

Step 4: Take a range block Ri from the p-th class of range
blocks, and take a domain block Dj from the p-th class of
domain blocks. Calculate s and o according to (2) and (3),
until all domain blocks in the p-th class are all searched, find
the best matching block of range block Ri.
Step 5: All range domain classes are matched with their

corresponding domain block classes, and fractal codes of
continuous m layer image is obtained.

C. RESIDUAL COMPENSATION MECHANISM
Since the reconstructed image after lossy compression retains
most of information for the original image, it is considered
that there is a strong correlation between the reconstructed
image and the original image. Residual image of the original
image and the reconstructed image is not random noise. This
conclusion has direct guiding significance for the following
coding. Eq.6 gives the basic formula for calculating residual
image in this paper.

r (x, y) = f (x, y)− g (x, y) (6)

where r(x, y) is the pixel value of the residual image, f (x, y)
is the pixel value of the original image, and g(x, y) is the pixel
value of the reconstructed image.

Residual image of the reconstructed image is obtained after
the original image is greatly compressed, and correspond-
ing ROI region is found on the residual image. A Huffman
coding based on an integer squared quantization threshold is
performed on the region with a finer threshold. The obtained
code stream data is transmitted along with the original coded
data, thereby completing lossless coding of the ROI region
under Huffman coding. The algorithm framework is shown
in Fig. 4.

The following are specific steps of the residual compensa-
tion mechanism algorithm:

Input: Original image and reconstructed image.
Output: Residual code file.
Step 1: Calculate the residual image.
Step 2: Retain the important coefficient of the threshold

under a certain quantization threshold and generate a basic
image to find the ROI region of the remaining coefficient.

Step 3: Huffman coding encodes a finer integer squared
quantization threshold for the ROI region.

Step 4: The obtained code stream data is transmitted fol-
lowing the original coded data.

FIGURE 4. Flow chart of residual compensation mechanism.

TABLE 1. Information of ADNI data set.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
Experiments are deployed on a computer with an Intel-
Core i5-4590 CPU and a 12GB memory. The operat-
ing environment is Matlab2016a. MRI image sequences
in the ADNI data set are taken as examples [35], and
image size is 160 × 192 × 192, 8 bits/pixel. Descrip-
tion of data set is shown in Table 1. We compare the
proposed algorithm with traditional fractal MRI image com-
pression algorithm from two aspects. They are a com-
parison of single-layer image compression and continuous
layer image compression, respectively. In addition, the algo-
rithm of this paper is compared with the BWT–MTF
algorithm [36]–[37]. In these experiments, size of range
block is selected as 4 × 4, and size of domain block is
8 × 8, and the horizontal step and the vertical step are
both 8.

We evaluate quality of the decoded image by calculating
PSNR by Eq.7. The peak signal-to-noise ratio (PSNR) is the
logarithmic value of mean squared error (MSE) between the
original image and the decoded image relative to (2n−1)2,
where 2n − 1 represents upper limit of gray level. n is the
number of bits per pixel. The larger the PSNR value, the less
distortion is represented. In addition, comparison indicators
include compression time (T), speedup ratio (SR), and com-
pression ratio (CR) by Eqs.7-9.

1) PEAK SIGNAL TO NOISE RATIO (PSNR) INDICATOR
PSNR = 10× log10

[(
28 − 1

)2
MSE

]

MSE =
1
n

n∑
i=1

(Xi − Yi)2
(7)

VOLUME 7, 2019 62417



S. Liu et al.: Fast Fractal Based Compression for MRI Images

where n is the number of pixels for the image. Xi and Yi
represent gradation values of the i-th pixel for images X and
Y , respectively.

2) SPEEDUP RATIO (SR) INDICATOR

SR =
TS
TC

(8)

where TS is the time required to adopt traditional fractal MRI
image compression method. TC is the time required for the
method in this paper.

3) COMPRESSION (SR) INDICATOR

CR =
160× 192× 10

H × (8+ 8+ 3+ 8+ 3)
(9)

whereH is the number of range blocks. {8,8,3,8,3} represents
the quantization level of fractal parameters {xi, yi, ti, si, oi},
respectively, which is the memory required to save these
parameters.

A. COMPARISON FOR CONTINUOUS LAYER OF MRI
IMAGES
The first 4 layers of each MRI image are selected for com-
pression. Calculate average compression time and PSNR for
the 4 layers. The size of the original image slice is 160×192,
size of range block is 4× 4, and segmentation yields 40× 48
range blocks. Size of domain block is defined as 8×8, the hor-
izontal step and the vertical step are both 8, and segmentation
yields 20 × 24 domain blocks. According to the spatiotem-
poral similarity of image blocks, domain blocks are divided
into 3 classes. Accordingly, range blocks are also divided
into 3 classes. Table 2 is a restored image after compression
and decompression of the first layer image for the three MRI
images using the traditional fractal encoding algorithm and
the proposed algorithm. Table 3 is experimental data [average
T(s), average PSNR(dB)].

It can be seen from Table 2 and Table 3 that quality of
the reconstructed image obtained by traditional algorithm
and proposed is not much different observed by the human
eye, which indicates that the algorithm is feasible. Secondly,
comparedwith the traditional fractal coding algorithm, PSNR
value is slightly reduced, but coding time is significantly
shortened. This is because the traditional method uses global
search, and the method first classifies all image blocks. As
mentioned above, all range and domain blocks are divided
into 3 classes. In theory, the speed should be up to three times.
However, due to the non-uniformity of the classification, the
actual acceleration is less than three times.

B. COMPARISON FOR MRI IMAGES WITH RESIDUAL
COMPENSATION MECHANISM
We compress the first 4 layers of the three MRI images.
A combination strategy is used that combines the four lay-
ers of images together and compresses them. Classification
of domain blocks and range blocks is also done globally.

TABLE 2. Comparison for decoding quality of traditional algorithm and
proposed algorithm.

TABLE 3. Comparison for performance of traditional algorithm and
proposed algorithm.

The ‘‘codebook’’ is expanded from a single layer image to
a 4-layer image, effectively improving matching accuracy.
We first compress the 4-layer image without residual com-
pensation mechanism, then compress it using the improved
fractal coding method with residual compensation mecha-
nism. After combining, domain blocks and range block are
divided into corresponding 10 classes. Table 4 is a perfor-
mance comparison of the three methods, where PSNR is the
average of the 4-layer image.

It can be seen from Table 4 and Table 5 that the image
quality obtained by the proposed algorithms with residual
compensation mechanism is optimal. Although its compres-
sion time is higher than the the proposed algorithms without
residual compensation mechanism, it is still much smaller
than the time required by traditional method, and its PSNR
is also the highest of the three. When four layers of MRI
images are combined and compressed together, the time is
four times that of a single layer image. But at this time all
range and domain blocks are divided into 10 classes, so there
is still speed-up effect. The compression time is 2.5 times
that of traditional method. In addition, the introduction of
RCM significantly improves quality of reconstructed images.
It should effectively compensate for the error loss.

C. COMPARISON BETWEEN THE PROPOSED ALGORITHM
AND BWT–MTF ALGORITHM
The BWT-MTF algorithm is a medical image compression
model that implements efficient transmission of medical
images usingHuffman coding and hybrid fractal coding block
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TABLE 4. Comparison for decoding quality of three algorithms.

TABLE 5. Performanc comparison for different strategies of the algorithm.

TABLE 6. Comparison of decoding quality for the proposed algorithm and
BWT–MTF algorithm.

BWT-MTF. In this method, a block-based Burrows-Wheeler
compression algorithm is used to separate the regions con-
taining the most needed diagnostic features and then encoded
without significant loss in diagnostic quality. The remaining
regions are encoded using a hybrid fractal coding algorithm.
Finally, the two coding regions are combined to reconstruct
the output image. Table 6 and Table 7 are comparison data
of decoding quality and performance for the algorithm in the
paper and the BWT-MTF method, respectively. PSNR is the
average value of all the images included in eachMRI medical

TABLE 7. Performance comparison for the proposed algorithm and
BWT–MTF algorithm.

image. Since each MRI image contains 192 layers, the time
is the total compression time.

As can be seen from Tables 6 and 7, compression ratio
of Screening and Complete 2Yr are reduced compared to
the BWT-MTF algorithm, but their PSNR are significantly
improved. Compression ratios of Complete 1Yr is higher
than that of BWT–MTF algorithm. PSNRs of the three MRI
images are higher than the BWT–MTF algorithm. Unfor-
tunately, compression time of proposed method is greater
than the BWT–MTF algorithm. This is a flaw of fractal
compression algorithm. Compared to traditional algorithm,
compression speed is increased by about 2 to 3 times. Since
classification of range blocks and domain blocks is not uni-
form, it causes a difference between actual acceleration and
theoretical acceleration.

V. CONCLUSION
With the rapid development of medical imaging technology,
a large number of three-dimensional medical data, such as
MRI, CT and three-dimensional ultrasound, have been pro-
duced. The volume of three-dimensional medical image data
is large, resulting in high storage and transmission costs
of network traffic during diagnostics and treatment. Proper
compression of medical images reduces the amount of data
transferred. Compressed data is then stored and transmitted.
It not only saves storage space, but also improves transmis-
sion efficiency and shortens transmission time during remote
diagnosis. Thereby promoting the development of medical
care. In addition to retaining important information in med-
ical images, increasing the compression ratio and decoding
ability of compressed images is a major problem in medical
image compression.

In response to the above problems, we propose a fast MRI
image compression method based on fractal. First, three-
dimensional MRI image is converted into two-dimensional
sequence image. The sequence image-based fractal com-
pression method is used to compress it. Secondly, range
blocks and domain blocks are classified according to the
spatiotemporal similarity feature. A range block only needs
to search for the optimal matching block in a certain type
of domain block. Accelerate by reducing the capacity of
matching pool. Finally, a residual compensation mechanism
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is introduced to achieve approximate lossless compression of
MRI images. The experimental results show that compared
with the traditional fractal MRI image compression method,
the proposed method significantly improves compression
speed when image quality is similar. Compared with the
BWT–MTF algorithm, although compression ratio is some-
times slightly worse, the PSNR is higher than BWT–MTF.
Validity of the proposed method is verified.

In the future, we need to improve works as follows.
1) consider to recruit more subjects in our future studies
and perform statistical test; 2) further construct new features
to enhance the definition of domain partition classification;
3) based on cloud computing, deep learning and other con-
cepts, propose a more effective medical image compression
algorithm; 4) start from the compression algorithm itself for
improving its resistance to error.
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