
Received April 10, 2019, accepted May 8, 2019, date of publication May 15, 2019, date of current version June 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917027

Multi-Controller Deployment Algorithm in
Hierarchical Architecture for SDWAN
HOU XIAOLAN 1, WU MUQING1, LV BO2, AND LIU YIFENG2
1School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
2China Academy of Electronics and Information Technology, Beijing 100041, China

Corresponding author: Hou Xiaolan (houxiaolan@bupt.edu.cn)

This work was supported in part by the 111 Project under Grant b17007, in part by the Director Funds of the Beijing Key Laboratory of
Network System Architecture and Convergence under Grant 2017BKL-NSAC-ZJ-01, and in part by the National Natural Science
Foundation of China (NSFC) under Grant 61872401.

ABSTRACT A software-defined network (SDN) is a new paradigm that separates control and forwarding.
With the growth of SDN deployment scale, the centralized control plane becomes a bottleneck restricting
the expansion of SDN networks. To avoid the problem of limited processing power in the wide area network
(WAN), we focus on the multi-controller deployment in hierarchical architecture for software-defined WAN
(SDWAN). The hierarchical architecture divides the control plane into multiple levels. The root controller
has a global view. The domain controller is only responsible for the control in local networks. In this paper,
we use the improved Louvain algorithm to discover the hierarchical community structure. Considering
the load balancing and request delay in each partition and reliability of the control plane, we formulate
the modeling and propose a hierarchical multi-controller deployment algorithm for the scalability of the
SDWAN. The simulation results show that compared with the traditional algorithms, the proposed algorithm
not only reduces the average request delay to a certain extent and effectively improves the performance
of load balancing in each partition, but also efficiently enhances the reliability of the control plane in the
SDWAN and achieves the good effect on the execution efficiency.

INDEX TERMS Software-defined WAN, controller deployment, hierarchical architecture, Louvain
algorithm.

I. INTRODUCTION
Software-defined network (SDN) [1] separates the control
plane from the forwarding plane, brings the network pro-
grammability, and simplifies network configuration. The net-
work managers can automatically, quickly, and dynamically
configure and optimize network resources with the cooper-
ation of control layer applications [2]. SDN has the charac-
teristics of centralized control and network programmability,
which enhances the flexibility and openness of the network.
SDN has become an excellent solution in the field of new
network technology. In view of these advantages of SDN,
the SDN architecture is introduced into the wide area network
(WAN), that is, the software-defined WAN (SDWAN). With
the expansion of SDWAN applications, the problems caused
by centralized control architecture are also emerging. The
resources of the control plane are generally limited. As the

The associate editor coordinating the review of this manuscript and
approving it for publication was Tariq Umer.

scale of the network increases, the number of network events
also increases. When the controller plane is not enough to
handle these network events, the scale of the network will be
limited. In the large network control scenario, the scalability
of SDWAN architecture is also put forward higher require-
ments. Therefore, it is necessary to conduct an in-depth study
on the scalability issues [3], [4].

At present, there are two main solutions to solve the scal-
ability of control plane in the SDN. One is to improve the
performance of control plane. The processing capability of
control plane is enhanced by improving the performance of
single controller. On the other hand, multi-controller archi-
tecture is adopted. By deploying multiple controllers to share
processing requests from the network, the load on a single
controller can be reduced and the processing power of the
entire control plane can be improved. In fact, the processing
power of a single controller is limited, and a single con-
troller cannot meet the requirements of processing capability
in the increasingly large network. Therefore, the scalability

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

65839

https://orcid.org/0000-0003-1421-9604

H. Xiaolan et al.: Multi-Controller Deployment Algorithm in Hierarchical Architecture for SDWAN

problem can only be alleviated to some extent by improving
the performance of single processor. In order to meet the
needs of large-scale network, it is necessary to design a multi-
controller architecture as the control plane [5], [6].

At present, there are twomulti-controller architectures: flat
architecture and hierarchical architecture. In the flat architec-
ture, all controllers in the control plane are at the same level
and have equal authority to make network decisions, such as
ONIX [7] and ONOS [8]. However, since all controllers in
the control plane need to maintain the same global network
view through consistency synchronization, it takes a lot of
computing power for data synchronization, especially when
the number of controllers increases. Therefore, the flat archi-
tecture has limited scalability due to the limitation of the data
plane synchronization efficiency between the controllers. The
hierarchical architecture maintains scalability and flexible
programmability of the SDN control plane. It divides the
controllers into the root controller and the domain controllers
by function in a hierarchical way, which reduces the com-
plexity of global information synchronization and improves
the communication efficiency. The management area of the
data plane network is divided into domains, which improves
the scalability of SDN network. The flat architecture needs
to maintain a common network view. In large networks,
due to the remote distance between controllers, the cost of
global information synchronization is high, which consumes
a lot of time and network resources. But the processing logic
of controllers is relatively simple and easy to implement.
The controllers in the hierarchical architecture only need to
master its own network view. So it does not require strong
consistency of the network views of controllers, only need
to synchronize specific information to specific roles. The
amount of information synchronized between the controllers
can be effectively reduced. But it needs to design and imple-
ment different functions for different network roles, which is
more complex to implement. If the load on the root controller
increases, it may cause the root controller to crash, creating
a network bottleneck. Therefore, the scalability of the root
controller is also to be studied. In this paper, we focus on
network partitioning and the placement of root controller and
domain controller.

The hierarchical architecture divides the control plane
of the SDWAN into multiple levels. The super controller,
namely root controller, has a global view and is responsi-
ble for making global decisions for SDWAN. The domain
controller is only responsible for the control of local net-
works, which can meet the management and control needs
in SDWAN. The two-layer hierarchical architecture is shown
in Fig.1.

The communication between the root controller and the
domain controller is accomplished through the commu-
nication protocol OXP. The data plane is composed of
SDN switches and communicates with the domain con-
troller through the OpenFlow protocol. The intra-domain
requests are not uploaded to the root controller and can only
be processed by the domain controller. When there is an

FIGURE 1. The hierarchical control architecture.

inter-domain request, the domain controller sends the request
to the root controller. Then the root controller processes the
request according to the information of the entire network,
and notifies the relevant domain controller of the processing
result. After receiving the response of the root controller to
the forwarding request, the domain controller translates it into
a southbound protocol message and sends it to all switches.
In this way, through the coordination of root controller,
the cooperative work among multi-controller is realized.

With the deepening of SDNnetworks practice, research has
found that controller deployment affects the ability of con-
troller to handle network events [9]. An excellent controller
deployment case can balance the load between controllers and
effectively reduce data loss in the control plane. An effec-
tive controller deployment method can efficiently distribute
management functions between controllers and improve the
scalability of management. The controllers placement prob-
lem(CPP) has become one of the hot issues in the SDN
research. The research of CPPmainly concentrates on several
aspects: propagation delay [9], reliability [10], load [11],
overhead [12], andmulti-objective [13], [14]. In the hierarchi-
cal architecture, for inter-domain requests, the communica-
tion performance between switches and domain controllers,
as well as domain controllers and root controller, need be con-
sidered. Therefore, the partitioning and controllers placement
in flat architecture can not meet the requirements of hier-
archical architecture. However, most of the current research
on CPP is focused on the flat architecture. The problem of
controller deployment in hierarchical control architecture is
rarely studied. In this paper, we study the controller deploy-
ment based on the hierarchical architecture for the scalability
of SDWAN. The Louvain algorithm [15] is a community
discovery algorithm based on modularity, which performs
well in efficiency and effectiveness and does not require to
specify the number of partitions. The algorithm can discover
hierarchical community structure, which is exactly in line
with the characteristic of hierarchical architecture. We make
full use of this feature to solve the controller deployment
problem in hierarchical control architecture. We propose an
improved Louvain algorithm to partition the data plane to

65840 VOLUME 7, 2019

H. Xiaolan et al.: Multi-Controller Deployment Algorithm in Hierarchical Architecture for SDWAN

reduce the request delay between the switch and the domain
controller and optimize the load balancing of each domain.
Our contributions are summarized as follows:

First of all, our work takes into account the request delay
between the switch and the controller, the load balancing in
each domain, and the reliability of the control plane, respec-
tively formulating mathematical model.

Then, we propose the improved Louvain algorithm to parti-
tion the data plane and deploy the domain controller and root
controller for reliability.

The simulation results show that the proposed algorithm
can reduce the request delay to a certain extent, make the load
of each partition more balanced, and improve the reliability
of the control plane.

The structure of the paper is as follows. In Section 2,
we introduce related work. In Section 3, we describe our
proposed algorithm. In Section 4, we present the performance
evaluation. In Section 5, we conclude the paper.

II. RELATED WORK
The SDN controller masters the global resource view of the
SDWAN in a centralized manner. The controller deployment
scheme in SDWAN directly affects the ability of controller to
handle network events. The controller deployment problem
is a current research hotspot. There has been a lot of research
on the controller deployment in SDN. Heller et al. [9] first
propose the controller deployment problem, put forward two
indicators to measure the average and maximum delay in
the network, and analyze the impact of these two indicators
on controller deployment in real network environment. The
current control plane in SDN mostly uses a multi-controller
architecture to improve the scalability of the control plane.
In the multi-controller control plane scenario, how to rea-
sonably deploy the multi-controller is the main research
direction.

The authors in [11] present a new community detection
controller deployment method (CDCD). To restrict the num-
ber of nodes in each community and balance the differ-
ences in the number of nodes between different communities,
Louvain Heuristic Algorithm (LHA) is improved and the
scale constraint factor is proposed. The authors in [14] pro-
pose an adaptive evolutionary algorithmwith greedy heuristic
to produce high quality initial populations, intelligent mecha-
nisms to promote diversification and intensification, and new
fast Pareto finder for large-scale multi-objective controller
development problem. However, this algorithm requires cer-
tain memory resources and computation time. The authors
in [16] put forward a controller placement method based on
bipartite graph for minimum weight matching. Firstly, Kuhn-
Munkres algorithm is used to find the best match between
switches and controllers. Then, based on genetic algorithm,
a controller placement solution is found considering the
average propagation delay. The authors in [17] propose two
algorithms for the Resilient Capacitated Controller Place-
ment Problem (RCCPP) in SD-WAN. Firstly, considering
the capacity of the controller, the flow load of between

switches and switch-controller, and the propagation delay
between controllers, a resilient controller placement scheme
is proposed. Secondly, according to the method of modeling
NP-hard RCCPP based on the clique concept in graph theory,
a polynomial time scheme is proposed. The authors in [18]
propose a K self adaptive controller placement algorithm
for SDWAN. The adaptive spectral clustering algorithm
divides the large network into several small domains based
on the spectrum clustering algorithm to maximize controller
reliability and minimize WAN latency. And the structure of
eigenvectors is used to automatically determine the number of
SDN domains and propose metrics for spectral cluster place-
ment. The authors in [19] consider three important indicators,
including delay, hop count, and link utilization, and propose
a new method to solve the controller placement problem.
Based on these indicators, the analytic hierarchical process
(AHP) technology is used to analyze the optimal position of
the controller. In addition, an improved controller placement
genetic algorithm based on this new technology is proposed
to solve the position assignment problem in CPP. The above
studies are all directed at the multi-controller plane in the
flat control architecture without considering the hierarchical
controller plane. The hierarchical architecture stratifies the
control architecture to avoid the energy consumption and syn-
chronization delay caused by frequent data synchronization
between controllers in the flat architecture. The hierarchical
architecture can greatly improve the scalability in SDWAN.
The network partitioning in the flat architecture considers
only the communication performance between the switches
and the controller in that area. In the hierarchical architecture,
the partitioning affects not only intra-domain communication
performance but also inter-domain communication. Different
from the flat control architecture, in the hierarchical control
architecture, the location of root controller affects the com-
munication performance between the root controller and the
domain controller. Therefore, when the inter-domain flow
arrives, the messages of communication request and busi-
ness processing between the switch and the root controller
will be affected, thus directly affecting inter-domain com-
munication. Therefore, it is necessary to study in detail the
network partitioning and the deployment of the root con-
troller and the domain controller in the hierarchical control
architecture.

At present, there are some studies on the hierarchical
architecture. The authors in [20] propose a hybrid hierar-
chical control plane Orion for the increasing computational
complexity in large-scale deployment network. The proposed
Orion efficaciously decreases the computational complexity
of the control plane in SDN. Then, aiming at the problem
of path stretching caused by centralized hierarchical con-
trol plane structure, a hierarchical fast rerouting algorithm
is proposed to implement fast rerouting in the proposed
hybrid hierarchical control plane. Then the path stretching
problem is brought about for the structure of centralized
and abstracted hierarchical control plane. A hierarchical fast
rerouting method is proposed to implement fast rerouting

VOLUME 7, 2019 65841

H. Xiaolan et al.: Multi-Controller Deployment Algorithm in Hierarchical Architecture for SDWAN

in the proposed Orion. In order to protect the network
information in each sub-network domain, the authors in [21]
allocate the management of the domain controller and the
root controller, thus implementing the first traffic engineering
scheme of multi-domain in the hierarchical control plane.
Moreover, the Network Information Base (NIB) is extended
and layered, and a communication protocol is designed.
The controllers at different layers and domains can allocate
bandwidth cooperatively by reading the hierarchical NIB.
The authors in [22] apply the Vehicular Ad-hoc Network
to SDN and introduce a hierarchical distributed controller
architecture, which improve the flexibility and programma-
bility of the vehicle network. The top tier is put on the
Internet, and the underlying tier is assigned at the RSU
level. However, there is no detailed study on the controllers
deployment in hierarchical control plane architecture. The
authors in [23] propose a scheme called COLBAS to take into
account the traffic load balancing problem for hierarchical
networks in SDN. The COLBAS relies on the collaboration
of controllers communicating through cross-controllers and
designs one of the controllers as a super controller, which
can flexibly manage the traffic requests processed by each
controller. However, this paper only describes a hierarchical
scheme, but does not specifically describe how to select
domain controller and super controller, and how to classify
switches. The authors in [24] propose a hierarchical multi-
controller scheme for single point faults and computational
complexity in large-scale networks. The proposed architec-
ture has the potential to increase scalability and service flex-
ibility by allocating functionality among multiple controllers
organized in a hierarchy. However, this paper only focuses
on the concept of hierarchical distributed control, without a
detailed study of the controller location and its management
domain.

In this paper, we study the controller deployment for hier-
archical control plane based on Louvain algorithm. The Lou-
vain algorithm is a community discovery algorithm based on
modularity, which performs well in efficiency. The optimized
goal is to maximize the modularity of the whole community
network. It is able to discover the hierarchical community
structure, which is in line with the hierarchical control struc-
ture. In this paper, we use the improved Louvain algorithm to
partition the network into a hierarchical structure to determine
the placement of the domain controller and the root controller
according to the relevant performance indicators. Moreover,
we formulate the modeling for request delay, reliability, and
load balancing to evaluate the overall network performance
for the hierarchical control architecture. Our proposed algo-
rithm reduces a certain request delay, optimizes the load
balancing among different partitions, and improves the reli-
ability of control plane in SDWAN. Furthermore, in order to
compare with our proposed algorithm, we propose improved
Louvain Heuristic Algorithm [11] for promotion (ILHAP),
improved k-means [25], and random deployment algorithm
for hierarchical control architecture.

TABLE 1. Notations used in the paper.

III. ALGORITHM FORMATION
A. CONTROLLER DEPLOYMENT MODEL
In this paper, we aim at the hierarchical control plane archi-
tecture, which divides the controllers into the root controller
and the domain controllers. The architecture reduces the com-
plexity for global information synchronization and improves
the communication efficiency. The geographical distances
between nodes are often far in SDWAN. Therefore, request
delay is an important factor affecting network performance
of SDWAN.

Due to the dynamic change of traffic in SDWAN, the unrea-
sonable deployment of multiple controllers and the dynamic
connection between switches and controllers, the process-
ing capacity of controller varies greatly. It is likely to
produce light load or overload of controllers, resulting in
load imbalance and seriously reducing the performance
in SDWAN.

The failures in SDWANusually result in disruption of com-
munication between the switch and the controller or between
the controllers. The former will directly result in communi-
cation interruption in the data plane; the latter will affect the
information synchronization between the controllers, result-
ing in the errors of controller decision. The high relia-
bility in control plane can protect the control mechanism
and maintain normal control in SDWAN. The optimization
of reliability is mainly based on the failure rate, in most
studies.

Therefore, our optimized goal is to reduce the request
delay, make the load more balanced in each switch partition,
and improve the reliability of the control plane.

The network topology of SDWAN is presented a weighted
graph G(V ,E), where V is the set of nodes, and E is the set
of edges. We summarize the detailed symbols and definitions
used in the paper in Table 1.

65842 VOLUME 7, 2019

H. Xiaolan et al.: Multi-Controller Deployment Algorithm in Hierarchical Architecture for SDWAN

1) THE REQUEST DELAY
Unlike the single controller architecture and the flat control
architecture, the delay for switch to make a request in the
hierarchical control architecture is divided into two parts:
the delay between the switch and its domain controller and
the delay between the domain controller and the root con-
troller. For intra-domain communication, the request delay is
only the delay between the switch and its domain controller,
defined as follows:

Dintra(i) = d(vi, cck). (1)

where cck is the controller assigned to switch vi.
For inter-domain communication, the request delay also

includes the delay between the domain controller and the root
controller. The request delay for inter-domain communica-
tion is defined as follows:

Dinter (i) = d(vi, cck)+ d(cck , rc). (2)

Assuming that the probability of inter-domain communi-
cation in all communications is p, the probability of intra-
domain communication is 1−p. From (1) and (2), the request
delay caused by communication between switch and con-
troller can be expressed as:

D (i) = (1− p) · Dintra (i)+ p · Dinter (i) = d (vi, cck)

+ p · d (cck , rc) (3)

The authors in [26], [27] state that the delay between
nodes is the sum of propagation delay, processing delay,
and transmission delay, and the propagation delay the main
component of delay in the SDWAN. The authors in [28]
define the propagation delay in SDWAN: the propagation
delay between the node and the controller is proportional to
the distance between the switch and the controller. Generally,
the distance between nodes is very large across cities and
regions in SDWAN. Therefore, in this paper, the propagation
delay between nodes is considered as the delay between
nodes and is defined as follows:

d(s, c) = Dijks(s, c)
/
106 (4)

whereDijks(s, c) is the distance of shortest path between node
s and node c calculated by Dijkstra. The metric of Dijkstra
is the distance between nodes. The average request delay in
SDWAN is:

Daverage =

∑
k∈K

∑
i∈Nk

D (i)

N

=

∑
k∈K

∑
i∈Nk

((1− p) · Dintra (i)+ p · Dinter (i))

N

=

∑
k∈K

∑
i∈Nk

(d (vi, cck)+ p · d (cck , rc))

N
(5)

2) THE LOAD BALANCING INDEX
For the SDWAN control plane deployed by multiple con-
trollers, the controller monitors and manages the partition
as the core in each partition. The load of each partition
managed by the controller can be regarded as the load of
the controller. The ability of controller to handle the load
is not only related to its own software architecture, but also
restricted by the hardware resources of the server itself. The
overloading of the controller leads to the increase of response
delay of network events and controller failure. Therefore,
the load balancing in each partition is one of the important
performance indices to solve the controller deployment. Most
studies only consider the balance of the number of switches in
each partition. The load in each partition includes not only the
number of switches in the controller management domain but
also the size of the flow to be processed by each switch. In the
paper, the load balancing index of the algorithm is given as
following:

LB=

K∑
i=1

α ·

Ni∑
j=1
λi,j −

K∑
i=1

Ni∑
j=1
λi,j

K

K∑
i=1

Ni∑
j=1
λi,j

2

+β ·

(
Ni − N

K

N

)2

1/2

=

K∑
i=1

α ·

Ni∑
j=1
λi,j

K∑
i=1

Ni∑
j=1
λi,j

−
1
K

2

+ β ·

(
Ni
N
−

1
K

)2

1/2

(6)

where λi,j represents the flow request rate of the switch j in
the domain i and α+β=1. α and β respectively represent
the weighting coefficients in the load balancing. When α=1,
it means that the load balancing index is simply considered
from flow, which shows the load balancing degree of the
whole network. When β=1, it means that each partition is
balanced only from the number of switches.

When partitioning the network, we define the objective
function as:

min LB (7)

The constraint is

Efvi =
←

f vi , vi ∈ V (8)

li,j ≤ 1, (i, j) ∈ E (9)∑
i∈Ni

λi,k ≤ φk , k ∈ K (10)

The equation (8) indicates that the inflow and outflow of a
switch are equal. The inequation (9) ensures that the link
utilization of each link is less than 1. The inequation (10)
denotes that the total load of each domain cannot exceed the
maximum load tolerance of the domain controller.

VOLUME 7, 2019 65843

H. Xiaolan et al.: Multi-Controller Deployment Algorithm in Hierarchical Architecture for SDWAN

In the distributed multi-controller deployment scenario,
the reliability of the control plane is an important perfor-
mance parameter. The higher the reliability, the longer time
the control plane continues to work without failure. The
failures usually result in communication interruption between
the domain controller and the switch or between the domain
controller and the root controller. Therefore, the reliability is
also one of the important performance indices to solve the
controller deployment, focusing on the reliability of control
path in most studies. Reliability includes the reliability of the
nodes and the links. The links include the links between the
switch and the domain controller, and between the domain
controller and the root controller.

In this paper, we do not focus on the design of routing
algorithms, so the communication path from switch to con-
troller is calculated by the Dijkstra algorithm, where the
weight between the nodes is considered to be the geographi-
cal distance. The path reliability between node i and node j is
defined as:

R(i, j) =
∏
e∈Ei,j

(1− pe)
∏
v∈Vi,j

(1− pv) (11)

where Ei,j represents the links set of the shortest path between
node i and node j, and Vi,j represents the nodes set of the
shortest path between node i and node j.
We assume that the kth domain controller is deployed at

node cc(k) and the root controller is deployed at node rc.
We consider the sum of the path reliabilities of the domain
controller and the all switches in its administrative domain
as the path reliability. So the path reliability of the domain
controller in the kth partition is as follows:

Rc(k) =
∑
j∈Ck

R(cc(k), j)

=

∑
j∈Ck

∏
e∈Ecc(k),j

(1− pe)
∏

v∈Vcc(k),j

(1− pv) (12)

where Ck denotes the kth partition where node j is located.
We treat the sum of the path reliabilities between the root

controller and all domain controllers as the path reliability of
the root controller. The path reliability of the root controller
is:

Rrc =
∑
k∈K

Rc(k) · R(cc(k), rc)

=

∑
k∈K

∑
j∈Ck

R(cc(k), j) · R(cc(k), rc)

=

∑
k∈K

∑
j∈Ck

∏
e∈Ecc(k),j

(1− pe) ·
∏

v∈Vcc(k),j

(1− pv)

·

∏
e∈Ecc(k),rc

(1− pe) ·
∏

v∈Vcc(k),rc

(1− pv) (13)

Many studies only consider the path reliability in solving
reliability problems, but do not consider other factors of
nodes. In this paper, we consider not only the reliability of
nodes and links, but also the flow request rate and degree

of the node. The degree of a node is the number of edges
associated with the node. The greater the degree of the node,
the greater the role and influence of the node in the network.
And the higher the flow request rate of the node, the stronger
the ability of the node to process the flow.

In order to compare the influence of nodes in the network,
the centrality index of normalized degree of node i is defined
as:

Rdegi =
deg(i)

max
i∈N

(deg(i))
(14)

Similarly, in order to compare the flow processing capabil-
ities of nodes in the network, the centrality index of normal-
ized flow of node i is defined as:

Rλi =
λi

max
i∈N

(λi)
(15)

We jointly consider the three factors of reliability of nodes
and links, flow request rate, and degree of node to define
the reliability of the domain controller node and the root
controller node. If node i is deployed as a domain controller
in the kth partition, the reliability of the node is defined as:

Rci=Rc(k) · Rdegi · Rλi (16)

If node i is deployed as a root controller, the reliability of the
node is defined as:

Rrci =Rrc · Rdegi · Rλi (17)

When selecting the root controller and domain controller,
we define the objective function as:

max Rci (18)

max Rrci (19)

The constraint is ∑
i∈Ni

λi,k ≤ φk , k ∈ K (20)

∑
k∈K

∑
i∈Ni

λi,k ≤ 8 (21)

∑
yrccc = K (22)

The inequation (20) indicates the total load of each domain
less than the maximum load tolerance of the domain con-
troller. The inequation (21) shows the total load of all inter-
domains in the whole network is less than the maximum load
that the root controller can bear. The equation (22) ensures
that all domain controllers are linked to the root controller.

B. THE LOUVAIN ALGORITHM
The Louvain algorithm is an modularity optimization algo-
rithm based on multi-level (round-by-round heuristic itera-
tion). The hierarchical community structure is found through
the following calculation processes. The algorithm can be
divided into two phases and iterated repeatedly. The Louvain

65844 VOLUME 7, 2019

H. Xiaolan et al.: Multi-Controller Deployment Algorithm in Hierarchical Architecture for SDWAN

algorithm is based on modularity. The modularity is defined
as:

Q=
1
2m

∑
i,j

[
Aij −

WiWj

2m

]
δ(Ci,Cj) (23)

where Aij denotes the weight of the nodes i and j and
Wi is the sum of the weights of the edges connected to node i.
Ci represents the community to which i belongs. δ (u, v)
denotes whether u and v are the same community. If u and
v are the same community, this value is 1, otherwise 0.

m =
1
2

∑
ij

Ai,j (24)

The nodes in the network are taken out from the origi-
nal community and continuously traversed. We calculate the
modularity gain generated by this node being added to each
community. Then we choose the community with the largest
gain in modularity, add the node to it until no node can be
moved, and merge the community into a super node. Repeat
the above steps until the modularity is no longer increased.
The modularity gain is the change of modularity when a node
is taken out from the original community and added to another
community. The formula for calculating modularity gain is as
follows:

1Q =

[∑
in+wi,in
2m

−

(∑
tot +wi
2m

)2
]

−

[∑
in

2m
−

(∑
tot

2m

)2

−

(wi
2m

)2]

=
1
2m

(
wi,in −

∑
tot wi
m

)
(25)

where wi,in/m denotes the impact of putting isolated nodes
and community C together on the modularity in the entire
network and

∑
tot wi/m

2 represents the influence of isolated
nodes and community C on the modularity in the whole
network , so their difference reflects the influence of isolated
nodes on the modularity of whole network before and after
they are put into community C .
The first phase of the algorithm is completed by repeating

the process until all nodes no longer move. If the modularity
in the whole network does not change after one iteration,
the iteration is stopped. If the modularity has not reached the
local optimum, the iteration continues. When the first phase
stops counting, the local modularity reaches the maximum
value. In the second phase of the algorithm, a new network
is built by the communities discovered in the first phase.
Each community is regarded as a new node, and the nodes
in the community are compressed. The weight between the
new nodes is determined by the sum of the weights between
the nodes in the community. When the new network is estab-
lished, the process of the first phase is repeated until the
community with largest local modularity is obtained. The
flow chart of the Louvain algorithm is shown in Fig.2.

FIGURE 2. Flow chart of Louvain algorithm.

C. PROPOSED SOLUTION
In the hierarchical control architecture in SDWAN, the dis-
tance between switches and domain controllers, as well as
between domain controllers and root controller, is relatively
distant. Therefore, delay is an important factor affecting net-
work performance. As the network scale increases, the load
balancing technology can not only maintain the balanced
distribution of load in the network, but also maintain the high
availability of the network. So in this paper, we consider
delay and load balancing to optimize the modularity when
the network is partitioned.

At present, the reliability is not well considered for con-
troller placement in hierarchical network architecture. How-
ever, the link failure between the controller and the switch
will cause the failure of flow forwarding, which prevents the
switch from receiving instructions from the controller. More-
over, the failure between the root controller and the domain
controller will lead to the domain controller to fail to accept
the control messages from its upper controller, thus affecting
the flow forwarding between switches. In this paper, we study
the placement of root controller and domain controllers in
hierarchical architecture to optimize network reliability.

VOLUME 7, 2019 65845

H. Xiaolan et al.: Multi-Controller Deployment Algorithm in Hierarchical Architecture for SDWAN

TABLE 2. The pseudo code of improved Louvain algorithm.

The proposed algorithm is divided into two parts: the
allocation of the communities and the selection of the con-
trollers (domain controllers and root controller). The mod-
ularity function of Louvain algorithm can not only describe
the closeness of the community, but also be used as an opti-
mization function. If themodularity of the current community
structure can be improved by adding a node to the community
of its neighbor, then this iterative optimization is acceptable.
In the first part of the proposed algorithm, we partition the
network topology through the improved Louvain algorithm
bymodifying themodularity. In the first phase of the first iter-
ation of the improved Louvain algorithm, the weight between
nodes is represented by the reciprocal of propagation delay
between nodes. The smaller the propagation delay between
nodes, the larger the weights, the easier the nodes can be
divided into the same partition. And the whole network is
divided into small partitions with delay as the optimized
objective. The first partition of the network is realized. The
detailed steps are shown in Table 2. In the process of super
node merging, the load balancing index of the whole network
is regarded as the modularity. The smaller the load balancing
index, the more balanced the network. Therefore, we con-
sider the difference between the modularity of the whole
network before node i migration and after node i migration.
If the maximum modularity gain is greater than 0, the node
should move to the neighbor community with the maximum
modularity. When the modularity reaches the minimum and
no longer changes, the partition reaches stability and the
load balancing of the whole network is achieved optimally.
The deployment algorithm for the domain controller and
root controller is shown in Table 3. The improved Louvain
algorithm in Table 2 and controller development algorithm
in Table 3 constitute our proposed algorithm.

TABLE 3. The pseudo code for deploying domain controllers and root
controller.

D. ALGORITHM SUMMARY AND COMPLEXITY ANALYSIS
The proposed algorithm is divided into two parts: community
partitioning and deployment of domain controllers and root
controller. We partition the network by the improved Lou-
vain algorithm. The improved Louvain algorithm includes
two phases: partitioning the nodes and reconstructing the
network. In the first phase of the first iteration, we divide
the network into multiple small partitions with delay as the
optimized objective. The nodes in the same partition are
compressed into a super node. Then, with load balancing as
the optimized goal, the new network composed of super nodes
is partitioned and reconstructed until themodularity no longer
changes. After partitioning the network, the node with the
greatest reliability is deployed as the domain controller in
each partition, and then the domain controller node with the
highest reliability is placed as the root controller.

In the first phase of the improved Louvain algorithm,
the algorithm traverses all neighbor nodes of each node, and
measures the modularity gain brought by adding the node to
the community where the neighbor node is located. So the
time complexity in each iteration is O(|E|), and |E| is the
number of edges in the network topology. In the second
phase of the algorithm, the algorithm folds each community
into a single node, calculates the joint weight between these
newly generated community nodes, and the sum of the joint
weights between all nodes in the community. So, the time
complexity of the second phase is O(|E| + N ′), and N ′ is the
number of nodes in current iteration. So the time complex-
ity of the improved Louvain algorithm is O(2 ∗ |E| + N ′).
The deployment complexity of a domain controller is related
to the number of switches in the domain. The deployment
complexity of the root controller depends on the number
of domain controllers. The time complexity of domain con-
trollers deployment and root controller deployment is O(N)
and O(K) respectively. N is the number of all switch nodes
in the network, and K is the number of network partitions.
Therefore, the time complexity of the whole algorithm is
O(2∗ |E|+N ′+N +K). Because of the number of partitions
K << N , we can consider the time complexity of the pro-
posed algorithm isO(|E|+N ′+N). The number of the nodes

65846 VOLUME 7, 2019

H. Xiaolan et al.: Multi-Controller Deployment Algorithm in Hierarchical Architecture for SDWAN

and links in the network can directly affect the complexity of
the algorithm. N ′ depends on the partitioning effect of the
algorithm, and the better the partitioning effect, the smaller
the N ′. The partitioning effect of the algorithm depends on
the strategy of weight calculation. So the weight calculation
method needs to be well studied so that the algorithm can
partition the network well, so as to reduce the complexity of
the algorithm.

IV. PERFORMANCE EVALUATION
A. DESCRIPTION OF THE COMPARED ALGORITHM
Most papers on hierarchical architecture focus on the func-
tional design of hierarchical architecture, with little mention
of network partitioning and controller placement for hierar-
chical architecture. In order to compare with our proposed
algorithm, we improve three traditional algorithms to solve
the network partitioning and controller placement for hierar-
chical architecture. The authors in [11] present an improved
Louvain Heuristic Algorithm (ILHA) to partition the net-
work, and then select the controller location based on the
minimum maximum delay or the minimum average delay.
In order to make a better comparison with our algorithm,
we add the step of selecting the root controller with the max-
imum reliability on the basis of ILHA algorithm, as shown
in lines 6-12 in Table 3. In the paper, we select the domain
controller location based on the minimum average delay and
call it improved Louvain Heuristic Algorithm for promotion
(ILHAP). Then we improve the k-means algorithm for hierar-
chical architecture as the second comparison algorithm. The
k-means algorithm is a distance-based clustering algorithm.
In this paper, we consider the distance to be a reflection
of the delay. The steps of the improved k-means algorithm
are as follows. Firstly, given the number of partitions K , the
k-means algorithm divides the network into k partitions based
on the distance between the nodes. Then, the centroid in
each partition is deployed as the domain controller. Finally,
the domain controller node with the smallest sum of distances
from other domain controllers nodes is deployed as the root
controller. And we propose a random deployment algorithm
for hierarchical architecture as the third comparison algo-
rithm. The steps of the random deployment algorithm are as
follows. First, according to the given number of partitions K ,
the network is randomly divided into K partitions. Then,
the location of the domain controller is randomly deployed
in each partition. Finally, the location of the root controller
is selected randomly from the deployment location of the
domain controller.

B. SIMULATION SETTINGS
In this section, we compare the performance of our proposed
algorithmwith ILHAP algorithm, the improved k-means, and
random deployment algorithm for hierarchical architecture.
We use MATLAB to simulate and take the average result
of each algorithm performed 100 times. And we use Inter-
net2 OS3E [29] network topology and other four topologies
with different scales from Internet Topology Zoo [30] to

TABLE 4. The dimensions of five network topologies.

FIGURE 3. The result of partitioning and controller deployment of our
proposed algorithm for Internet2 OS3E.

evaluate the performance of the proposed algorithm. The
dimensions of five network topologies are shown in Table 4.

C. PERFORMANCE COMPARISON AT THE SAME
NUMBERS OF PARTITIONS
In this section, we compare the performance of our pro-
posed algorithm with ILHAP algorithm, the improved
k-means algorithm, and the random deployment algorithm
in terms of load balancing, reliability, and average request
delay. The proposed algorithm and ILHAP algorithm can
adaptively calculate the number of partitions according to
the network topology with optimal modularity. The improved
k-means algorithm and randomdeployment algorithm need to
specify the number of partitions in advance. In order tomake a
better comparison under the same number of partitions, we set
the number of partitions for the improved k-means algorithm
and the random deployment algorithm to be the same as the
number of partitions in our proposed algorithm and ILHAP
algorithm in Fig. 4 to Fig. 6. The proposed algorithm is
divided into two parts: network partitioning and controllers
placement. We use the improved Louvain algorithm to par-
tition the network topology. Fig. 3 takes Internet2 OS3E as
an example to show the result of partitioning and controller
deployment of our proposed algorithm. From the Fig. 3,
we can see that the improved Louvain algorithm divides the
Internet2 OS3E topology into six partitions. The different
colors represent different partitions, and the nodes of the same
color are represented in the same partition. The nodes with a
black circle indicate the deployment nodes of domain con-
trollers. The node with a red circle denotes the deployment
node of root controller. The experimental result shows that the
ILHAP algorithm also divides the Internet2 OS3E topology
into six parts.

VOLUME 7, 2019 65847

H. Xiaolan et al.: Multi-Controller Deployment Algorithm in Hierarchical Architecture for SDWAN

FIGURE 4. The average request delay of the four algorithms in different
networks.

Fig. 4 shows the average request delay of four algorithms
in different networks. As shown in Fig. 4, the average request
delay of the random deployment algorithm is largest. Because
the random deployment algorithm does not take into account
the performance parameters in the network, but adopts a
random selection method. In the Internet2 OS3E, Aranet, and
Abvt networks, the average request delay of the proposed
algorithm is smaller than the improved k-means algorithm.
The average request delay of improved k-means algorithm in
Arpanet network is smallest. In Carnet network, the average
request delay of the proposed algorithm and k-means algo-
rithm is basically the same. Because k-means algorithm is an
iterative algorithm based on distance, the distance between
each node and its domain controller is smaller than other
domain controllers. And the sum of the distances from the
root controller to other domain controllers is the shortest.
The improved k-means algorithm regards distance as the only
optimized objective and the distance reflects the delay in
SDWAN. The average request delay of ILHAP algorithm is
larger than our proposed in Internet2 OS3E and Aranet, and
less than the proposed algorithm in the other three networks.
The weight between two nodes is related to distance in the
ILHAP algorithm. So the average request delay of ILHAP
algorithm can be effectively reduced. In the initial iteration,
our proposed algorithm divides the network with the delay
as the optimized objective, but the delay is not the only opti-
mized goal. Therefore, we can conclude that our algorithm
can reduce the average request delay to some extent.

Fig. 5 shows the load balancing indices of four algorithms
in different networks when α = 0.5, β = 0.5. The load
balancing index represents the performance of load balancing
in SDWAN. The smaller the load balancing index, the more
balanced the load in the network. We can see that the load
balancing index of the random deployment algorithm is the
largest, and the load balancing performance is the worst in
the five network topologies. Because the random deployment
algorithm is deployed randomly in partitions and the selection
of domain controllers and root controller. The load balancing

FIGURE 5. The load balancing index of the four algorithms in different
networks when α = 0.5, β = 0.5.

FIGURE 6. The load balancing index of the four algorithms in different
networks when α = 1, β = 0.

performance of the improved k-means algorithm is better
than the random deployment algorithm. The load balancing
index of the ILHAP algorithm is larger than the proposed
algorithm. The ILHAP algorithm only considers the influence
coefficient of the node in the load balancing index, and limits
the difference of the total influence coefficient between the
two communities to the β. The load balancing index of our
proposed algorithm is the lowest and the performance for
load balancing is best compared to the other three algorithms.
When α = 0.5, β = 0.5, our proposed algorithm considers
the balance from the number of nodes and the request rate
of flows for each node. Therefore, our proposed algorithm
achieves better performance for load balancing.

Fig. 6 shows the load balancing indices of four algorithms
in different networks when α = 1, β = 0. The load balancing
index of the proposed algorithm is simply considered the
request rate of flows for each node when α = 1, β = 0.
The larger the flow request rate of the node, the larger the

65848 VOLUME 7, 2019

H. Xiaolan et al.: Multi-Controller Deployment Algorithm in Hierarchical Architecture for SDWAN

FIGURE 7. The load balancing index of the four algorithms in different
networks when α = 0, β = 1.

FIGURE 8. The reliability of the four algorithms in different networks.

influence factor of the node on the network. The performance
of the proposed algorithm is worse than that of ILHAP algo-
rithm when load balancing is evaluated only from the impact
factor of nodes.

Fig. 7 shows the load balancing performance when
α = 0, β = 1. The load balancing performance of the
proposed algorithm is only considered in terms of the number
of nodes when α = 0, β = 1. The load balancing perfor-
mance of ILHAP algorithm is considered from the influence
coefficient of nodes. So the load balancing performance of the
ILHAP algorithm isworse than that of the proposed algorithm
in Fig. 7.

Fig. 8 shows the reliability of the four algorithms in differ-
ent networks. It can be seen from the Fig. 8 that our proposed
algorithm has great advantages in reliability compared with
the ILHAP algorithm, improved k-means algorithm, and the
random deployment algorithm. The ILHA algorithm does
not consider the deployment of the root controller nor the
reliability, so we add the root controller deployment to the

FIGURE 9. The average delay at different numbers of partitions in
Internet2 OS3E network.

FIGURE 10. The load balancing index at different numbers of partitions in
Internet2 OS3E network when α = 0.5, β = 0.5.

most reliability location in the ILHAP algorithm. The pro-
posed algorithm takes into account not only the path reli-
ability between nodes but also the degree and flow request
rate of node when deploying the domain controller and root
controller. The greater the reliability of controller deploy-
ment node, the longer the duration of trouble-free operation
in SDWAN. The proposed algorithm improves the reliability
and availability of the control plane in the hierarchical
architecture.

D. PERFORMANCE COMPARISON AT DIFFERENT
NUMBERS OF PARTITIONS
The improved Louvain algorithm is a modularity-based com-
munity discovery algorithm. It does not need to specify the
number of partitions in advance and can discover hierar-
chical community structure. When the modularity of the
whole network is optimal, the algorithm stops iterating. Tak-
ing Internet 2 OS3E as an example, in the proposed algo-
rithm and ILHAP algorithm, the network is divided into

VOLUME 7, 2019 65849

H. Xiaolan et al.: Multi-Controller Deployment Algorithm in Hierarchical Architecture for SDWAN

FIGURE 11. The reliability at different numbers of partitions in
Internet2 OS3E network.

six partitions. The improved k-means algorithm and random
deployment algorithm need to specify the number of parti-
tions. In Fig. 4 to Fig. 8, we compare the performance of
the four algorithms in different networks when the number
of partitions for improved k-means algorithm and the random
deployment algorithm is equal to the number of partitions for
our proposed algorithm and ILHAP algorithm. In Fig. 9 to
Fig. 11, we take the Internet 2 OS3E network as an example to
compare the performance of the ILHAP algorithm, improved
k-means algorithm, and the random deployment algorithm
under different partitions with our proposed algorithm. The
proposed algorithm and ILHAP algorithm have fixed num-
ber of partitions, so their performance is represented by
straight line in Fig. 9 to Fig. 11, respectively. We consider
the performance of the improved k-means algorithm and
random deployment algorithm when the number of partitions
is 4,5,6,7,8.

Fig. 9 and Fig. 10 show the average request delay and
load balancing at different numbers of partitions in Inter-
net2 OS3E network. We can see that as the number of parti-
tions increases, the average request delay and load balancing
index of improved k-means and random deployment algo-
rithms become smaller and smaller. As the network is divided
into more partitions, the number of switches in each partition
is smaller and the average request latency and load balanc-
ing index is smaller. The average request delay and load
balancing performance of random deployment algorithm is
worst compared to the improved k-means algorithm, ILHAP
algorithm, and proposed algorithm as the number of partitions
changes. When the number of partitions is greater than six,
the average request delay of improved k-means algorithm is
lower than the ILHAP algorithm and our proposed algorithm.
When the number of partitions is greater than seven, the load
balancing index of improved k-means algorithm is lower than
the ILHAP algorithm and our proposed algorithm. As we all
know, the more partitions, the more domain controllers need
to be deployed, the greater the cost of network deployment.

TABLE 5. The average running time of different algorithms to execute
once.

The improved Louvain algorithm can be partitioned reason-
ably according to topology and performance of network.

Fig. 11 shows the reliability at different numbers of parti-
tions in Internet2 OS3E network. As the number of partitions
increases, the reliability of the random deployment algorithm
is the worst. The reliability of the improved k-means algo-
rithm is greater than the randomdeployment algorithm.When
the number of partitions is five or six, the reliability of ILHAP
algorithm is greater than the improved k-means algorithm.
The proposed algorithm has the highest reliability. Reliability
is related to the failure of links and nodes as well as the degree
and flow request rate of node, and has little to do with the
number of partitions.

We compare the average running time of the four algo-
rithms in Table 5. We can see that the running time of the
proposed algorithm is less than the ILHAP algorithm and the
improve k-means algorithm. And the average running time
of the proposed algorithm is almost half of the improved k-
means algorithm. The convergence rate of ILHAP algorithm
is slower when the constraint of influence coefficient is not
satisfied. In the proposed algorithm, the network topology
is divided into multiple small partitions by the improved
Louvain algorithm. Each partition is regards as a super node
and network is compressed. It greatly reduces the number of
edges and nodes. But the random deployment algorithm has
the shortest average running time. Because random deploy-
ment algorithm uses random selection method to select net-
work partitioning and controller deployment nodes, with-
out considering network performance. Although the running
time of our proposed algorithm is longer than the random
deployment algorithm, the deployment is done once when the
network is originally built, so it does not have the obvious
disadvantages. In general, the proposed algorithm has a good
effect on the execution efficiency.

V. CONCLUSIONS
In this paper, we propose a multi-controller deployment algo-
rithm in hierarchical architecture for SDWAN.We propose an
evaluation modeling for request delay, load balancing, and
reliability for the hierarchical control architecture. Firstly,
in order to optimize the delay and load balancing among dif-
ferent partitions, we put forward an improved Louvain algo-
rithm for network partitioning.We consider the reliability and
availability in hierarchical control plane to deploy domain
controllers and root controller for SDWAN. For load balanc-
ing, we consider the balance of the number of switches and
the size of the flows in each partition. We consider the relia-
bility of hierarchical control architecture in terms of path reli-
ability, degree and flow request rate of node. The simulation

65850 VOLUME 7, 2019

H. Xiaolan et al.: Multi-Controller Deployment Algorithm in Hierarchical Architecture for SDWAN

results show that the proposed algorithm reduces the average
request delay to a certain extent in SDWAN, optimizes the
load balancing among different partitions, and improves the
reliability of the control plane. And the proposed algorithm
achieves good effect on the execution efficiency. Since there
are still many factors to be considered in actual deployment,
our future research will consider deployment costs within the
community, delay at the control plane and so on.

REFERENCES
[1] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig, ‘‘Software-defined networking: A comprehensive survey,’’
Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[2] F. N. N. Farias, J. J. Salvatti, E. C. Cerqueira, and A. J. G. Abelém, ‘‘A pro-
posal management of the legacy network environment using OpenFlow
control plane,’’ in Proc. IEEE Netw. Oper. Manage. Symp., Apr. 2012,
pp. 1143–1150.

[3] J. Hu, C. Lin, X. Li, and J. Huang, ‘‘Scalability of control planes for
software defined networks: Modeling and evaluation,’’ in Proc. IEEE 22nd
Int. Symp. Qual. Service (IWQoS), May 2014, pp. 147–152.

[4] R. Veisllari, N. Stol, S. Bjornstad, and C. Raffaelli, ‘‘Scalability analysis
of SDN-controlled optical ring MAN with hybrid traffic,’’ in Proc. IEEE
Int. Conf. Commun.(ICC), Jun. 2014, pp. 3283–3288.

[5] S. H. Yeganeh and Y. Ganjali, ‘‘Kandoo: A framework for efficient and
scalable offloading of control applications,’’ in Proc. 1st Workshop Hot
Topics Softw. Defined Netw., Aug. 2012, pp. 19–24.

[6] A. Tootoonchian and Y. Ganjali, ‘‘HyperFlow: A distributed control plane
for OpenFlow,’’ in Proc. Internet Netw. Manage. Conf. Res. Enterprise
Netw., Apr. 2010, pp. 1–6.

[7] T. Koponen et al., ‘‘Onix: A distributed control platform for large-scale
production networks,’’ in Proc. 9th USENIX Conf. Operating Syst. design
Implement., Vancouver, Canada, Oct. 2010, pp. 1–6.

[8] P. Berde et al., ‘‘ONOS: Towards an open, distributed SDN OS,’’ in Proc.
3rd Workshop Hot Topics Softw. Defined Netw., Aug. 2014, pp. 1–6.

[9] B. Heller, R. Sherwood, and N. McKeown, ‘‘The controller placement
problem,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp. 473–478, Sep. 2012.

[10] J. Liu, J. Liu, and R. Xie, ‘‘Reliability-based controller placement algo-
rithm in software defined networking,’’ Comput. Sci. Inf. Syst., vol. 13,
no. 2, pp. 547–560, 2016.

[11] C. Wen, C. Cong, J. Xueqin, and L. Leijie, ‘‘Multi-controller placement
towards SDN based on Louvain heuristic algorithm,’’ IEEE ACCESS,
vol. 6, pp. 49486–49497, 2018.

[12] A. Sallahi and M. St-Hilaire, ‘‘Expansion model for the controller place-
ment problem in software defined networks,’’ IEEECommun. Lett., vol. 21,
no. 2, pp. 274–277, Feb. 2017.

[13] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, ‘‘On using bargaining
game for optimal placement of SDN controllers,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), May 2016, pp. 1–6.

[14] V. Ahmadi and M. Khorramizadeh, ‘‘An adaptive heuristic for multi-
objective controller placement in software-defined networks,’’ Comput.
Elect. Eng., vol. 66, pp. 204–228, Feb. 2018.

[15] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, ‘‘Fast
unfolding of communities in large networks,’’ J. Stat. Mech., Theory Exp.,
vol. 2008, no. 10, Oct. 2008, Art. no. P10008.

[16] Y. Tingting, H. Xiaohong, M. Maode, and Y. Jie, ‘‘Balance-based SDN
controller placement and assignment with minimum weight matching,’’
in Proc. IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

[17] M. Tanha, D. Sajjadi, R. Ruby, and J. Pan, ‘‘Capacity-aware and delay-
guaranteed resilient controller placement for software-defined WANs,’’
IEEE Trans. Netw. Service Manage., vol. 15, no. 3, pp. 991–1005,
Sep. 2018.

[18] P. Xiao, Z.-Y. Li, S. Guo, H. Qi,W.-Y. Qu, andH.-S. Yu, ‘‘AK self-adaptive
SDN controller placement for wide area networks,’’ Frontiers Inf. Technol.
Electron. Eng., vol. 17, no. 7, pp. 620–633, Jul. 2016.

[19] A. Jalili, M. Keshtgari, R. Akbari, and R. Javidan, ‘‘Multi criteria analysis
of controller placement problem in software defined networks,’’ Comput.
Commun., vol. 133, pp. 115–128, Jan. 2019.

[20] Y. Fu et al., ‘‘A hybrid hierarchical control plane for flow-based large-scale
software-defined networks,’’ IEEE Trans. Netw. Service Manage., vol. 12,
no. 2, pp. 117–131, Jun. 2015.

[21] H. Jingyu, Z. Laiping, Z. Suohao, L. Yangyang, G. Xin, and Z. Sheng,
‘‘Topology-preserving traffic engineering for hierarchical multi-domain
SDN,’’ Comput. Netw., vol. 140, pp. 62–77, May 2018.

[22] K. S. K. Liyanage, M. Ma, and P. H. J. Chong, ‘‘Controller placement opti-
mization in hierarchical distributed software defined vehicular networks,’’
Comput. Netw., vol. 135, pp. 226–239, Apr. 2018.

[23] H. Selvi, G. Gür, and F. Alagöz, ‘‘Cooperative load balancing for hier-
archical SDN controllers,’’ in Proc. IEEE 17th Int. Conf. High Perform.
Switching Routing (HPSR), Jun. 2016, pp. 100–105.

[24] P. D. Bhole and D. D. Puri, ‘‘Distributed hierarchical control plane of
software defined networking,’’ inProc. Int. Conf. Comput. Intell. Commun.
Netw., Dec. 2015, pp. 516–522.

[25] R. Z. Krista, ‘‘An efficient k’-means clustering algorithm,’’ Pattern Recog-
nit. Lett., vol. 29, no. 9, pp. 1385–1391, Jul. 2008.

[26] A. Sallahi and M. St-Hilaire, ‘‘Optimal model for the controller placement
problem in software defined networks,’’ IEEE Commun. Lett., vol. 19,
no. 1, pp. 30–33, Jan. 2015.

[27] G. Yao, J. Bi, Y. Li, and L. Guo, ‘‘On the capacitated controller placement
problem in software defined networks,’’ IEEE Commun. Lett., vol. 18,
no. 8, pp. 1339–1342, Aug. 2014.

[28] K. S. Sahoo et al., ‘‘On the placement of controllers in software-
defined-WAN using meta-heuristic approach,’’ J. Syst. Softw., vol. 145,
pp. 180–194, Nov. 2018.

[29] (2010). Internet2 Open Science, Scholarship and Services Exchange.
[Online]. Available: http://www.internet2.edu/network/ose/

[30] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
‘‘The Internet topology Zoo,’’ IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

HOU XIAOLAN was born in 1988. She received
the master’s degree in communications engi-
neering from Yanshan University, Hebei, China,
in 2016. She is currently pursuing the Ph.D.
degree with the Beijing University of Posts and
Telecommunications (BUPT). Her research inter-
est includes controller placement for software-
defined networks.

WU MUQING was born in 1963. He received
the Ph.D. degree. He is currently a Professor with
the Beijing University of Posts and Telecommu-
nications (BUPT). His research interests include
new network architecture, communication net-
works, high-speed network traffic control and per-
formance analysis, and GPS locating and services.
He is a Senior Member of the China Institute of
Communications.

LV BO received the Ph.D. degree in information
and communication from the Beijing University
of Posts and Telecommunications, Beijing, China,
in 2014. Hewas aVisiting Scholar with theDepart-
ment of Computer Science, Worcester Polytechnic
Institute (WPI), Worcester, MA, USA, in 2016.
He is currently a Researcher with the Innovation
Center, China Academy of Electronics and Infor-
mation Technology. His research interests include
urban computing and data visualization.

LIU YIFENG received the Ph.D. degree in
electronic engineering from Wuhan University,
Wuhan, China, in 2016. He is currently the Prin-
cipal Investigator of machine intelligence with the
Innovation Center, China Academy of Electronics
and Information Technology, Beijing, China. His
current research interests includemachine learning
and computer vision.

VOLUME 7, 2019 65851

	INTRODUCTION
	RELATED WORK
	ALGORITHM FORMATION
	CONTROLLER DEPLOYMENT MODEL
	THE REQUEST DELAY
	THE LOAD BALANCING INDEX

	THE LOUVAIN ALGORITHM
	PROPOSED SOLUTION
	ALGORITHM SUMMARY AND COMPLEXITY ANALYSIS

	PERFORMANCE EVALUATION
	DESCRIPTION OF THE COMPARED ALGORITHM
	SIMULATION SETTINGS
	PERFORMANCE COMPARISON AT THE SAME NUMBERS OF PARTITIONS
	PERFORMANCE COMPARISON AT DIFFERENT NUMBERS OF PARTITIONS

	CONCLUSIONS
	REFERENCES
	Biographies
	HOU XIAOLAN
	WU MUQING
	LV BO
	LIU YIFENG

