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ABSTRACT Guaranteed-cost synchronization problems for the second-order Lipschitz nonlinear wire-
less sensor network with switching topologies and the given cost budget are investigated. The existing
sufficient conditions for the network synchronization are usually proposed on the basis of linear matrix
inequality (LMI) tools without taking given cost budgets into account. First, this paper designs a net-
work synchronization protocol with a guaranteed-cost constraint, where the tradeoff between the battery
power consumption and the network synchronization performance is established. Second, by the structure
characteristic of a piecewise continuous matrix and the Lipschitz condition, the nonlinear term of the
dynamics is linearized. Then, sufficient conditions are developed to make the Lipschitz nonlinear network
reach guaranteed-cost synchronization, and an upper bound of the cost function is derived for the case
not considering the given cost budgets. Third, for the case where the whole energy supply is limited,
the relationship between the practical energy consumption and the given limited cost budget is drawn to the
criterion as a cost constraint, which can make the nonlinear network reach guaranteed-cost synchronization.
In particular, the explicit expressions of control gains in these criteria are derived, which indicates that the
existence of control gains in network synchronization criteria can be ensured and most existing references
cannot deal with the analytic solutions of control gains. In addition, the proposed criteria depend upon
the minimum nonzero and maximum eigenvalues, which means that the scalability of the wireless sensor
network can be ensured. Finally, the theoretical results are illustrated by numerical simulations.

INDEX TERMS Wireless sensor network, Lipschitz nonlinear, guaranteed-cost synchronization, switching
topology, cost budget.

I. INTRODUCTION
Wireless sensor networks consist of certain wireless devices
installed with sensors which can collect the information
from the environment. All the components are the active
network participant to function as a communication medium.
Wireless sensor networks have attracted much attention and
been extensively investigated for the widespread use in many
fields such as unmanned aerial vehicle control, environmental
observation and battlefield surveillance [1]–[9]. In order to
forward the information to the destination, many source
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sensors interact with one another until the packets reach to the
sink sensor. Hence, the network can be modeled as the type of
the leader-following structure. In fact, due to various network
constraints such as the limited memory space, variable trans-
mission rates and the limited energy supply, sensor nodes
may suffer from network congestion problems. Moreover, the
network congestion may also be worsened caused by connec-
tion failures and random changes for environmental distur-
bances. Thus, both the dynamics and connection topologies
are important factors to be considered for the networks to
improve the data packet transmission performance decreased
by various network constraints [10]–[13]. To suppress the net-
work congestion and improve the transmission performance,
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the information synchronization of the specific performance
can be taken as a valid measure, which means that the same
states between the sink node and follower nodes are reached
for the wireless sensor network.

Due to the environmental disturbances, the nonlinear
intrinsic dynamics can be proposed to deal with these
random changes for the wireless sensor network. In the lit-
eratures [14]–[18], occurring nonlinearities have been mod-
eled for the multi-node network synchronization problem.
The paper [14] addressed nonlinear multi-node systems with
exogenous disturbances by the assumption that the inter-
action topology was fixed. Yu et al. [15] addressed the
second-order multi-node network synchronization problem
with the nonlinear dynamics and directed topologies. The
paper [16] proposed leader-following synchronization algo-
rithms by introducing the pinning control for second-order
multi-node networkswith general network interaction topolo-
gies. In [17]–[18], control problems for the Lipschitz nonlin-
ear time-delayed systemswere addressed and some important
and meaningful results were presented. On the other hand,
network conditions driven by node failures, mobility and
certain intentional misbehaviors can lead to the changing
interaction topologies. In addition, the network synchroniza-
tion with switching topologies is more challenging andmean-
ingful compared with fixed topologies. Wang et al. [19] gave
the synchronization criteria for the multi-node network with
fixed topologies. Cao and Ren [20] focused on the synchro-
nization control problems for linearmulti-node networkswith
undirected and directed graphs in a sampled-data setting.
Wen et al. [21] explored the global pinning synchronization
problem of the multi-node network, where switching directed
topologies were considered. In [22], the synchronization
problem for homogeneous multi-node networks was invested
under switching communication topologies. In above litera-
tures [14]–[22], the synchronization regulation performance
was not considered.

When sensor nodes perform the tasks such as the informa-
tion collection, the data packet transmission and the move-
ment, the limited battery power of the practical multi-node
network should be taken into consideration. Meanwhile,
the synchronization regulation is required to be considered
by some performance indices. Hence, the network synchro-
nization problem with both the limited energy supply and
the synchronization performance regulation can be modeled
as the optimization problem, which addresses realizing the
tradeoff design between two factors for the energy utility opti-
mization. The Laplacian matrix of the interaction topology
for the optimal synchronization problem is associated with a
complete graph as shown in [23]. Hence, the suboptimal syn-
chronization problem was extensively investigated. In [24],
second-order multi-node systems achieved guaranteed per-
formance synchronization by taking advantage of the impul-
sive control. In [25], distributed guaranteed performance
synchronization problems for linear and nonlinear multi-
node networks with switching interaction topologies were
addressed. It can be seen that the synchronization regulation

performance was studied in aforementioned researches with-
out considering the control effort for the multi-node network.
Hence, the guaranteed-cost control is an effective approach
to solve the tradeoff problem with multi-node networks,
which can be regarded as a suboptimal problem to real-
ize the tradeoff design between two factors for the energy
utility optimization. Zhou et al. [26] addressed guaranteed-
cost synchronization problems by an event based control
scheme for the distributed multi-node network. Xi et al. [27]
investigated the nonlinear multi-node network guaranteed-
cost synchronization with switching interaction topologies.
In [26]–[27], these mentioned approaches cannot make the
multi-node network reach guaranteed-cost synchronization in
the presence of given cost budgets; that is, they cannot obtain
the tradeoff between the system energy consumption and the
network synchronization performance by assuming that the
cost budget is limited for the multi-node network.

In the literatures [28]–[33], the synchronization criteria
were proposed as a numerical algorithm based on the power-
ful tool of the linear matrix inequality (LMI) technique for the
multi-node network. In [28], the distributed guaranteed-cost
synchronization problems for the multi-node network were
addressed with the general linear models, where synchro-
nization criteria were designed by LMI tools. The paper [29]
considered the distributed synchronization problems in terms
of LMIs for the multi-node network with the general linear
and Lipschitz nonlinear dynamics. In [30], several suffi-
cient conditions were proposed for the network synchroniza-
tion by LMIs, where the computational complexity greatly
increased with the increasing of number of the network
nodes. Rezaee and Abdollahi [31] investigated the multi-
node network synchronization problems, where the Lipschitz
nonlinearities and the jointly connected topologies were both
dealt with. In [28]–[33], the criteria for the multi-node net-
work synchronization relied on the LMI tools, which used
a feasp solver to get feasible control gain matrices and they
may not obtain the feasible solutions. Meanwhile, applying
the structure characteristic of the second-order multi-node
network, the analytic solutions of control gains are required to
be determined for the guaranteed-cost synchronization with
the cost budget given previously. It is increasingly recognized
that there still remain many open problems to be further
studied for the wireless sensor network as the special type
of the multi-node network.

In this paper, we focus on the Lipschitz nonlinear
guaranteed-cost synchronization problem for the second-
order leader-following wireless sensor network with
switching topologies and the cost budgets given previously.
By utilizing the state errors between the leader node and
follower nodes of the network, the dynamics of the net-
work is transformed with the nonlinear dynamics. Then,
according to the interaction weight matrix among follower
nodes, a piecewise continuous orthonomal matrix and its
transpose are proposed. By utilizing the structure character-
istic of a piecewise continuous orthonomal matrix and the
Lipschitz condition, the existing nonlinear term is eliminated.
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For the case not considering the cost budget given previously,
analytic solutions of the control gains are determined for
the sufficient condition of the synchronization algorithm,
which do not subject to the nonlinear constraints. Meanwhile,
an upper bound of the cost function composed of the network
energy consumption term and the network synchronization
performance term is given. For the case considering limited
cost budgets, the relationship between given cost budgets and
an upper bound of the optimization index is drawn to the
synchronization criteria, which means that the whole energy
supply of the wireless sensor network is limited. In addition,
synchronization criteria are dependent on the initial states,
the minimum nonzero eigenvalue and the maximum eigen-
value, which means that the scalability of the wireless sensor
network can be ensured.

Compared with the existing researches [34]–[37] on
guaranteed-cost synchronization for the wireless sensor
network, this paper mainly has following three contribu-
tions. Firstly, the current paper addresses influences of
the Lipschitz nonlinear dynamics and switching topologies
on the guaranteed-cost synchronization and an approach
is proposed to linearize the nonlinear term. The methods
in aforementioned researches [34] and [35] are no longer
applicable to deal with the nonlinear dynamics and changing
topologies. Secondly, analytic solutions of control gains are
demonstrated for the guaranteed-cost synchronization, which
present explicit expressions of control gains in synchroniza-
tion criteria. The synchronization criteria in [35] and [36]
are designed in terms of the gain matrices by LMI tools.
In some situations, the synchronization criteria may not have
the feasible numerical solutions. Thirdly, the limited cost
budget can be introduced, which means that the practical
limited energy supply of the wireless sensor network is taken
into account. The research approaches in [34]–[37] presented
different guaranteed-cost upper bounds not considering the
limited energy supply of the wireless sensor network. The
current paper concerns with cost budgets given previously
as a constraint to design control gains of synchronization
protocols.

The outline of this paper is organized as follows. Section II
gives certain preliminary knowledge and problem descrip-
tions on the basis of graph theory. In Section III, sufficient
conditions of the leader-following guaranteed-cost synchro-
nization are presented for the Lipschitz nonlinear wireless
sensor network without the given cost budget and with the
given cost budget and an approach to obtain an upper bound
of the guaranteed-cost function is given. A simulation exam-
ple which demonstrates theoretical results is presented in
Section IV. Finally, some remarks conclude the paper in
Section V.
Notations: Let Rm denote the m-dimensional real column

vector space,Rm×m stand for the set ofm×m dimensional real
matrices and I and 1 stand for the identity matrix and the col-
umn vector with components equal to 1, respectively. AT =
A < 0 and AT = A > 0 express that the symmetric matrix
A is negative definite and positive definite, respectively.

Let symbol⊗ denote the Kronecker product and the diagonal
matrix with diagonal elements λ1, λ2, · · · , λN is denoted by
diag{λ1, λ2, · · · , λN } .

II. PRELIMINARIES AND PROBLEM DESCRIPTION
In this section, some preliminary concepts in terms of the
graph theory are introduced and then the problem description
is proposed as follows.

A. PRELIMINARIES ON GRAPH THEORY
This paper depicts the network topology by a graph G =
(V (G),E(G)) for the network with N identical nodes.
Graph G is composed of a nonempty vertex set V (G) =
{v1, v2, · · · , vN } and the edge set E = {eij = {(vi, vj)} ∈
V × V . The vertex vi expresses sensor node i, the edge
eij denotes the connection channel between sensor nodes
i and j, and the edge weight wji of eij is defined as the
interaction strength from sensor nodes i to j, where wji is
zero if sensor nodes i to j is not connected, and is positive
otherwise. The index set of all neighbor nodes of vertex vj
is expressed by Nj =

{
i : (vi, vj) ∈ E(G)

}
. The sequence

of edges
(
vl, vl1

)
,
(
vl1 , vl2

)
, · · · ,

(
vlk−1 , vk

)
describes a path

between sensor nodes l and k. Let L =
[
lji
]
∈ RN×N with

ljj =
∑

i∈Nj wji and lji = −wji (j 6= i) be the Laplacian matrix
of graphG.Adirected graph has a spanning tree if there exists
a directed path from a root node to any other node. For the
leader-following wireless sensor network, it is assumed that
the network interaction topology has a spanning tree and is
connected; that is, the motion of the leader is independent of
other follower nodes and partial other nodes have access to
the state information of the leader node. The local interaction
topology among followers is undirected. If the interaction
topologyG is connected, then the minimum eigenvalue of the
Laplacian matrix L is zero and all the other eigenvalues are
larger than zero. One can refer to paper [38] for more basic
knowledge and concepts on graph theory.

B. DESCRIBING LIPSCHITZ NONLINEAR
GUARANTEED-COST SYNCHRONIZATION
Consider the wireless sensor network with N homogeneous
second-order Lipschitz nonlinear network nodes. One can set
that sink node 1 as the leader and the others are followers.
Consider the dynamics of sensor nodes expressed by{

ẋj(t) = vj(t),
v̇j(t) = uj(t)+ f

(
xj(t), vj(t)

)
,

(1)

where j = 1, 2, · · · ,N , xj(t) ∈ R and vj(t) ∈ R denote
the queue length state and the transmission rate state of
sensor node j, and uj(t) ∈ R is the control input. Since
the leader does not obtain local transmission state infor-
mation from other sensor nodes, we can set control input
u1(t) ≡ 0. In (1), f

(
xj(t), vj(t)

)
is the intrinsic non-

linear dynamics, which could include unmodeled dynam-
ics, parameter variations and other external disturbances.
The Lipschitz nonlinear function f : R2

× [0,+∞) →
R is continuous and differentiable and satisfies the
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Lipschitz condition
∣∣f (xi(t), vi(t))− f (xj(t), vj(t))∣∣ ≤

γ
(∣∣xi(t)−xj(t)∣∣2 + ∣∣vi(t)− vj(t)∣∣2)0.5 (i, j ∈ {1, 2, · · · ,N } )

with the Lipschitz constant γ > 0.
Let all possible variable connected topologies be expressed

by a topology set 0= {G1,G2, · · · ,GM } with a finite natural
number index set IM={1, 2, · · · ,M} . The time function
σ (t) : [0,∞) → IM presents a switching signal and the
value at time t denotes the index of the switching interaction
topology set at time t. Moreover, in the current paper, it is
assumed that switching sequences 0 < t1 < t2 < · · · <
tn < · · · satisfy infn (tn+1 − tn) = Tc(∀n ≥ 0) for a
positive constant Tc. It should be pointed out that all the
0={G1,G2, · · · ,GM } can be arbitrarily switched.
To make transmission nodes follow the sink node with

the same desired states for the wireless sensor network with
the given γ1, γ2, η ∈ R > 0, consider a guaranteed-cost
synchronization control protocol with a linear quadratic cost
function and switching topologies designed as follows:

uj(t) =
∑

i∈Nσ (t),j
wσ (t),ji

(
k1
(
xi(t)− xj(t)

)
+ k2

(
vi(t)− vj(t)

))
,

Js =
∫
∞

0 (Ju(t)+ Jx(t)) dt,

(2)

where j = 2, 3, · · · ,N , k1 > 0 and k2 > 0 are control gains,
wσ (t),ji denotes the weight of the transmission channel (vi, vj)
with wσ (t),ii = 0, wσ (t),ji = wσ (t),ij ≥ 0 and wσ (t),ij > 0 if
(vj, vi) ∈ E

(
Gσ (t)

)
, Nσ (t),j denotes the neighbor set of node

j at time t , and

Ju(t) =
N∑
j=1

ηu2j (t),

Jx(t) =
N∑
j=1

∑
i∈Nσ (t),j

wσ (t),ji
(
γ1
(
xi(t)− xj(t)

)2
+ γ2

(
vi(t)− vj(t)

)2)
.

One can take J∗s > 0 as a given cost budget; that is,
the whole energy consumption budget is limited. Then,
the definition of the leader-following wireless sensor network
guaranteed-cost synchronization with switching interaction
topologies and given cost budgets is defined as shown below.
Definition 1: For any given J∗s > 0, wireless sen-

sor network (1) is said to be leader-following guaranteed-
cost synchronizable with the given cost budget by
protocol (2) if there exist control gains k1 and k2 such
that limt→∞

(
xj(t)− x1(t)

)
= 0, limt→∞

(
vj(t)− v1(t)

)
=

0 (j = 2, 3, · · · ,N ) and Js ≤ J∗s for any bounded disagree-
ment initial states xj(0) and vj(0) (j = 2, 3, · · · ,N ).
The following section will present an approach to solve

explicit expressions of control gains k1 and k2 of proto-
col (2) such that leader-following wireless sensor network (1)
achieves Lipschitz nonlinear guaranteed-cost synchroniza-
tion with the switching interaction topologies and the given
cost budget.

Remark 1: Js is a distributed energy optimization index
related to wσ (t),ji, which means that the information
exchanges between the node and its neighboring nodes. Js
is composed of both Ju(t) and Jx(t). For the isolated systems,
the energy consumption term is related to the control input
and the synchronization performance term is designed by the
state information. In protocol (2), Ju(t) is constructed by the
control input state uj(t) and Jx(t) is constructed by the relative
state information xi(t) − xj(t) and vi(t) − vj(t). Moreover,
from an engineering perspective, Ju(t) represents the battery
power consumption term of the sensor network while Jx(t)
represents the network synchronization performance term on
the queue length state and the transmission rate state. It should
be pointed out that the relative states between the leader node
and follower nodes are convergent not the states of the net-
work nodes, which means that the follower nodes follow the
leader node with the same desired states for the network syn-
chronization. The targets of control protocol (2) with different
parameters γ1, γ2 and η are to realize the guaranteed-cost
synchronization and the different tradeoff design between
Ju(t) and Jx(t) for the Lipschitz nonlinear wireless sensor
network. In addition, in [26]–[28], an upper bound of the
linear quadratic index is determined when the guaranteed-
cost synchronization is achieved. In this paper, the design of
control gains of synchronization protocols is more complex
and meaningful for the wireless sensor network under the
condition of the given bound of the linear quadratic index,
which means the limited given cost budget.
Remark 2: Compared with control protocols in [35]–[37]

about guaranteed-cost synchronization, two major charac-
teristics of synchronization criteria are mentioned. The first
one is that aforementioned results achieve guaranteed-cost
synchronization on the basis of LMI tools, which rely on
a numerical software to get solvable gain matrices. It is
known that as a numerical algorithm, a feasp solver cannot
demonstrate the analytic solutions. To tackle this problem,
we propose an approach to present explicit feasible values of
k1 and k2 for the guaranteed-cost synchronization. The sec-
ond one is that the cost budget of the wireless sensor network
is limited and previously given, which means that the limited
practical energy supply of the wireless sensor network is
given previously and should be considered as a constraint
for the synchronization criterion design. The major challenge
is that the relation between given cost budgets and an upper
bound of cost function should be established when feasible
values of k1 and k2 are designed. It is noted that the cost
budget drawn to the synchronization criteria can ensure that
the upper bound of the optimization index is less than the
given cost budgets.

III. GUARANTEED-COST SYNCHRONIZATION
CRITERIA FOR THE LIPSCHITZ NONLINEAR
WIRELESS SENSOR NETWORK
For the second-order leader-following wireless sensor net-
work with switching topologies, this section mainly presents
the guaranteed-cost synchronization criterion not considering
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the given cost budget by linearizing nonlinear terms of the
dynamics and gives an upper bound of the guaranteed-
cost function composed of the energy consumption term
and the synchronization regulation term. Furthermore,
the guaranteed-cost synchronization criterion is determined
for the case where the cost budget of the wireless sensor
network is given previously.

Let L ffσ (t) be the Laplacian matrix of the interaction topol-

ogy among follower nodes and 3fl
σ (t) = diag

{
w21
σ (t),w

31
σ (t),

· · · ,wN1
σ (t)

}
represent the interconnection weight matrix from

the leader node to followers, which are piecewise continuous.
Thus, one can obtain that the interactionweight matrix among
follower nodes is L ffσ (t) + 3

fl
σ (t) associated with the whole

Laplacian matrix.
Firstly, the dynamics of wireless sensor networks is

converted by the structure decomposition as follows.
It is assumed that all switching topologies have a span-
ning tree and the interaction topologies among fol-
lower sensor nodes are undirected, then there exists a
piecewise continuous orthonomal matrix Ũσ (t) such that
ŨT
σ (t)

(
L ffσ (t) +3

fl
σ (t)

)
Ũσ (t) = diag

{
λ2σ (t), λ

3
σ (t), · · · , λ

N
σ (t)

}
with the general assumption that 0 < λ2σ (t) ≤

λ3σ (t) ≤ · · · ≤ λNσ (t) being eigenvalues of L ffσ (t) + 3
fl
σ (t).

Let 1xj(t) = xj(t) − x1(t), 1vj(t) = vj(t) − v1(t),
1fj(t) = f (xj(t), vj(t)) − f (x1(t), v1(t)) (j = 2, 3, · · · ,N ),
1X (t) = [1x2(t),1v2(t),1x3(t),1v3(t), · · · ,1xN (t),
1vN (t)]T , and

ŨT
σ (t)[1x2(t),1x3(t), · · · ,1xN (t)]

T

=
[
x̃2(t), x̃3(t), · · · , x̃N (t)

]T
,

ŨT
σ (t)[1v2(t),1v3(t), · · · ,1vN (t)]

T

=
[
ṽ2(t), ṽ3(t), · · · , ṽN (t)

]T
,

ŨT
σ (t)[1f2(t),1f3(t), · · · ,1fN (t)]

T

=

[
f̃2(t), f̃3(t), · · · , f̃N (t)

]T
.

(3)

It follows from (1) to (3) that

1ẋj(t) = ẋj(t)− ẋ1(t)
= vj(t)− v1(t) = 1vj(t),

1v̇j(t) = v̇j(t)− v̇1(t)

=
∑

i∈Nσ (t),j
wσ (t),ji

(
k1
(
1xi(t) −1xj(t)

)
+ k2

(
1vi(t)−1vj(t)

))
+1fj(t),

(4)



ŨT
σ (t)[1ẋ2(t),1ẋ3(t), · · · ,1ẋN (t)]

T

=
[
ṽ2(t), ṽ3(t), · · · , ṽN (t)

]T
,

ŨT
σ (t)[1v̇2(t),1v̇3(t), · · · ,1v̇N (t)]

T

=

[
−k1λ2σ (t)x̃2(t)− k2λ

2
σ (t)ṽ2(t)+ f̃2(t),

−k1λ3σ (t)x̃3(t)− k2λ
3
σ (t)ṽ3(t)+ f̃3(t), · · · ,

−k1λNσ (t)x̃N (t)− k2λ
N
σ (t)ṽN (t)+ f̃N (t)

]T
.

(5)

Hence, by (3), (4) and (5), one can convert the network system
into {

˙̃x j(t) = ṽj(t),
˙̃vj(t) = −k1λ

j
σ (t)x̃j(t)− k2λ

j
σ (t)ṽj(t)+ f̃j(t),

(6)

where j = 2, 3, · · · ,N . Since Ũσ (t) is a time-varing orthono-
mal matrix, we can obtain that 1xj(t) = 0 and 1vj(t) = 0
when x̃j(t) = 0 and ṽj(t) = 0 (j = 2, 3, · · · ,N ), which
means that the leader-following wireless sensor network
achieves synchronization. Let λ̃2 = min

{
λ
(2)
m , ∀m ∈ IM

}
and λ̃N = max

{
λ
(N )
m , ∀m ∈ IM

}
. In the following, a suf-

ficient condition of the guaranteed-cost synchronization is
proposed for Lipschitz nonlinear wireless sensor network (1)
with synchronization protocol (2).
Theorem 1: Wireless sensor network (1) is leader-

following guaranteed-cost synchronizable with switching
interaction topologies by protocol (2) if 1 <2λ̃2 − ηλ̃2N ≤ 3.
In this case,

k1 =

√
3λ̃Nγ1 + 2γ 2

2λ̃2 − ηλ̃2N − 1
,

k2 =

√
3λ̃Nγ2 + 2k1 + 2γ 2

2λ̃2 − ηλ̃2N − 1
.

Proof: Firstly, sufficient conditions are designed such
that limt→∞x̃j(t) = 0 and limt→∞ṽj(t) = 0
(j = 2, 3, · · · ,N ). One can construct a Lyapunov function
candidate as follows:

Vj(t) = kx̃2j (t)+ k2ṽ
2
j (t)+ 2k1x̃j(t)ṽj(t), (7)

where j = 2, 3, · · · ,N and k = k1k2
(
2λ̃2 − ηλ̃2N

)
. Since

k1 =
√

3λ̃N γ1+2γ 2

2λ̃2−ηλ̃2N−1
, k2 =

√
3λ̃N γ2+2k1+2γ 2

2λ̃2−ηλ̃2N−1
and k =

k1k2
(
2λ̃2 − ηλ̃2N

)
, one can show that

kk2 − k21 = k1
(
k22
(
2λ̃2 − ηλ̃2N

)
− k1

)
. (8)

Duo to 1 < 2λ̃2 − ηλ̃2N ≤ 3, one has

kk2 − k21 > k1
(
k22 − k1

)
> 0. (9)

Hence, it can obtain that k ≥ k21/k2 and det
[
k k1
k1 k2

]
> 0.

Then, one obtains that Vj(t) > 0. Let V (t) =
∑N

j=2 Vj(t). The
time derivative of V (t) by (6) is

V̇ (t) =
N∑
j=2

(
2kx̃j(t)ṽj(t)+ 2k2ṽj(t)

×

(
−k1λ

j
σ (t)x̃j(t)− k2λ

j
σ (t)ṽj(t)+ f̃j(t)

)
+ 2k1

(
ṽ2j (t)+ x̃j(t)

(
−k1λ

j
σ (t)x̃j(t)

− k2λ
j
σ (t)ṽj(t) +f̃j(t)

)))
. (10)
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It can be shown that
N∑
j=2

2k2ṽj(t)f̃j(t)+ 2k1x̃j(t)f̃j(t)

= 2k1
[
x̃2(t), x̃3(t), · · · , x̃N (t)

]
ŨT
σ (t)

×[1f2(t),1f3(t), · · · ,1fN (t)]T

+ 2k2
[
ṽ2(t), ṽ3(t), · · · , ṽN (t)

]
× ŨT

σ (t)[1f2(t),1f3(t), · · · ,1fN (t)]
T

≤

N∑
j=2

(
k21 x̃

2
j (t)+ k

2
2 ṽ

2
j (t)

)
+ 2 [1f2(t),1f3(t), · · · ,1fN (t)]

(
Ũσ (t)Ũ

T
σ (t)

)
×[1f2(t),1f3(t), · · · ,1fN (t)]T

≤

N∑
j=2

(
k21 x̃

2
j (t)+ k

2
2 ṽ

2
j (t)

)
+ 2 [1f2(t),1f3(t), · · · ,1fN (t)]

×[1f2(t),1f3(t), · · · ,1fN (t)]T

≤

N∑
j=2

(
k21 x̃

2
j (t)+ k

2
2 ṽ

2
j (t)

)
+ 2

N∑
j=2

1f 2j (t)

≤

N∑
j=2

(
k21 x̃

2
j (t)+ k

2
2 ṽ

2
j (t)

)

+ 2
N∑
j=2

(
f (xj(t), vj(t))− f (x1(t), v1(t))

)2
.

Since ∣∣f (x1(t), v1(t))− f (xj(t), vj(t))∣∣
≤ γ

(∣∣x1(t)− xj(t)∣∣2 + ∣∣v1(t)− vj(t)∣∣2)0.5
× (j ∈ {1, 2, · · · ,N } ),

one can show that

2
N∑
j=2

(
f (xj(t), vj(t))− f (x1(t), v1(t))

)2
≤ 2

N∑
j=2

(
γ 2(x1(t)− xj(t))2 + γ 2(v1(t)− vj(t))2)

≤ 2
N∑
j=2

(
γ 21x2j (t)+ γ

21v2j (t)
)

= 2γ 2 [1x2(t),1x3(t), · · · ,1xN (t)]

×

(
Ũσ (t)Ũ

T
σ (t)

)
[1x2(t),1x3(t), · · · ,1xN (t)]T

+ 2γ 2 [1v2(t),1v3(t), · · · ,1vN (t)]

×

(
Ũσ (t)Ũ

T
σ (t)

)
[1v2(t),1v3(t), · · · ,1vN (t)]T

= 2γ 2
N∑
j=2

x̃2j (t)+ 2γ 2
N∑
j=2

ṽ2j (t). (11)

Then, from (7) to (12), one has

V̇ (t) ≤
N∑
j=2

(
2k − 4k2k1λ

j
σ (t)

)
x̃j(t)ṽj(t)

+

N∑
j=2

(
2γ 2
+ 2k1 + k22 − 2k22λ

j
σ (t)

)
ṽ2j (t)

+

N∑
j=2

(
2γ 2
+ k21 − 2k21λ

j
σ (t)

)
x̃2j (t). (12)

Due to
3λ̃Nγ1 + k21 + 2γ 2

+ k21
(
ηλ̃2N − 2λ̃2

)
= 0,

k1k2
(
ηλ̃2N − 2λ̃2

)
+ k = 0,

3λ̃Nγ2 + k22
(
ηλ̃2N − 2λ̃2

)
+ 2k1 + k22 + 2γ 2

= 0,

(13)

it can be obtained by (13) and (14) that

V̇ (t)

≤

N∑
j=2

2
(
−2k2k1λ

j
σ (t)−

(
k1k2

(
ηλ̃2N − 2λ̃2

)))
x̃j(t)ṽj(t)

+

N∑
j=2

(
−2k22λ

j
σ (t)−

(
3λ̃Nγ2 + k22

(
ηλ̃2N − 2λ̃2

)))
ṽ2j (t)

+

N∑
j=2

(
−2k21λ

j
σ (t)−

(
3λ̃Nγ1 + k21

(
ηλ̃2N − 2λ̃2

)))
x̃2j (t).

(14)

Due to−2k21λjσ (t) − (3λ̃Nγ1 + k21 (ηλ̃2N − 2λ̃2
))

−2k2k1λ
j
σ (t) −

(
k1k2

(
ηλ̃2N − 2λ̃2

))
−2k2k1λ

j
σ (t) −

(
k1k2

(
ηλ̃2N − 2λ̃2

))
−2k22λ

j
σ (t) −

(
3λ̃Nγ2 + k22

(
ηλ̃2N − 2λ̃2

)) < 0,

one has V̇ (t) ≤ 0 and V̇ (t) ≡ 0 if and only if x̃j(t) ≡ 0 and
ṽj(t) ≡ 0. By the above proof, wireless sensor network (1)
can achieve leader-following synchronization with switching
interaction topologies and the Lipschitz nonlinearity.

Next, one can analyze and determine an upper bound of
the guaranteed-cost function. Let Ju =

∫
∞

0 Ju(t)dt and Jx =∫
∞

0 Jx(t)dt , then it can be obtained by (2) that

Ju = η
∫
∞

0
1XT (t)

((
L ffσ (t) +3

fl
σ (t)

)2
⊗

[
k21 k1k2
k1k2 k22

])
1X (t)dt, (15)

Jx = 2
∫
∞

0
1XT (t)

((
L ffσ (t) +3

fl
σ (t)

)
⊗

[
γ1 0
0 γ2

])
1X (t)dt. (16)
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Due to

1XT (t)

((
L ffσ (t) +3

fl
σ (t)

)2
⊗

[
k21 k1k2

k1k2 k22

])
1X (t)

=

N∑
j=2

(λjσ (t))
2(
k1x̃j(t)+ k2ṽj(t)

)2
, (17)

1XT (t)

((
L ffσ (t) +3

fl
σ (t)

)
⊗

[
γ1 0

0 γ2

])
1X (t)

=

N∑
j=2

λ
j
σ (t)

(
γ1x̃2j (t)+ γ2ṽ

2
j (t)

)
, (18)

one can obtain that

Js =
∫
∞

0
(Ju(t)+ Jx(t)) dt

=

∫
∞

0

(η
N∑
j=2

(
λ
j
σ (t) )

2(
k1x̃j(t)+ k2ṽj(t)

)2

+ 2
N∑
j=2

λ
j
σ (t)

(
γ1x̃2j (t)+ γ2ṽ

2
j (t)

) dt

=

N∑
j=2

∫
∞

0

(
η(λjσ (t))

2
k21 + 2λjσ (t)γ1

)
x̃2j (t)dt

+

N∑
j=2

∫
∞

0

(
η(λjσ (t))

2
k22 + 2λjσ (t)γ2

)
ṽ2j (t)dt

+

N∑
j=2

∫
∞

0
2η(λjσ (t))

2
k1k2x̃j(t)ṽj(t)dt. (19)

Let 2j11 = −2k21λ
j
σ (t) −

(
3λ̃Nγ1 + k21

(
ηλ̃2N − 2λ̃2

))
+

η(λjσ (t))
2k21+2λ

j
σ (t)γ1, 2j12 = −2k2k1λ

j
σ (t) −

(
k1k2

(
ηλ̃2N−

2λ̃2
))
+η(λjσ (t))

2k1k2 and 2j22 = −2k22λ
j
σ (t) −(

3λ̃Nγ2 + k22
(
ηλ̃2N − 2λ̃2

))
+ η(λjσ (t))

2k22 + 2λjσ (t)γ2
(j = 2, 3, · · · ,N ), then one can obtain that[
2j11 2j12

2j12 2j22

]

=

[
2λ̃2k21 − 2λjσ (t)k

2
1 2λ̃2k2k1 − 2λjσ (t)k2k1

2λ̃2k2k1 − 2λjσ (t)k2k1 2λ̃2k22 − 2λjσ (t)k
2
2

]

+

 η(λjσ (t))
2
k21 − ηλ̃

2
N k

2
1 η(λjσ (t))

2
k1k2 − ηλ̃2N k1k2

η(λjσ (t))
2
k1k2 − ηλ̃2N k1k2 η(λjσ (t))

2
k22 − ηλ̃

2
N k

2
2


+

[
2λjσ (t)γ1 − 3λ̃Nγ1 0

0 2λjσ (t)γ2 − 3λ̃Nγ2

]
≤ 0.

Due to

Js =
N∑
j=2

∫
∞

0

(
η(λjσ (t))

2
k21 + 2λjσ (t)γ1

)
x̃2j (t) dt

+

N∑
j=2

∫
∞

0

(
η(λjσ (t))

2
k22 + 2λjσ (t)γ2

)
ṽ2j (t) dt

+

N∑
j=2

∫
∞

0
2η(λjσ (t))

2
k1k2x̃j(t)ṽj(t) dt

+

N∑
j=2

∫
∞

0
V̇j(t)dt − V (t)|t→∞ + V (0)

=

N∑
j=2

∫
∞

0

(
x̃j(t), ṽj(t)

) [2j11 2j12
2j12 2j22

]
×
(
x̃j(t), ṽj(t)

)T dt − V (t)|t→∞ + V (0), (20)

we can get that

Js ≤ V (0). (21)

On the basis of the above process, results of Theorem 1 can
be concluded, which can guarantee that Lipschitz nonlin-
ear wireless sensor network (1) achieves guaranteed-cost
synchronization by protocol (2) with switching interaction
topologies.
Remark 3: For the general linear leader-following wire-

less sensor network, by the state error information and eigen-
values of interaction weight matrices among follower sensor
nodes, the system dynamics can be decomposed, which can
be applied to determine the synchronization criteria. How-
ever, for the nonlinear network, the aforementioned methods
are no longer valid since the dynamics of the sensor nodes
contains the nonlinear terms and the interaction topologies
are switching. To linearize the Lipschitz nonlinear term,
we use the structure characteristic of the piecewise contin-
uous orthonomal matrix Ũσ (t); that is Ũσ (t)Ũ

T
σ (t) = IN−1 in

Theorem 1. Then, the term 2γ 2 represents the existence of
the nonlinear dynamics, which is eliminated by k , k1 and
k2 in Theorem 1. Hence, based on the above methods and
the Lipschitz condition, we propose a sufficient condition for
the network synchronization in terms of analytic solutions,
which is not influenced by the Lipschitz nonlinear term.
In addition, one can see that when the linear optimization
index is taken into consideration, the criteria proposed for
the network synchronization can also be applicable for the
guaranteed-cost synchronization by the proof. Moreover, not
all the eigenvalues of switching interaction topologies are
required to be obtained necessarily. Control gains k1 and
k2 are determined dependent upon the minimum nonzero
eigenvalue λ̃2 and the maximum eigenvalue λ̃N of switching
topologies and λ̃2 and λ̃N can be estimated by the approach
used in [39] and [40], which can decrease the computational
complexity. It can also be concluded that k1 can be calculated
independently and k2 is dependent on k1.

VOLUME 7, 2019 62529



X. Yin et al.: Guaranteed-Cost Synchronization for Second-Order Wireless Sensor Networks

Remark 4: In the associated works [26]–[28] about
achieving guaranteed-cost synchronization, LMI tools on the
basis of the feasp solver are used to determine the fea-
sible control gain matrices. However, in some situations,
a feasp solver may not achieve feasible control gain matrices
for the multi-node network to realize guaranteed-cost syn-
chronization. Hence, control gains k1 and k2 are required
to be designed as the analytic algorithm and the explicit
expressions can ensure that the wireless sensor network
achieves leader-following guaranteed-cost synchronization.
It should be pointed out that we can choose control gains k1
and k2 without the verification of feasibility. Furthermore,
expressions of control gains k1 and k2 can eliminate the
influence of the nonlinear term while the aforementioned
researches [33], [34] are no longer valid to deal with the
Lipschitz nonlinearity.

When the limited energy supply is taken into account,
an approach to achieve the feasible values of control gains
k1 and k2 is proposed such that the leader-following wire-
less sensor network achieves guaranteed-cost synchroniza-
tion with both switching interaction topologies and the cost
budget given previously.

Let 1x(t) = [1x2(t),1x3(t), · · · ,1xN (t)] , 1v(t) =
[1v2(t),1v3(t), · · · ,1vN (t)] , w1(t) =

∑N
j=21x

2
j (t),

w2(t) =
∑N

j=21v
2
j (t) and w3(t) =

∑N
j=2

∣∣1vj(t)1xj(t)∣∣,
then Theorem 2 is demonstrated as follows.
Theorem 2: For any given J∗s > 0, wireless sensor net-

work (1) achieves leader-following guaranteed-cost synchro-
nization with the given cost budget and switching interaction
topologies by protocol (2) if 1 <2λ̃2−ηλ̃2N ≤ 3, γ1 > γ2 and
9λ̃N γ1+6γ 2

2λ̃2−ηλ̃2N−1
≤ min

(
J∗s

w1(0)+w2(0)+2w3(0)
,

27λ̃2N (γ1−γ2)
2

4

)
. In this

case,

k1 =

√
3λ̃Nγ1 + 2γ 2

2λ̃2 − ηλ̃2N − 1
,

k2 =

√
3λ̃Nγ2 + 2k1 + 2γ 2

2λ̃2 − ηλ̃2N − 1
.

Proof: Firstly, according to (5) and (7), one has

V (t) =
N∑
j=2

(
kx̃2j (t)+ k2ṽ

2
j (t)+ 2k1x̃j(t)ṽj(t)

)
= k1x(t)Ũσ (t)Ũ

T
σ (t)1x

T (t)+k21v(t)Ũσ (t)Ũ
T
σ (t)1v

T (t)

+ 2k11v(t)Ũσ (t)Ũ
T
σ (t)1x

T (t)

= k
N∑
j=2

1x2j (t)+k2
N∑
j=2

1v2j (t)+2k1
N∑
j=2

1vj(t)1xj(t)

≤ kw1(t)+ k2w2(t)+ 2k1w3(t). (22)

Thus,

V (0) ≤ kw1(0)+ k2w2(0)+ 2k1w3(0). (23)

By (22) and (24), one can see that V (0) ≤ kw1(0) +
k2w2(0) + 2k1w3(0) ≤ J∗s can guarantee that Js ≤ J∗s .

Due to k = k1k2
(
2λ̃2 − ηλ̃2N

)
, k1 =

√
3λ̃N γ1+2γ 2

2λ̃2−ηλ̃2N−1
, k2 =√

3λ̃N γ2+2k1+2γ 2

2λ̃2−ηλ̃2N−1
, γ1 > γ2 and 9λ̃N γ1+6γ 2

2λ̃2−ηλ̃2N−1
≤

27λ̃2N (γ1−γ2)
2

4 ,

one can obtain that k1 ≥ k2 and 3λ̃Nγ1 − 3λ̃Nγ2 ≥ 2k1.
Hence, one can obtain that

V (0) ≤ kw1(0)+ k2w2(0)+ 2k1w3(0)

= k1k2
(
2λ̃2 − ηλ̃2N

)
w1(0)+ k2w2(0)+ 2k1w3(0)

≤ k21
(
2λ̃2 − ηλ̃2N

)
w1(0)+ k1 (w2(0)+ 2w3(0))

≤ k21
(
2λ̃2 − ηλ̃2N

)
w1(0)

+
3λ̃Nγ1 − 3λ̃Nγ2

2
(w2(0)+ 2w3(0))

≤
3λ̃Nγ1 + 2γ 2

2λ̃2 − ηλ̃2N − 1

(
2λ̃2 − ηλ̃2N

)
w1(0)

+
3λ̃Nγ1 − 3λ̃Nγ2

2
(w2(0)+ 2w3(0))

≤
3λ̃Nγ1 + 2γ 2

2λ̃2 − ηλ̃2N − 1
(3w1(0))

+
3λ̃Nγ1 − 3λ̃Nγ2

2
(w2(0)+ 2w3(0)) . (24)

Due to 9λ̃N γ1+6γ 2

2λ̃2−ηλ̃2N−1
≤

J∗s
w1(0)+w2(0)+2w3(0)

, one has

V (0) ≤
3λ̃Nγ1 + 2γ 2

2λ̃2 − ηλ̃2N − 1
(3w1(0))

+
3λ̃Nγ1 − 3λ̃Nγ2

2
(w2(0)+ 2w3(0))

≤
J∗s

w1(0)+ w2(0)+ 2w3(0)
w1(0)

+
3λ̃Nγ1 − 3λ̃Nγ2

2
(w2(0)+ 2w3(0))

≤
J∗s

w1(0)+ w2(0)+ 2w3(0)
w1(0)

+
9λ̃Nγ1 + 6γ 2

2
(w2(0)+ 2w3(0))

≤
J∗s

w1(0)+ w2(0)+ 2w3(0)
w1(0)

+
9λ̃Nγ1 + 6γ 2

2λ̃2 − ηλ̃2N − 1
(w2(0)+ 2w3(0))

≤
J∗s

w1(0)+ w2(0)+ 2w3(0)
w1(0)

+
J∗s

w1(0)+ w2(0)+ 2w3(0)
(w2(0)+ 2w3(0))

≤ J∗s . (25)

Hence, Theorem 2 can guarantee that the Lipschitz nonlinear
guaranteed-cost synchronization can be reachable for leader-
following wireless sensor network (1) with switching interac-
tion topologies and the given cost budget J∗s .Hence, the above
process completes the proof.
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Remark 5: As an optimization index, the guaranteed-cost
function is constructed by the relative state between the
sink node and follower nodes and an upper bound of the
guaranteed-cost function is obtained by the value of the
Lyapunov function candidate at time zero. From the prac-
tical point of view, the cost budgets given previously are
introduced. Following the lines of the aforementioned proof,
in Theorem 2, the limited energy budgets as a constraint are
dealt with when designing explicit expressions of the control
gains k1 and k2, which can guarantee that the upper bound
of the optimization index is less than the given cost budget.
There are two difficulties in obtaining Theorem 2. The first
one is to determine an upper bound of the cost function based
on Theorem 1. The second key difficulty is to draw the rela-
tion between the cost budget given previously and an upper
bound of the cost function to synchronization criteria. On the
basis of an upper bound of the guaranteed-cost function, it can
be implied that V (0) ≤ kw1(0) + k2w2(0) + 2k1w3(0) ≤ J∗s
can ensure that the cost budgets given previously meet the
needs of the energy supply. Hence, based on Theorem 1, one
adds kw1(0) + k2w2(0) + 2k1w3(0) ≤ J∗s as a constraint
when designing explicit values of control gains k1 and k2
for the guaranteed-cost network synchronization with leader-
following structure and the cost budgets given previously.
It can be concluded that the added conditions are related
to λ̃2 and λ̃N of the interconnection weight matrix. Hence,
expressions of control gains k1 and k2 are still only dependent
upon λ̃2 and λ̃N without further computational complexity
and the scalability of the wireless sensor networks can also
be ensured. Moreover, J∗s should be given properly, for exam-
ple, the too small cost budget cannot guarantee whether the
wireless sensor network starts to work or not.

IV. NUMERICAL SIMULATION
In this section, the illustration of theoretical results proved in
above sections is demonstrated in the following example.

Consider a two-dimensional wireless sensor network con-
structed by six nodes labeled as 1, 2, · · · , 6. Node 1 is
set as the leader and the others are follower nodes. The
dynamics of each sensor is modeled by (1) and the Lipschitz
nonlinearity is described as f (xi(t)) = −0.2 sin (xi(t)) .
FIGURE 1 depicts the changing topology set 0 with four dif-
ferent interaction topologies, where the interaction topologies
among follower nodes are undirected. In order to simplify
the calculation process, the associated adjacency matrices
are assumed to be 0-1. The communication topologies are
arbitrarily switched with Td = 0.5s, which are shown in
FIGURE 2.

All initial state values of sensor nodes are given as follow:

[x1(0), v1(0)]T = [3.2, 0.9]T , [x2(0), v2(0)]T = [1.6, 1.6]T ,

[x3(0), v3(0)]T = [2.5, 0.9]T , [x4(0), v4(0)]T = [4.9, 1.7]T ,

[x5(0), v5(0)]T = [0.7, 1.9]T , [x6(0), v6(0)]T = [3.9, 0.8]T .

In control protocol (2), positive scalars η = 0.004, γ1 = 1.64
and γ2 = 0.2 are given previously and the limited cost

FIGURE 1. Switching topology set.

FIGURE 2. Switching signal.

FIGURE 3. State trajectory of xi (t)
(
i = 1, 2, · · · , 6

)
.

budget is given as J∗s = 26000. According to Theorem 2,
one can obtain that 344.46 ≤ min

(
344.46, 374.32

)
. Then,

k1 = 10.71 and k2 = 10.52.
FIGURE 3 and FIGURE 4 depict the queue length states

and the transmission rate states of six nodes, where the states
of follower nodes converge to the states of the leader node.
FIGURE 5 presents the cost function Js and the given cost
budget J∗s . It can also been obtained that the guaranteed-cost
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FIGURE 4. State trajectory of vi (t)
(
i = 1, 2, · · · , 6

)
.

FIGURE 5. Trajectories of Js and J∗s .

value converges to a finite value with Js < J∗s from
FIGURE 5. One can conclude that wireless sensor network
(1) achieves Lipschitz nonlinear guaranteed-cost synchro-
nization with given cost budgets and switching topologies by
synchronization protocol (2) from these figures.

In above simulations, the guaranteed-cost value Js and the
cost budget Js are demonstrated, where Js is less than J∗s .
In numerical simulations in [19], the feasible control gains
can be obtained on the basis of the LMIs. Notice that in
the current paper, the value of control gains can be solved
by the analytic solution in the synchronization criteria when
other parameters are given properly. In addition, the given
cost budget and the nonlinear disturbance are not taken into
consideration for the multi-node network in [19].

V. CONCLUSIONS
For the second-order leader-following wireless sensor net-
work with switching topologies and the Lipschitz nonlin-
earities, the guaranteed-cost synchronization protocol was
proposed, where the tradeoff between the battery power con-
sumption and the network synchronization performance was
established. Based on the structure characteristic of the piece-
wise continuous orthonomal matrix, the Lipschitz nonlinear-
ity term was eliminated. The guaranteed-cost criteria of the
Lipschitz nonlinear synchronization were determined for the
wireless sensor network without the given cost budget and an

upper bound of the guaranteed-cost function was derived. For
the case where the cost budget was given, by establishing the
relation between an upper bound of the guaranteed-cost value
and the given cost budget, the criteria of the guaranteed-cost
synchronization considering limited cost budgets were deter-
mined, which were independent of the number of nodes and
related to theminimum nonzero eigenvalue and themaximum
eigenvalue. Moreover, the scaling of the inequality of the
quadratic form was utilized to draw the given cost budget to
synchronization criteria. Especially, the explicit expressions
of control gains were derived rather than control gainmatrices
solved by LMIs in synchronization criteria.
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