
Received April 27, 2019, accepted May 8, 2019, date of publication May 15, 2019, date of current version May 28, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2916553

Adaptive Chosen-Plaintext Collision Attack
on Masked AES in Edge Computing
YAOLING DING 1, YING SHI2, AN WANG 2,3, XUEXIN ZHENG4,
ZONGYUE WANG5, AND GUOSHUANG ZHANG6
1Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
2State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
3School of Computer Science, Beijing Institute of Technology, Beijing 100081, China
4China Academy of Electronics and Information Technology, Beijing 100041, China
5Open Security Research, Shenzhen 518063, China
6Science and Technology on Information Assurance Laboratory, Beijing 100072, China

Corresponding authors: Ying Shi (shiying@iie.ac.cn) and An Wang (wanganl@bit.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61872040 and Grant U1836101, in part
by the National Cryptography Development Fund under Grant MMJJ20170201, and in part by the Foundation of Science and Technology
on Information Assurance Laboratory under Grant KJ-17-009.

ABSTRACT Edge computing handles delay-sensitive data and provides real-time feedback, while it brings
data security issues to edge devices (such as IoT devices and edge servers). Side-channel attacks main
threaten to these devices. Collision attack represents a powerful category of side-channel analysis in
extracting security information from embedded cryptographic algorithms. Since its proposition in 2003,
plenty of collision detection algorithms are presented, most of which enumerate all the values of target
plaintext byte to find a collision. In this paper, we establish a relation between ‘‘Euclidean distance between
traces’’ and ‘‘Hamming distance between values,’’ and take advantage of the distance information leaked
from the power traces of encrypting an adaptively chosen plaintext to reduce the candidate plaintext space.
Consequently, the collision is detected at a high pace. Moreover, this improvement is fault-tolerant, and its
self-correction feature promotes the efficiency of attacks based on our method significantly. We take AES
implemented with masks, which is usually employed in edge computing devices, for instance, to introduce
our method and conduct experiments to verify its efficiency. According to the experimental results, for whole
key recovery attacks, our method requires only 26.5% plaintexts, 32.2% traces, and much less than 10%
computations of the collision-correlation attack launched by Clavier et al.

INDEX TERMS Adaptive chosen-plaintext collision attack, edge computing, masking, the least square
method.

I. INTRODUCTION
Edge computing performs real-time processing of data in
distributed devices, such as IoT devices and edge servers,
in order to take full advantage of proximity to the physical
items (sensors or users) and reduce the reaction time. While,
it brings information security issues to these devices. Increas-
ing attention has been paid to encryption [1]–[4], authen-
tication [5]–[8] and privacy preservation [9], [10] in edge
computing devices. Since most of these devices are acces-
sible to attackers, side-channel attacks are applicable to the
cryptographic algorithms embedded on them. Figure 1 shows
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the framework of side-channel attacks on edge computing
devices. Therefore, it is necessary to evaluate their security
with side-channel analysis.

Since Kocher [11] proposed timing attacks in 1996, crypt-
analysts have considered various kinds of side-channel infor-
mation and presented plenty techniques such as differential
power analysis [12], collision attack [13], correlation power
analysis [14], template attack [15], fault sensitivity analy-
sis [16]–[18], etc. In this paper, we focus on improving the
efficiency of collision attack when applied to masked AES
in edge computing. Collision attack was firstly proposed
by Schramm et al. [13] in 2003. Subsequently, a similar
attack on AES was proposed to detect collisions in the first
MixColumn operation [19]. In 2007, Bogdanov proposed
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FIGURE 1. Side-channel attacks on edge computing.

linear collision attack on AES in [20], and presented some
improvements of collision attacks in [21], [22]. In 2012,
Gérard and Standaert [23] showed unified and optimized
linear collision attacks based on the low density parity check
code. In 2015, Ren et al. [24] proposed double sieve collision
attack basing on bitwise collision detection. All the methods
mentioned above aim at primitives implemented without any
countermeasures.

While, in practical applications, various countermeasures
are employed to protect the cryptographic devices from
side-channel attacks. Masking is regarded as an effective
one against first-order power analysis. At CHES 2010,
Moradi et al. [25] presented a collision-correlation attack
against masking. Afterwards, Clavier et al. [26] improved it
and reduced the number of required plaintexts from 256 to
27.5 at CHES 2011. In 2015, Wang et al. [27] mounted
collision attacks on masked AES implemented on a smart
card. Right or wrong collision rate was used as a distinguisher
to detect collision by Wang et al. [28] in 2018. So far, most
existing collision detection algorithms detect collisions by
searching the values of candidate plaintext byte exhaustively,
which have a lot improving space in our view.

For collision attacks, statistical models, such as the least
square method [13] and correlation coefficient [25], are
employed to evaluate the simplicity of two plaintext bytes.
Collisions are detected when the corresponding value reaches
minimum or maximum. However, plenty of non-extreme val-
ues are ignored, which contain a lot information about the
distance between the current plaintext byte and the target one.
Therefore, two questions cause our interests:

How to measure the distance between the current plaintext
byte and the target one?

How many steps it takes for the current plaintext byte
‘‘jumping’’ to the target one?

A. OUR CONTRIBUTION
In this paper, we explore the two questions above and propose
an adaptive chosen-plaintext collision attack on the first-order
masked AES in which 7.29 plaintexts on average are required
to find all the 15 collisions among 16 inputs of S-boxes.

An additional cost is precomputation of building nine tem-
plates. Contributions of this paper are as follows:
• By an appropriate model, we extract information of the
Hamming distance between the current plaintext byte
and the target one. With this information, we reduce
the candidate plaintext space in a loop and detect a
collision at a high pace. Experimental results show that
our method requires 2.03% plaintexts and 5.44% traces
of collision-correlation attack [26] to detect a collision
between two inputs of S-boxes.

• Our method has a self-correction feature which pro-
motes the efficiency further. Experimental results show
that attacks with self-correction reduce the number of
required traces by 54.7%.

• For the whole key recovery attacks on masked AES,
collisions among 16 inputs of S-boxes are detected in
parallel, and 7.29 plaintexts on average are required.
According to simulation experiments, our method
requires 26.5% plaintexts and 32.2% traces of collision-
correlation attack [26] respectively, and the computation
complexity of the former is much less than 10% of the
latter.

B. ORGANIZATION
The remainder of this paper is organized as follows.
In Section II, we give a brief description of the classic
collision attack and collision-correlation attack on AES.
Section III introduces our method based on the least square
method, and discusses its correctness. In Section IV, we con-
duct experiments and compare the efficiency of our method
with two classic methods. Some other assessing models
such as central moment product etc. are studied as well.
Section 5 addresses the self-correction feature of our method
which improves its efficiency further. We launch a whole
key recovery attack on masked AES-128 in Section VI.
Section VII concludes this paper.

II. PRELIMINARY
In edge computing, cryptographic algorithms are usually
implemented by software. Therefore, we consider software
implementations of masked AES in this paper and assume
that the power consumptions are based on Hamming weight
model [15]. Note that for some hardware implementations
and equipments based on Hamming distance model [14], our
method can also be adjusted to work.

A. NOTATION
Taking AES-128 for instance, we denote the 128-bit plaintext
and the whitening key by P = p1‖p2‖...‖p16 and K =
k1‖k2‖...‖k16 respectively. Let S1, S2, ..., S16 stand for the
16 S-box operations in the first round and denote their inputs
by xi = pi ⊕ ki (1 ≤ i ≤ 16).
In order to reduce the influence of noises, we encrypt a cer-

tain plaintext several times in a certain attack. The power trace
acquired during the j-th encryption is denoted by T (j). Each
trace includes 16 segments that correspond to the 16 S-boxes
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in the first round. We denote these segments by T (j)
i (1 ≤

i ≤ 16). T (j)
i contains several points that leak information

of the operands and have similar x-coordinates to the other
segments. With some precomputation, l x-coordinates are
selected and aligned. Then, T (j)

i is transformed to an ordered
set of y-coordinates corresponding to the l x-coordinates,
denoted as T (j)

i = {t
(j)
i,1, t

(j)
i,2, ..., t

(j)
i,l }. Based on the Hamming

weight model [15], we have

t (j)i,q = si,qHW(x(j)i )+ ri,q, (1)

where si,q is a constant, and ri,q ∼ N (µq, σq), which means
that t (j)i,q follows the normal distribution N (si,qHW(x(j)i ) +
µq, σq).

B. COLLISION ATTACK
In 2003, Schramm et al. [13] presented the basic concept of
collision attack, which takes advantage of identical interme-
diate values during the encryption of a certain plaintext to
detect the linear relation among key bytes and then recover
the whole key. For example, if the inputs of S1 and S2 are
equal to each other, i.e. p1⊕k1 = p2⊕k2, we can deduce that
k2 = k1 ⊕ p1 ⊕ p2. Thus, the candidate key space is reduced
by 28. When all the equations between k1 and the other key
bytes are established, the space of candidate keys is reduced
to 28 and the whole key can be recovered by searching all the
values of k1. During a collision attack, the adversary usually
enumerates the values of a plaintext byte thoroughly to obtain
a collision, as shown in Figure 4 (left).

Power consumptions of the operations on two identical
intermediate values are supposed to be the same. Therefore,
the similarity between the power segments corresponding
to two intermediate values is usually used to detect col-
lisions. In practice, power traces are acquired as ordered
point sets. Denote the two segments (after averaged) as
{t1,1, t1,2, ..., t1,l} and {t2,1, t2,2, ..., t2,l}. Their similarity is
estimated by calculating the least absolute deviation (LAD)
or the least square (LSM) [29] between the two sets, which
are

LAD(T1,T2) =
l∑

q=1

|t1,q − t2,q|, (2)

LSM (T1,T2) =
l∑

q=1

(t1,q − t2,q)2. (3)

If LAD(T1,T2) (or LSM (T1,T2)) is less than a threshold,
a collision is detected.

C. MASKING SCHEME
Cryptographic algorithms employed in edge computing
or any other applications are usually implemented with
countermeasures in order to defend from side-channel
attacks. Masking is a widely used countermeasure. In this
approach, we consider the implementation of AES that
employs a masked substitution table (S-box) as proposed by

Akkar and Giraud [30]. This masked S-box S ′ is defined as
S ′(xi ⊕m) = S(xi)⊕m′, with m (resp. m′) being the mask of
the input byte xi (resp. output byte S(xi)).Masks are generated
randomly in each encryption, so is the masked substitution
table. We adopt the masking scheme used in [26], which
assumes that the masks involved in all the 16 S-boxes are
equal.

FIGURE 2. 8051 assembly program for look-up table operation (S-box
operation) and collision detection.

The look-up table operation (S-box operation) is imple-
mented by the 8051 assembly program as shown in Figure 2.
The two ‘‘MOV’’ instructions, whose operands are x1 ⊕ m
and x2 ⊕ m, are usually used to detect collisions.

D. COLLISION-CORRELATION ATTACK
In 2011, Clavier et al. [26] presented a collision-correlation
attack on masked S-box of AES. They employed Pearson
correlation coefficient, which is

ρp1,p2,q =
Cov(t1,q, t2,q)
σt1,qσt2,q

=
n

∑
(t (j)1,qt

(j)
2,q)−

∑
t (j)1,q

∑
t (j)2,q√

n
∑

(t (j)1,q)
2−(

∑
t (j)1,q)

2
√
n

∑
(t (j)2,q)

2−(
∑
t (j)2,q)

2
,

(4)

to evaluate the similarity of two segments T1 and T2 (corre-
sponding to x1 ⊕ m and x2 ⊕ m respectively) in one trace.
Figure 3 describes the collision detection procedure. With
plaintext byte p1 fixed to a constant, p2 traverses 0-255. For
a certain value of p2, encrypt the plaintext repeatedly until
n power traces (i.e. 2n segments) are acquired. Assume that
each segment contains l points. For each point, calculate the
correlation coefficient ρp1,p2,q(q = 1, 2, ..., l) between T1
and T2. Sieve the maximal ρp1,p2,max for each value of p2.
If ρp1,p2,max is larger than a threshold, its corresponding value
of p2 may lead to a collision.
For AES-128, there are C2

16 = 120 combinations of two
key bytes. Thus, for a certain plaintext, collision detections
of 120 key byte pairs are executed. All the 15 collisions
among 16 inputs of S-boxes are found with 27.5 plaintexts
on average.
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FIGURE 3. Collision-correlation attack on masked AES.

III. ADAPTIVE CHOSEN-PLAINTEXT COLLISION ATTACK
In the last few years, various methods are employed in col-
lision attacks to evaluate the similarity between two sets of
segments, such as the least square method, correlation coeffi-
cient, mutual information [31] and so on. Intuitively speaking,
they quantify the ‘‘distance’’ between two segments. For
example, the value obtained by the least square method is
usually called Euclidean distance.

A. BASIC IDEA
Interestingly, according to our observation, this ‘‘distance’’
also imply the Hamming distance between x1 and x2, which
can be deduced to the Hamming distance between the current
value of p2 and the target one, i.e. p1⊕k1⊕k2. Taking the least
square method for example, a larger value means a further
distance (i.e. lower similarity) between the current value of
p2 and the target one, and vice versa. Therefore, we present
a method intending to relate the ‘‘distance’’ to Hamming
distance by templates and use it to find the target plaintext
byte at a high pace.

Denote the target value of p2 as β2 when p1 is fixed to
a constant β1. The outline of our adaptive chosen-plaintext
collision attack is as follows:

1) Build templates of Hamming distances for the target
devices (in edge computing);

2) Fix p1 to a constant, initial the candidate value space of
p2 with 0-255;

3) Estimate the Hamming distance between x1 and x2
(equal to HD(p2, β2)) with templates;

4) Reduce the candidate value space of p2 according to the
Hamming distance;

5) Repeat the process above until there remains one can-
didate, which is β2.

Figure 4 (right) describes this procedure with flow chart.

B. ATTACK SCENARIO
Our adaptive chosen-plaintext collision attack consists of
two stages, namely building template stage and online

FIGURE 4. Flow chart of classic (left) and our (right) collision attacks
on AES. |C0| stands for the number of elements in set C0.

acquisition stage. Algorithm 1 gives the pseudo code of the
attack on k1 and k2.

In the building template stage, set p1 = k1 = k2 = 0.
Let p2 traverse {0, 1, 3, 7, ..., 255} such that the Hamming
distance h exhausts the values in {0, 1, ..., 8}. For each value
of p2:
1) Encrypt the plaintext with masked AES for nτ times

and collect the power traces {T (j)
| j = 1, 2, ..., nτ } of

each encryption. nτ should be as large as possible in
order to decrease the noise to the minimum. We denote
the acquisition procedure by AcquireTrace().

2) Assume that the segments corresponding to S1 and
S2 have been truncated and aligned. Extract l pairs
of points {(t (j)1,q, t

(j)
2,q) | q = 1, 2, ..., l} from the two

segments of each trace T (j) (j = 1, 2, ..., nτ ).We denote
the extraction procedure by ExtractPoints().

3) The least square method (LSM) is adopted to measure
the distance D(j) between segments. Average of all D(j)

(j = 1, 2, ..., nτ ) is calculated by Average(), which is

DLSM =
1
n

n∑
j=1

l∑
q=1

(t (j)1,q − t
(j)
2,q)

2, (5)

where DLSM is the value of the template τh correspond-
ing to Hamming distance h = HD(p1, p2).

In this stage, nine templates are built in total. Note that for a
certain device, this stage is executed only once.

In the online acquisition stage, set p1 = 0 and initial-
ize the candidate value space of p2 with 0-255, denoted as
C0 = {0, 1, 2, ..., 255}. Ourmethodworks on candidate value
space by reducing its size in a loop, instead of searching it
exhaustively. In each loop,

1) Chose a value for p2 randomly from C0, denoted as
ChooseRandomly().
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Algorithm 1 Adaptive Chosen-Plaintext Collision Attack on
Masked AES
Building template stage:
1: p1 := 0; k1 := 0; k2 := 0;
2: for h := 0, 1, 2, ..., 8 do
3: p2 := 2h − 1; // such that HD(x1, x2) = h
4: for j := 1, 2, ..., n′ do
5: T (j)

:= AcquireTrace(p1, k1, p2, k2,m);
6: {(t (j)1,q, t

(j)
2,q)|q := 1, 2, ..., l} :=ExtractPoints(T (j));

7: D(j)
:=

l∑
q=1

(t (j)1,q − t
(j)
2,q)

2
;

8: end for
9: τh := Average({D(j)

| j = 1, 2, ..., n′});
10: end for

Online acquisition stage:
//k1 and k2 are fixed in the edge computing
device
1: C0 := {0, 1, 2, ..., 255}; p1 := 0;
2: while |C0| > 1 do
3: p2 := ChooseRandomly(C0);
4: for j := 1, 2, ..., n do
5: T (j)

:= AcquireTrace(p1, k1, p2, k2,m);
6: {(t (j)1,q, t

(j)
2,q)|q := 1, 2, ..., l} :=ExtractPoints(T (j));

7: D(j)
:=

l∑
q=1

(t (j)1,q − t
(j)
2,q)

2;

8: end for
9: D := Average({D(j)

|j := 1, 2, ..., n});
10: h′ :=MatchTemplate(D, {τh|h = 0, 1, 2, ..., 8});
11: C := {p|HD(p, p2) = h′};
12: C0 := C0 ∩ C ;
13: end while
14: if |C0| = 1 then
15: return C0;
16: else
17: return error;
18: end if

2) Encrypt the plaintext with masked AES for n times and
collect the power traces {T (j)

| j = 1, 2, ..., n} of each
encryption with AcquireTrace().

3) Extract l pairs of points {(t (j)1,q, t
(j)
2,q) | q = 1, 2, ..., l, j =

1, 2, ..., n} from the two segments of S1 and S2 in each
trace.

4) Match the templates obtained in building template
stage withMatchTemplate(), which returns the value

H = argmin
h∈{0,1,2,...,8}

|D− τh|. (6)

H is the estimated Hamming distance between
x1 and x2, i.e. HD(p2, β2).

5) Build a set C = {p | HD(p, p2) = H} and update C0
with C0 ∩ C .

6) Repeat the operations above until the size of C0 is
reduced to 0 (return an error) or 1.

The correctness of Algorithm 1 depends on the fact that the
Hamming distance of the two intermediate values HD(x1, x2)
and the ‘‘distance’’ of their power traces are bijective, and
the differences among these ‘‘distance’’ are non-ignorable.
We give Theorem 2 and 5 in Appendix to explain the two
issues.
Remark 1: To simplify the attack, we average the power

traces to build and match templates in the two stages respec-
tively. While, since {t (j)1,q − t (j)2,q|q = 1, 2, 3, ..., l} follows
multivariate normal distribution, it is more preferable to add
a covariance matrix Ch in the template. Then, the template is
changed to

τh = (µh,Ch), (7)

where µh denotes the mean value. Correspondingly,
MatchTemplate() is turned to

H = argmax
h∈{0,1,2,...,8}

exp(− 1
2 · (D− µh)

′
· C−1h (D− µh))√

(2π )l · det(Ch)
. (8)

For more details, we refer to the classic template attack [15].
Remark 2: Our method is based on a potential assumption

that the adversary owns a device that is identical to the
target one and the main key is fully under control. Even if the
adversary cannot set the key, the templates can still be built
in the following ways. Let p1 = 0 and p2 traverse 0-255. For
each value of p2, execute 4-9 of the building template stage
(the difference is that k1, k2 are unknown). Then, 256 values
are obtained, which can be classified into 9 groups. Average
all the values of each group, nine templates are built.

FIGURE 5. The experiment environment of our attack.

IV. EXPERIMENTS AND EFFICIENCY
A. EXPERIMENTAL CONFIGURATION
We implement AES-128 with MCS-51 assembly codes on
AT89S52 processor of MathMagic side-channel analyzer to
simulate the edge computing devices. The power consump-
tion of each encryption is acquired accurately by PicoScope
3403D Oscilloscope with sampling rate 1GSa/s. Instructions
are sent to the AT89S52 board by C program from PC, and the
power traces are processed by Matlab program. We integrate
Matlab and C code together, and build a semi-automatic
system, which is shown in Figure 5. Attack are mounted by
executing the program of this system several times.
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B. ATTACK EXPERIMENTS
In this section, we focus on two segments of a power
trace, which correspond to two ‘‘MOV’’ instructions whose
operands are x1 ⊕m and x2 ⊕m respectively. l = 50 aligned
points are selected from each segment.

In building template stage, we collected nτ = 10000
traces to compute τh for each h. Figure 6 shows the nine
templates, namely 0.0987, 0.1005, 0.1022, 0.1044, 0.1065,
0.1087, 0.1107, 0.1126, and 0.1149, which correspond to the
nine Hamming distances between x1 and x2 respectively.

FIGURE 6. Templates corresponding to the nine Hamming distances.

TABLE 1. The intermediate data during our experiment.

In online acquisition stage, we set k1 = 0, k2 = 147,
p1 = 0. n = 1000 traces are acquired in each loop. In the
first loop, p2 = 0 is chosen. Based on equation 3, we get
D = 0.1059, which implies HD(p2, β2) = 4. Therefore,
the number of candidates in C0 is reduced to 70. Similarly,
in the second, third, fourth, and fifth loop, p2 is randomly
chosen from C0, and the correspondingD and HD(p2, β2) are
obtained. We list them in Table 1.

Figure 7 shows the five distance values with red stars, and
the nine templates with dotted lines. Since only one candidate
p2 = 147 is survived after the fifth loop, we finally get the
equation k1 ⊕ k2 = p1 ⊕ β2 = 147. The survived candidates
in each loop are shown in Figure 8.
Furthermore, Figure 9 shows the relation between the

number of traces and the distance D in each loop (i.e. for
each chosen value of p2). For our simulation environment,
800 traces are sufficient to identify D in attacks on masking
model.

C. ATTACKS WITH SOME OTHER MODELS
We describe our method by adopting LSM to mea-
sure the ‘‘distance’’ between segments and estimate the

FIGURE 7. Template matching during an attack that uses five plaintexts.

FIGURE 8. Survived candidates after each loop in our attack.

FIGURE 9. The relation between the number of traces and D
corresponding to the five candidates of p2 in our attack.

corresponding Hamming distance in Section III. Actually,
various models can be used to achieve the same purpose.
We study some of them, in order to obtain the most efficient
one.

Templates based on the least absolute deviation (LAD) and
the least higher exponent method (denoted by LADα) are
defined as

DLAD =
1
n

n∑
j=1

l∑
q=1

|t (j)1,q − t
(j)
2,q|, (9)
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DLADα =
1
n

n∑
j=1

l∑
q=1

|t (j)1,q − t
(j)
2,q|

α. (10)

And templates based on central moment product method
(CMP) [32], [33] is defined as

DCMP =
1
n

n∑
j=1

l∑
q=1

(t (j)1,q − t1,q)(t
(j)
2,q − t2,q), (11)

where t1,q stands for the mean value of the n points t (j)1,q(j =
1, 2, ..., n).
Building template stage is modifiedwith the abovemodels,

namely LAD, LAD4, LAD8 and CMP, respectively. With
the same 10000 traces acquired in the last subsection, new
templates are established, as shown in Figure 10-13.

FIGURE 10. The templates based on LAD model.

FIGURE 11. The templates based on LAD4 model.

From these figures, we know that LAD, LAD4 and CMP
distinguish Hamming distances clearly, while LAD8 is avail-
able only when the noise is reduced to a certain extent. Note
that the templates based on CMP detect a collision according
to its maximum, while the other models detect collisions
according to their minimums. We discuss the efficiency of
these models in the following subsection.

FIGURE 12. The templates based on LAD8 model.

FIGURE 13. The templates based on CMP model.

D. EFFICIENCY COMPARISONS OF ATTACKS
ON TWO KEY BYTES
For the first loop of online acquisition stage, the value of p2 is
chosen randomly, so the probability of HD(p2, β2) = h (h ∈
{0, 1, ..., 8}) is Ch

8/256. Since there are C
h
8 candidate values

that have h bits different from the current p2, the number of
candidate values inC0 is reduced toCh

8/256×C
h
8 . Thus, after

the first loop, the average number of remained candidates in
C0 is

C0
8
2
+ C1

8
2
+ C2

8
2
+ ...+ C8

8
2

256
≈ 50.3.

We simulate the whole reduction process in Matlab and find
that it takes 5.2 loops on average to obtain the target β2.
That is to say, only 5.2 plaintexts are required in our attack,
which is much less than 256 in the classic collision attack.
The ratio is nearly 2%.

To verify the efficiency of our method further, we conduct
simulation experiments in Matlab. We compare the success
rate of attacks based on the five models mentioned above
with two classic methods, namely second-order template
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FIGURE 14. The comparison of success rates among the seven attacks
with different number of traces (σ = 3, l = 50).

FIGURE 15. The comparison of success rates among the seven attacks
with different number of traces (σ = 5, l = 50).

attack [34] and collision-correlation attack [26]. Acquire-
Trace() and ExtractPoints() are replaced with a simulation
program, which generates 50 points for each segment with
regard to the normal distribution N (HW(pi ⊕ ki ⊕ m), 32).
Repeating Algorithm 1 for 100 times with the five mod-
els respectively, we obtain their success rates. Collision-
correlation attack and second-order template attack are
mounted on the same group of simulated power traces respec-
tively, and the corresponding success rates are obtained. Note
that for second-order template attack, the experiment is sim-
plified to recover one key byte (two corresponding positions,
the masked value and the mask value). Figure 14 shows
the comparison of success rates among the seven attacks.
Experiments with σ = 5 (the standard deviation of the noise)
are also carried out, and the results are displayed in Figure 15.

From the figures we conclude that our attacks based on
CMP, LSM, LAD and LAD4 show much higher efficiency
than second-order template attack and collision-correlation
attack. CMP outperforms the other methods with the highest
success rate. For σ = 3, attacks based on the CMP model
require about 3900 (3900/5.2 = 750 per plaintext) traces to
achieve the success rate 95%, while the required number of
collision-correlation attack and second-order template attack
are about 71680 (71680/256 = 280 per plaintext) and

FIGURE 16. The comparison of success rates among the seven attacks
with different number of sample points (σ = 3,n = 4000).

FIGURE 17. The comparison of success rates among the seven attacks
with different number of sample points (σ = 5,n = 10000).

21000 respectively. The ratios between our method and the
two classic ones are 5.44% and 18.57%.

Besides, we study the relation between success rate and
the number of sample points (i.e. l). Fixing the number of
traces to 4000 for σ = 3 and 10000 for σ = 5 respectively,
we carry out simulation experiments with l ranging from
10 to 100. Figure 16 and Figure 17 show the experimen-
tal results. Apparently, with the number of sample points
increasing, the success rates of the distance-based models
(ourmethod) increasemuch faster than that of the correlation-
coefficient-based model.

V. SELF-CORRECTION FEATURE
We have an interesting observation from the experiments
based on our adaptive chosen-plaintext collision attack,
which is
Observation 1: In the online acquisition stage, the Ham-

ming distance of p2 and β2 is always even after the first loop
of a success attack.

We give the following lemma to explain this observation.
Lemma 1: For any A,B ∈ {0, 1, 2, ..., 255} such that

HW(A) = HW(B), HW(A⊕ B) is even.
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Proof: Denote A = a1‖a2‖...‖a8 and B = b1‖b2‖...‖b8,
we have

HW(A⊕ B) = (a1 ⊕ b1)+ (a2 ⊕ b2)+ ...+ (a8 ⊕ b8).

If ai = bi (i ∈ {1, 2, ..., 8}), ai⊕bi = 0, otherwise ai⊕bi = 1.
Assume HW(A) = HW(B) = w, then there are w pairs of
(ai, bi) such that ai ⊕ bi = 1. Denote these pairs as (aj1 , bj1 ),
(aj2 , bj2 ),..., (ajw , bjw ).

Since ai, bi ∈ {0, 1}, we have bjl = 1 − ajl (l ∈
{1, 2, ...,w}). Then,

HW(A) = HW(B)

a1 + a2 + ...+ a8 = b1 + b2 + ...+ b8
aj1 + aj2 + ..+ ajw = bj1 + bj2 + ...+ bjw
aj1 + aj2 + ..+ ajw = (1− aj1 )+ (1− aj2 )+ ..+ (1− ajw )

w = 2(aj1 + aj2 + ..+ ajw ).

Since aj1 + aj2 + ..+ ajw is an integer, w is even.
Basing on Lemma 1, we give the explanation of Observa-

tion 1 as follows.
Denote the randomly chosen value of p2 in the i-th loop

as pi2, and the Hamming distance of pi2 and β2 as H i (i =
1, 2, 3, ...).
We know that, at the end of the i-th loop, C0 is reduced to a

set in which all the items haveH i bits different from pi2. Since
pi+12 is chosen from C0, we have

HW(pi+12 ⊕ p
i
2) = H i

= HW(pi2 ⊕ β2).

Therefore, H i+1
= HW(pi+12 ⊕ β2) = HW(pi+12 ⊕ p

i
2⊕ p

i
2⊕

β2) is even.
Basing on Observation 1, we add a self-correction mecha-

nism to our method and promote its efficiency further: If H i

(i > 1) is odd, re-execute the i-th loop to revise this
error. While, there is an issue that if an error occurs in the
first loop, H obtained in the subsequent loop is always odd.
We set a counter to detect this error: If a certain loop is
re-executed more than a threshold such as three, return
failure directly. In practice, attacks usually require a success
rate over 90%, so errors occur with very low probability.
Thus, the self-correction mechanism significantly decreases
the number of required traces with negligible extra computa-
tion and no extra plaintext.

We carry out simulation experiments to verify the improve-
ments brought by the self-correction mechanism. Attacks
based on six methods are launched on masked AES,
namely LSM with and without self-correction (SC_LSM
and LSM), CMP with and without self-correction (SC_CMP
and CMP), second-order template attack, and collision-
correlation attack. Figure 18 and 19 shows the compari-
son of the success rates among them with σ = 3 and
5 respectively. From the figures, we get that our attacks with
self-correction outperform the ones without it. For exam-
ple, SC_CMP requires 1768 traces to achieve a success rate
of 95%, which is 54.7% less that of CMP.

FIGURE 18. The comparison of success rates among four attacks based
our method with/without self-correction and two classic
methods (σ = 3, l = 50).

FIGURE 19. The comparison of success rates among four attacks based
our method with/without self-correction and two classic
methods (σ = 5, l = 50).

Remark 3: If an error occurs in the first loop, the attack
can still continue by re-executing the first loop with the H
corresponding to the second minimal ‘‘distance’’. Thereby,
the attack is more error-tolerant.

VI. ATTACKS ON 16 S-BOXES
In this section, we discuss the efficiency of the whole key
recovery attack on AES based on our method.

A. ATTACK SCENARIO
The building template stage is similar to that of two S-boxes,
so we omit it here. In the online acquisition stage, fix p1
to a constant, and initialize Ci for pi (i = 2, 3, ..., 16) with
{0, 1, ..., 255} respectively. Denote the target value of pi as
βi (i = 2, 3, ..., 16). Execute the following steps until the
termination criterion is reached.

1) Randomly chose the value of pi (i = 2, 3, ..., 16)
from Ci;

2) CalculateDi for each pair of power segments of (S1, Si)
basing on the template model (such as CMP);

3) Match Di with the templates obtained in the building
template stage and obtain the Hamming distance Hi
between pi and βi;
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4) Update Ci according to Hi;
5) Repeat the procedure above until 15 collisions are

detected or there occurred an error.
Note that if |Ci| ≤ 1, step 1 to 4 can be omitted for pi.
According to our simulation experimental results,

7.29 plaintexts are required on average to recover the whole
key of AES-128. The average number of collision detections
for each plaintext is 10.7.

B. COMPARED WITH COLLISION-CORRELATION ATTACK
We adopt the number of required plaintexts and traces to com-
pare the efficiency of our method (CMP with self-correction)
and collision-correlation attack, when applied to recover the
whole key of masked AES-128. Table 2 summarizes the
average number of plaintexts involved in a success attack,
the number of traces required to achieve a success rate 95%
and the computation cost of each plaintext for both methods.
We explain it subsequently.

TABLE 2. The comparison between collision-correlation and our method.

Collision-correlation attack [26] requires 27.5 plaintexts
and 120 calculations of correlation coefficient per plain-
text to reduce the key space from 2128 to 28 (described
in subsection II-D). While, our attack based on SC_CMP
only requires 7.29 plaintexts and 10.7 calculations of central
moment product per plaintext (described in subsection VI-A).
The number of traces required by the whole key recovery

attack is estimated basing on the experimental results of
attacks on two key bytes (given in subsection IV-D). Taking
σ = 3, l = 50 for example, collision-correlation attack
requires 280 traces per plaintext to achieve a success rate
of 95%. Thus, 280 × 27.5 = 7700 traces are required in
total. While, our attack based on SC_CMP requires 340 ×
7.29 = 2478.6 traces on average, which is 32.2%of collision-
correlation attack. For the cases of l = 100 and l = 200,
the ratios are 25.5% and 20.5% respectively.

The computation costs of both methods are estimated bas-
ing on the number of multiplications. Denote the number of
sample points in each power segments as l, the computation
cost of correlation coefficient calculated by equation 4 as
Cρn and the computation cost of central moment product
calculated by equation 11 as CCMPnl .
• In collision-correlation attack, 120 collision detections
are executed on each plaintext, and each collision
detection has l calculations of correlation coefficient.
So the computation cost of collision-correlation attack
is 120lCρn .

• In our method based on SC_CMP, 10.7 collision detec-
tions are executed on each plaintext, and each collision
detection have 1 calculations of central moment product.
So the computation cost of our method is 10.70CCMPnl .

There are 3ncc multiplications in equation 4, so we have
Cρn = 3ncc, where ncc denotes the number of traces
acquired with each plaintext in collision-correlation attack.
There are lncmp multiplications in equation 11, so we have
CCMPl = lncmp, where ncmp denotes the number of traces
acquired with each plaintext in our method. As mentioned
above, to achieve the success rate of 95%, the numbers of
plaintexts required by two methods are 27.5 and 7.29, and the
numbers of traces acquired with each plaintext are ncc = 280
and ncmp = 340 respectively. Therefore, the computation
costs of collision-correlation attack and our method based on
SC_CMP is 360l × 280 × 27.5 = 2772000l and 10.7l ×
340 × 7.29 = 26521.02l multiplications respectively. The
ratio between them is much less than 10%.

VII. CONCLUSIONS
In this paper, we focus on cryptographic algorithms imple-
mented in edge computing and propose a new method to
explore the extra information obtained from the traditional
LSM-based collision attack on masked AES. This informa-
tion helps to find a collision at a high pace instead of search-
ing the plaintexts exhaustively. Furthermore, some models
such as LAD, LADα , CMP etc. are studied and compared.
The new proposal can be combined with linear collision
attack [20] (to deduce the relation between k1 and k2) and
the fault-tolerant attack [23] (as mentioned in section V)
naturally.

The attack proposed in this paper aims at two ‘‘MOV’’
instructions, which leak the information of x1⊕m, x2⊕m and
are executed individually. So it is applicable to all the reused-
mask schemes in software implementation even if the masks
are generated by other schemes or instructions. Moreover, for
hardware implementation and the Hamming distance model,
our method can also be competent for the attack, so long as
the power traces leak the masked input values of S-boxes.

Some correlation-coefficient-based collision atta-
cks [25], [26] could be modified as an adaptive chosen-
plaintext ones, since the correlation coefficient also contains
the information of Hamming distance between two interme-
diate values. However, this information is not as exact as
that in our attack because its templates are not arithmetic
progression and not distinguishable.

APPENDIX
CORRECTNESS OF OUR ATTACK
The correctness of Algorithm 1 depends on the fact that dif-
ferent HD(x1, x2) corresponds to different value of template,
and their differences are non-ignorable. We give Theorem 2
and 5 to explain the two facts.
Theorem 2: In Algorithm 1, assume that l is fixed

and 1 is a certain value from {0, 1, 2, ..., 8}. For any
x1, x2 ∈ {0, 1, 2, ..., 255} such that HD(x1, x2) = 1,
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the expectation

ξ1 = E[
l∑

q=1

(t1,q − t2,q)2]

is determined.
According to the Hamming weight model, the expectation

is expanded as

ξ1 = E[
l∑

q=1

(s1,qHW(x1 ⊕ m)+ r1,q

− s2,qHW(x2 ⊕ m)− r2,q)2]

= E[(HW(x1 ⊕ m)− HW(x2 ⊕ m))2
l∑

q=1

s2q

+

l∑
q=1

(r1,q − r2,q)2 + 2(HW(x1 ⊕ m)

−HW(x2 ⊕ m))
l∑

q=1

sq(r1,q − r2,q)].

Note that since the segments are aligned, the constants si,q
(i = 1, 2, 3, ..., 16) are equal to each other and simpli-
fied to sq.
Before discussing the three terms in the formula, we give

the following two lemma:
Lemma 3: Given a 1 ∈ {0, 1, 2, ..., 8}, for any x1, x2 ∈
{0, 1, 2, ..., 255} such that 1 = HD(x1, x2), the distribution
of

δ = HW(x1 ⊕ m)− HW(x2 ⊕ m)

is determined if m follows uniform distribution in the interval
[0, 255].
Lemma 4: Given a 1 ∈ {0, 1, 2, ..., 8}, for any x1, x2 ∈
{0, 1, 2, ..., 255} such that HD(x1, x2) = 1, {HW(x1 ⊕ m)−
HW(x2 ⊕ m) | m = 0, 1, 2, ..., 255} and {HW(x ′1 ⊕ m) −
HW(x ′2⊕m) | m = 0, 1, 2, ..., 255} are equal if x ′1 and x

′

2 are
obtained by either of the following two operations:

1) Swap the i-th and j-th bits of x1 to get x ′1, and swap the
i-th and j-th bits of x2 to get x ′2.

2) Alter the i-th bit of x1 to get x ′1, and alter the i-th bit of
x2 to get x ′2

Any pair of (x1, x2) that have the same Hamming distance,
i.e.1 = HD(x1, x2) (1 ∈ {0, 1, 2, ..., 8}), can be transformed
to each other by a serial operations given in Lemma 4. Thus,
if the corresponding sets {HW(x1⊕m)−HW(x2⊕m) | m =
0, 1, 2, ..., 255} are equal to each other, the distributions of
δ = HW(x1⊕m)−HW(x2⊕m) must be the same. Therefore,
Lemma 3 is actually equivalent to Lemma 4. We give the
proof of Lemma 4 as follows.

Proof: Denote x1 = u1‖u2‖...‖u8, x2 = v1‖v2‖...‖v8
and m = w1‖w2‖...‖w8. We have

δ = (u1 ⊕ w1)+...+(u8 ⊕ w8)−(v1 ⊕ w1)−...−(v8 ⊕ w8)

= [(u1 ⊕ w1)−(v1 ⊕ w1)]+...+[(u8 ⊕ w8)−(v8 ⊕ w8)].

Since the formula follows the commutative law of addition,
case 1) holds.

For case 2), we have (x ′1⊕0, x
′

2⊕0) = (x1⊕(29−i−1), x2⊕
(29−i−1)). So HW(x ′1⊕0)−HW(x ′2⊕0) = HW(x1⊕(29−i−
1)) − HW(x2 ⊕ (29−i − 1)). Since m exhaust 0-255 in both
sets, case 2) holds.
According to Lemma 3, E[(HW(x1 ⊕ m) − HW(x2 ⊕

m))2
∑l

q=1 s
2
q] is determined with a given1. Since the expec-

tation of
∑l

q=1 sq(r1,q − r2,q) is 0, and (r1,q − r2,q) is
independent with (HW(x1 ⊕ m) − HW(x2 ⊕ m)), we have

E[2(HW(x1 ⊕ m) − HW(x2 ⊕ m))
l∑

q=1
sq(r1,q − r2,q)] = 0.

Besides, E[
∑l

q=1(r1,q− r2,q)
2] is determined by the noise in

a certain device. Therefore, Theorem 2 is proven.
Then we discuss the non-negligible differences among the

nine templates.
Theorem 5: In Algorithm 1, for all1 ∈ {0, 1, 2, ..., 8}, the

corresponding values of ξ1 form an arithmetic progression
approximatively if sufficient sample points are obtained.

Proof: According to the statistical model of Euclidean
distance in [22], the expectation of Euclidean distance
between two traces corresponding to fixed x1⊕m and x2⊕m is
approximated as a normal distributionN (2σ 2(l+λ), 8σ 4(l+
2λ)) for sufficiently large l, where σ 2 denotes the noise
variance of power consumption (it is roughly the same for

all sample points [22]) and λ =
l∑

q=1
(sqδ/
√
2σ )2.

Let λi, δi denote the values of λ, δ when i = HW(x1 ⊕m).
Based on the distribution of HW(x1 ⊕ m), we have

ξ1 = (C0
1/2

1) · 2σ 2(l + λ0)+ (C1
1/2

1) · 2σ 2(l + λ1)

+...+ (C11/2
1) · 2σ 2(l + λ1)

=
2σ 2 l
21

1∑
i=0

C i
1 +

2σ 2

21

1∑
i=0

(C i
1λi)

= 2σ 2 l +
2σ 2

21

1∑
i=0

(C i
1 ·

(i− (1− i))2

2σ 2

l∑
q=1

s2q)

= 2σ 2 l +
1
21

l∑
q=1

s2q ·
1∑
i=0

(C i
1 · (2i−1)2)

= 2σ 2 l +1 ·
l∑

q=1

s2q.

Therefore, {ξ1 | 1 = 0, 1, 2, ..., 8} forms an arithmetic

progression with common difference of
l∑

q=1
s2q.
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