
SPECIAL SECTION ON DEEP LEARNING: SECURITY AND
FORENSICS RESEARCH ADVANCES AND CHALLENGES

Received April 19, 2019, accepted May 7, 2019, date of publication May 14, 2019, date of current version May 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2916717

Forensics and Deep Learning Mechanisms for
Botnets in Internet of Things: A Survey of
Challenges and Solutions
NICKOLAOS KORONIOTIS, NOUR MOUSTAFA , AND ELENA SITNIKOVA
UNSW Canberra Cyber, the School of Engineering and Information Technology (SEIT), University of New South Wales Canberra, Canberra, ACT 2612, Australia

Corresponding author: Nickolaos Koroniotis (n.koroniotis@student.adfa.edu.au)

The author N. Koroniotis would like to thank the Commonwealth’s support, which is provided to the aforementioned researcher in the form
of an Australian Government Research Training Program Scholarship.

ABSTRACT The constant miniaturization of hardware and an increase in power efficiency, have made
possible the integration of intelligence into ordinary devices. This trend of augmenting so-called non-
intelligent everyday devices with computational capabilities has led to the emergence of the Internet of
Things (IoT) domain. With a wide variety of applications, such as home automation, smart grids/cities,
and critical infrastructure management, the IoT systems make compelling targets for cyber-attacks. In order
to effectively compromise these systems, adversaries employ different advanced persistent threat (APT)
methods, with one such sophisticated method, being botnets. By employing a plethora of infected machines
(bots), attackers manage to compromise the IoT systems and exploit them. Prior to the appearance of
the IoT domain, specialized digital forensics mechanisms were developed, in order to investigate Botnet
activities in small-scale systems. Since IoT enabled botnets are scalable, technologically diverse and make
use of current high-speed networks, developing forensic mechanisms capable of investigating the IoT Botnet
activities has become an important challenge in the cyber-security field. Various studies have proposed, deep
learning as a viable solution for handling the IoT generated data, as it was designed to handle diverse data
in large volumes, requiring near real-time processing. In this study, we provide a review of forensics and
deep learning mechanisms employed to investigate botnets and their applicability in the IoT environments.
We provide a new definition for the IoT, in addition to a taxonomy of network forensic solutions, that were
developed for both conventional, as well as, the IoT settings. Furthermore, we investigate the applicability
of deep learning in network forensics, the inherent challenges of applying network forensics techniques to
the IoT, and provide future direction for research in this field.

INDEX TERMS Internet of Things, IoT, nework forensics, botnets, deep learning.

I. INTRODUCTION
The Internet of Things (IoT) has exhibited a dramatic growth
over the years. With Gartner reporting that the number of
deployed IoT devices around the world are expected to
reach about 20.4 billion in 2020 [108], displaying an increase
of 145% from 2017, it is becoming evident that this new
diverse domain will continue to grow as companies discover
the benefits of IoT services.

As these numbers are on the rise, a growing concern for IoT
systems is their security and privacy. In a study by Hewlett
Packard in 2015 [85], it was shown that out of a number
of IoT devices that were investigated, 80% raised privacy
concerns, with 60% lacking any mechanisms that verify
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the authenticity of security updates or even their integrity,
allowing an adversary to modify the firmware without being
noticed. Another example of IoT vulnerability, is the study
by Ling et al. [63] with its focus being a smart plug, a device
that provides automation to mundane electronic equipment
(fans, heaters). They were able to compromise the device and
perform a number of attacks, one of which was a firmware
attack, where an attacker can modify the devices firmware,
gaining the ability to install malicious code to the device.

Seeing as IoT devices are manufactured with various
pre-existing inherent limitations and vulnerabilities, it should
come as no surprise that they have been targeted and recruited
by botnets. Having the advantage of being designed to func-
tion 24/7, botmasters lately have shown their preference for
using these devices instead of the better protected, not so
reliable PCs and Laptops [59]. In their quarterly report on
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the state on the Internet security for the 4th quarter of 2016,
Akamai highlighted that we experienced the third wave of
botnets, with the emergence of IoT-based botnets, with the
first two harnessing PCs and servers respectively as bots [69].
One such prominent example of this new wave of botnets,
is the Mirai botnet. It was first observed performing DDoS
attacks against journalist Brian Krebs’ blog, with the first
DDoS peaking at 623 Gbps (77.9 GBps) and latter attacks
targeting French web-host and cloud service provider OVH
reaching 1.1 Tbps [59], [69].

Such attacks, apart from a discrediting factor that can
affect the ability of a company to be perceived as trustwor-
thy and reliable, can also have more immediate monetary
repercussions, as most companies targeted by DDoS attacks
rely greatly on their Internet connection to provide their
services. Alternatively, some botnets have been designed to
launch several types of diverse cyber-attacks such as iden-
tity/data theft (data exfiltration), where the Bot-code infecting
a machine gathers sensitive user information and sends it to
the botmaster, e-mail spamming, where infectedmachines are
used to produce and send fake e-mail, key logging, where
the user’s input is logged and transfered to the botmaster and
maleware propagation, through which a bot is used to further
propagate a malware to its network neighbors and/or other
Internet nodes.

With such destructive attacks on the rise, it is clear that
security and forensics in the IoT should become a prior-
ity for research. In this paper, we provide a comprehensive
background for the IoT, botnets and forensics, followed by
a taxonomy of recent methods for botnet identification and
tracking. We provide a new definition for the IoT, which
ABBA.We investigate the applicability of deep learning in
network forensics, and the inherent challenges that appear
when network forensics techniques are applied to the IoT.
In addition, we determine future directions for research
related to performing forensics investigations of IoT powered
botnets.

The rest of the paper is organized as follows. Section II
gives background information on the IoT, some adopted
architectures and underline technologies. Section III dis-
cusses the origin of botnets, their topological and propagation
architectures and their activities. Section V discusses Digital
Forensics, some of its expanding sub-domains, and then gives
an overview of Network Forensic methods for investigating
botnets, first in non-IoT environments and then in the IoT.
Section VI discusses deep learning models and its role in
network forensics. Section VII lists challenges in perform-
ing Network Forensic investigations of IoT environments.
In SectionVIII, future directions for research in the domain of
Network Forensics of botnets in the IoT are depicted. Finally,
in Section IX the conclusion is given.

II. COMPARISON WITH OTHER STUDIES
To the best of our knowledge, this is the first survey about
forensic investigation techniques focusing on botnets in the
IoT. However previous studies have investigated the three

aforementioned areas separately. In this section, these afore-
mentioned studies are presented. Additional, Table 1 depicts
an overview of their characteristics.
• IoT Security/Botnets: These studies focused on bot-
nets which primarily target IoT things, and their
impact [10], [66], [113], [119].
In their work, Angrishi [10] studied the composition of
IoT botnets. The researchers outline several character-
istics of IoT malware which set them apart from con-
ventional malware, for example: (IoT) malware mostly
does not affect the performance of the infected device,
it resides in the RAM and generates DDoS attacks which
are mostly volumetric or use unconventional patterns.
The study then presented a number of IoT-targeting mal-
ware between the years 2008 to 2016, followed by lists
of both major and minor IoT security incidents. Addi-
tionally, the researchers provide an abstract anatomy
of an IoT botnet comprised of bots, C&C, Scanners,
Reporting server, Loaders and Malware distribution
servers as-well-as a typical life-cycle of IoT malware
proliferation. Finally, best practices are presented such
as changing default passwords and updating firmware,
while an argument is made for Cyber Insurance [10].
This research provides a fair amount of information
about IoT botnets their characteristics, operations, exist-
ing attacks andmitigating techniques. As such, it focuses
more on how IoT botnets operate, and thus no informa-
tion is given about how security incidents are forensi-
cally investigated, which is something that we cover in
this study.
Ransomware and its effects on IoT were discussed
by Yaqoob et al. [113]. Based on the target of a ran-
somware, three categories are identified, crypto, locker
and hybrid. Several penetration methods were then dis-
cussed, including botnets, social engineering and the use
of IoT things as an attack vector, to spread themalware in
an otherwise protected building. Finally, after presenting
current research in IoT security, the work is organized
in a proposed taxonomy, based on several metrics like
threats, requirements, IEEE standards, deployment lev-
els, technologies.
A study on the impact of IoT in cyber security was con-
ducted by Zhou et al. [119]. In their work, they proposed
a new term, ‘IoT features’, which encapsulates a group
of characteristics, unique to the IoT, which separates
it from other computing systems. These proposed fea-
tures, could help developers improve security and pri-
vacy shortcomings of IoT systems. Next, the researchers
provided a statistical overview of research conducted
in IoT Security, providing suggestions with regards to
future endeavors in this discipline.
A study by MacDermott et al. [66] addressed the
changes that an “Internet of Anything ”brings to the
forensic field. They juxtaposed conventional types of
crime and their investigative methods, to cyber-crime
and discussed ways in which the forensic process can
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TABLE 1. Comparison with other studies.

be adapted to detect it. One key point that is discussed
is that due to the ubiquitous nature of the IoT, the lines
that separate networks from one another become blurry,
hindering forensic investigations. As such, they identi-
fied several challenged that appear when investigating
an IoT crime scene, such as jurisdictional issues. This
study investigates the rising problems of investigating
IoT-related cyber-crime from a high level of abstraction,
focusing more on the investigative procedures and less
on the techniques used.

• Botnet Detection/Network Forensics: These studies
focused on network forensics techniques [31], [32], [44],
[57], [102].
Numerous Network Forensic Techniques (NFT) were
surveyed by Khan et al. [57]. This study provided a
critical investigation of NFT and their characteristics.
One main contribution, was the proposed thematic tax-
onomy of NFT, based on eight different metrics. They
then reviewed several NFT, each specialized to function
in different scenarios, with the categories being: trace-
back based NFT, converge network based NFT, attack
graphs based NFT, distributed based NFT and NFT
using intrusion detection systems. Further classification
of NFT was provided based on the different stages of the
forensics process, the data utilized, the time when NFT
are invoked (relative to the attack) and the objective of
the NFT. Finally, the study listed challenges that affect
network forensics procedures, some examples being:
high connection speeds which overwhelm the collection
process, privacy issues, data volume and integrity and
more. Although this work provides a detailed and com-
prehensive taxonomy of NFT, it lacked any reference to
the IoT and its impact in network forensics, which we
address in our work.
Network-based botnet detection methods were the focus
of a study byGarcia et al. [31]. The researchers provided
a well-structured taxonomy of previous work. Various
detection techniques were identified in literature and
analyzed in detail. Several issues were presented by
this study, with relation to the published work that was
reviewed. Amongst the issues raised, were a lack of

information for reproducibility of experiments, prob-
lems with the dataset in use and clash of terminology
between papers.
Hyslip and Pittman [44] investigated the progress
made in the field of botnet detection. Initially,
the researchers provided an overview of detection tech-
niques between 2005 and 2014, separating the solutions
into ‘old research’(between 2005-2010) and ‘mod-
ern research’(2011-2014). They further categorized the
detection techniques into four groups based on the
C&C infrastructure, IRC, HTTP, P2P, Encrypted and
further compared the solution of the two aforementioned
time-groups. They concluded that detection techniques
which relied on machine learning and flow data outper-
formed deep packet inspection solutions. Considering
that botnets constantly evolve out of necessity, newC&C
infrastructures have appeared over the years, which are
not discussed in this survey, rendering this survey to be
outdated.
In a survey by Singh and Bijalwan [102], different forms
of malware and botnets and their detection techniques
were studied. The study initially provided an overview
of several types of malware, such as viruses, worms, tro-
jans, rootkits and keyloggers, and the main components
of botnets. Next, the life-cycle of a botnet was discussed,
followed by major groups based on C&C communica-
tion model and protocols in use. The detection method-
ologies that were presented, were ones that primarily
target botnet traffic, namely honeynets and passive traf-
fic monitoring. This study provided the general charac-
teristics of a subgroup of the botnet detection methods
available today, missing some popular solution, such
as network flow analysis, and deep packet inspection.
Additionally, honeynet solutions are underestimated by
the research as being ineffective, even though they can
acquire bot binaries, alongwith useful information about
the botnets communication patterns.
Similarly, Ismail and Jantan [47] reviewed botnet detec-
tion methods, that incorporated machine learning tech-
niques. Initially detection methods were organized into
two main categories: Honeynet and IDS, with IDS
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further categorized. The research identified considerable
work which employed machine learning to discover
botnet traffic, indicating that it is a viable solution for
processing large network-generate traffic, with some
real-time solutions already proposed. Emphasis was
given on IDS and specifically anomaly detection.
Ghafir et al. [32] developed BotDet, a novel method for
detecting C&C communication in critical infrastructure.
BotDet is dichotomized into two components. In the
first component, four modules are tasked each with the
identification of a single C&C type of traffic, these mod-
ules include a domain-flux and tor connection detection
model. The second component is tasked with reducing
the false positive rate by forwarding the activations of the
previous four modules, in a correlation framework. The
correlation framework works once per day and raises
alerts, per user, based on how many modules detected
an attack. Evaluation tests indicated that the proposed
system displayed the best performance, when the corre-
lation framework used twomodules as input, achieving a
detection rate of 82.3 % and a false alarm rate of 13.6 %.
As mentioned by the authors, the system in its current
form can be extended to detect more C&C traffic types,
which will make it adequate for real-world application.

• Intrusion Detection Systems: These studies focused
on the security techniques, called Intrusion Detection
Systems [81].
The effectiveness of existing IDS against current net-
work attacks, was reviewed by Nisioti et al. [81]. The
study provided a classification of IDS based on the
Implementation, Architecture and Detection. Addition-
ally, the importance of feature selection when training
the core model fo an IDS was emphasized. One of the
conclusions of this study, was that a possible optimal
choice for the core model, would involve a combina-
tion of supervised and unsupervised models. Cluster-
ing methods with irregularly-shaped groups outperform
circular ones. The researchers stated that IDS should
evolve to include correlation and attribution mechanics,
to assist in the forensics process. Finally, they proposed
that IDS should include three new classes of traffic,
data exfiltration,C&C communication and ransomware,
in order to be more effective at recognizing malicious
activities.

Table 1 depicts the studies mentioned in this section, and their
focus, split into the three major categories: Botnets, IoT and
Network Forensics. The tags ‘T’ and ‘F’ are used to indicate
references to the categories and subcategories for each study.

Overall, to the best of our ability, we were unable to
identify any work that directly combined IoT, Botnets and
Network Forensics. As such, we provide this study in order
to address this gap.

III. INTERNET OF THINGS (IOT)
This section explains IoT concepts, growth of the IoT and its
areas of application, as well as IoT Models and systems.

A. IOT CONCEPTS AND DEFINITIONS
Over the years, the IoT has evolved in complexity and func-
tionality, maturing and becoming an integral part of society,
spanning multiple fields of application. The concept of IoT
has existed for quite a while, sometimes under a differ-
ent name, like ‘ubiquitous computing’, ‘embedded intelli-
gence’, ‘web of things’, ‘Internet of objects’ and ‘ambient
intelligence’ [67]. The term ‘Internet of Things’ was intro-
duced by Ashton et al. during a presentation in 1999 [11],
where he explained the value of having computers that gather
and utilize data in an automated and contextual fashion.
In literature, IoT has various definitions, which we summa-
rize in Table 2, along with their individual advantages and
disadvantages.

Interestingly, the first time the “essence”of IoT was
embodied, was around the beginning of the 1980s at the
Carnegie Mellon University where a soft drink dispenser was
coded to allow users to remotely view the availability of
certain drinks [67], followed by Cambridge’s Trojan coffee
room, where a similar logic was applied to a camera which
was used to check the amount of coffee remaining in a pot
[25]. In 2000, Suresh et al. [105] produced a white paper
depicting their views of the new MIT Auto-ID Center, where
they described a world filled with objects connected to one
another and tagged with relevant information, a vision similar
to the RFID technology. From then onward, a number of
events occurred which shaped the IoT into its current form.
The first major adoption of this new idea was in 2000 when
LG announced their plans to launch the first ‘smart’ refrig-
erator which could determine if the stored supplies were
running low [25], [105], while a more formal introduction
to the IoT was given by the International Telecommunica-
tion Union in 2005, through a report titled ‘the Internet of
Things’ [89], [105].

In 2008, IPSO alliance was formed to promote the adop-
tion of the Internet Protocol (IP) for the communication of
“things”, in what appeared to be the first step to start setting
up common practices among the many vendors. Although
work had been underway to develop the IoT, in one way,
it was the creation of IPv6 that truly enabled its rapid develop-
ment, as it allowed for virtually unlimited number of devices
to be connected [25], [105]. Finally, in 2014 the Open Inter-
connection Consortium was promoted as an open framework
for the Internet of Things by Intel and other firms [25]. Even
so, there is still no standard framework for the IoT commonly
adopted in industry, which forces vendors to decide on their
own how to implement their devices, hindering somewhat the
interoperability between differing IoT implementation.

The current diverse technologies involved, the fact that
multiple communication protocols could be in use in a single
infrastructure, and the mobility that characterizes the IoT,
make it polymorphic in nature and contribute to the diffi-
culties of pinpointing a single definition that best describes
it in its entirety. Consequently, we provide a comprehensive
definition for the IoT, which is “the IoT is a network of net-
works comprised of devices, small and large named ‘things’,
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TABLE 2. Overview of IoT definitions.

that have been imbued with finite amounts of processing
power and communication capabilities providing services,
including software, platforms and infrastructures to a remote
user/organization on-demand, with lower cost than purchas-
ing physical systems ”. In other words, IoT is the creation
of networks where machine-to-machine communication is
used between geographical locations, industry/business sec-
tors and other entities, whereby there is no direct communi-
cation. This can either enable software applications through
the sharing of data, or allow for direct intervention of the
environment where these IoT devices have been deployed.
Such devices could be as complex as smartphones, which
having multiple sensors and significant processing power or
as simple as smart lightbulbs, that enable control of lighting
conditions in a large environment such as universities [93].

B. GROWTH OF IOT AND ITS AREAS OF APPLICATION
Promising innovation, automation and optimization of indus-
trial and commercial systems, no one should be surprised by
the worldwide growth that the IoT market has experienced,
with multiple studies and predictions made for it. A study
by Gartner for instance calculated that in 2017 IoT deployed
devices will reach 8.3 billion and project that the numbers will
skyrocket to 20,4 billion in 2020 [108]. The predictions made
for the economic growth of the IoT are better understood,
if one considers the fact that the IoT does not cater to only
a single portion of the world market, but instead slowly
becomes an integral part for most fields in today’s society.

In a white paper by the Internet of Things Alliance Aus-
tralia (IoTAA), a segmentation of the IoT field into domains
each of which describes a specific market was provided, with
the domains being: Consumer, Industrial, Healthcare, Smart

City, Automation, Agriculture, Critical Infrastructure [46].
Applications of the IoT for these domains appear constantly
and in inventive ways. In the Agriculture domain, sensors for
monitoring environmental data, such as levels of moisture
in crops, air speed and temperature, placed the underpin-
nings for a future system [106]. In the Automotive domain,
a monitoring system transmits and displays location and diag-
nostic data through a Cloud provider, improving the driving
experience and assisting in determining the optimal time for
mechanical services [43]. Finally, in the Healthcare domain,
the incorporation of IoT devices has been shown to benefit
patients, as vital information can be gathered from the com-
fort of their home, contributing thus to detecting quickly any
deterioration in their condition [2].

C. IOT MODELS
As previously mentioned, the IoT has no single commonly
accepted standard framework or set of standards. Instead,
vendors are free to implement their systems by using the
technologies they prefer, resulting in an heterogeneous IoT
environment. The IoT is by design vast, spanning multiple
technologies, which need to coexist in perfect harmony for
the whole system to be functional. There are multiple ways
of the IoT’s designs and models.

First of all, from a communications point of view, the Inter-
net Architecture Board (IAB) in a guiding architectural
document released in 2015 described four communication
IoT models [94]. First, the Device-to-Device Communica-
tion model, where devices communicate directly with one
another. Such type of communication is primarily present
in home automation IoT, and usually relies upon Bluetooth,
Z-wave or ZigBee as the communication protocol, as they
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are ideal for the exchange of small amounts of information
in relatively small areas. A drawback of this model, is that
it requires its devices to collectively use the same communi-
cation protocol, limiting the devices that can be employed in
this configuration.

In contrast, a more versatile model is the Device-to-Cloud
model, where devices connect directly to a Cloud service
provider to store collected data or receive instructions. This
type of model allows the end-user to access their device
through aWeb interface or a smartphone app and view reports
from a data collection, or change the state of the device. This
model’s drawback, is that in most cases, the Cloud provider
and the Vendor who produced the device are one and the
same, denying users from using a Cloud service provider of
their choosing, a situation that is called ‘vendor lock-in’.

Thirdly, an evolution of the Device-to-Cloud model, is the
Back-end Data-Sharing model, which is an exact duplicate
of the Device-to-Cloud model, with the added bonus that the
user can extract data from the original Cloud provider and
transmit it to other Cloud providers. This allows for data
aggregation and has the benefit of giving the user the freedom
of moving his/her data between Cloud providers.

Finally, in the Device-to-Gateway model, a device con-
nects to the Cloud service provider through an Application
Layer Gateway service, running on a local machine which
functions as a proxy. The gateway in this model, apart from
providing secure connectivity to the Cloud, allows for devices
which use different communication protocols to interact,
enhancing interoperability. In real world scenarios, in some
situations, smartphones play the role of the gateway, with
examples such as fitness tracking devices. In other scenarios,
a ‘hub’ is used, which is a dedicated device that plays the
role of the gateway and is most commonly found in the home
automation scene.

An alternate way to view the IoT is given by the four-typed
model, which splits the IoT into four layers [23]. The sensing
layer, consisting of sensors and actuators, which enable per-
ception of the world and the ability to act through the IoT. The
networking layer, which handles communications between
various network systems including heterogeneous devices of
the IoT. The service layer, which allows applications to con-
nect smoothly to the services provided by the IoT through the
use of middleware. And the interface layer, which provides
a means of interaction between various services in a system
with the front end application.

The IoT ecosystem, which included its various compo-
nents and the way with which they interact, can be viewed
as follows, and as shown in Figure 1 [41]. First the IoT
devices, sensors and actuators collect information and per-
form actions. The devices then through Coordinators, connect
to the local Sensor Bridge which functions as a gateway,
enabling at the same time interoperability between dif-
ferent protocols and technologies. Coordinators are tasked
with health monitoring, data forwarding between devices
and service provider and the creation of reports about all
actions taken, while the Sensor Bridge connects the various

FIGURE 1. IoT Ecosystem adapted from [41].

heterogeneous IoT sub-networks with the service provider
in the Cloud. The IoT Service handles many tasks, some
of which are data storage, data processing and device man-
agement. Finally, through a Controller the end-user is able
to connect the IoT Service and through that manage their
devices.

D. IOT TECHNOLOGIES
As previously mentioned, the IoT is an amalgamation of sev-
eral technologies and protocols employed on different levels
of its ecosystem, enabling its functionality [67]. Different IoT
technologies have emerged in the industry, for example Radio
Frequency Identification (RFID), is used broadly as a cheap
identification method for devices. For global communica-
tion between gateways and cloud service, the Internet Proto-
col (IP) is preferred, where both IPv4 and IPv6 are in use, with
the latter allowing for close to 85,000 trillion IP addresses.
For local communication between IoT devices and their coor-
dinators, the most prominent technologies employed are Wi-
Fi, Bluetooth, ZigBee, ZWave. Finally, regarding the actua-
tors, they are generally split into three categories: Electrical,
Pneumatic and Hydraulic, based on the medium they use for
power. These technologies are vulnerable to cyber-attacks
due to the IoT open-loop of communication, and heterogene-
ity of their protocols and services. We mainly focus on bot-
nets, as they constitute considerable harm for IoT appliances
and applications, as explained in the following section.

IV. BOTNETS
In this section, information related to Botnets, their origin,
architecture and activities is given.

A. BOTNET BACKGROUND
Botnets have had a rich history and development over
the years, corrupting and disrupting computer and network
systems [101]. Originally, botnets were crafted for benev-
olent purposes, with their main functionality being to pro-
vide administrative assistance to Internet Relay Chats (IRC),
a form of communication quite popular in the ’90s. The first
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IRC bot appeared in 1993, was named Eggdrop and pro-
vided assistance to IRC channel communication. Following
Eggdrop, the first malicious bots made their appearance, with
GTbot in 1998 being the first of its kind, which was able
to execute scripts when prompted through its Command and
Control (C&C) IRC channel.

In 2003, new more sophisticated bots appeared like the
Agobot, which was more robust and flexible than previews
types, as-well-as it incorporated a persistent C&C chan-
nel. In 2007, Storm made its appearance, a botnet that was
characterized as one of the most powerful botnets of its
time. It employed a P2P C&C infrastructure, with its main
functionality being spam messages, DDoS attacks and had
the capability to disrupt the Internet communication flow of
entire countries. In the same year, appeared probably one of
the most infamous botnets, the Zbot or Zeus. Having at the
time close to 3.6 million bots under its control, other variants
were later spawned, including a P2P version in 2011 named
Gameover Zeus, which was capable of performing a wide
range of malicious activities, including bank account theft,
DDoS and spam [9]. It was eventually taken down by a
collaboration of the FBI, the UK NCA, Shadowserver Foun-
dation and Dell’s CTU IN in June 2014 [71].

In 2008, some notable botnets that appeared were Asprox,
Kraken, Torpig and Conficker. Asprox, like the original Zeus,
used a centralized HTTP based C&C infrastructure and apart
from its main purpose, which was the creation of spam,
it was also capable of performing SQL Injection attacks to
websites. Kraken, was part of the spammer botnet family,
and was reported that in April 2008 included 400,000 bots in
its army of zombies [51].Torpig was a data exfiltration bot-
net, which performed man-in-the-browser attacks and used a
centralized HTTP-based C&C infrastructure [33]. Conficker,
moved periodically from Centralized HTTP-based C&C to
P2P [104].

The successor of the Storm botnet, Waldec was discovered
in 2009, having a P2P C&C infrastructure, its primary func-
tion was to send spam messages reaching close to 7000 mes-
sages per day, though it also performed credential theft and
DDoS attacks [104]. Eventually it was taken down in 2010.
Also in 2009, Mariposa was discovered. Mariposa used a
custom communication protocol which was a variation of
UDP, was capable of launchingDDoS attacks and even down-
load and run executables, such as other bots. It was taken
down in December 2009 [45]. Another notable milestone for
botnets in 2009 was the appearance of the precursor of mobile
botnets, where botnets use mobile phones as their bots (zom-
bies), named SymbOS\Yxes which targeted Symbian devices
and utilized SMS messages to self-propagate [27], [111].

Following the surfacing of SymbOS, the first botnet tar-
geting Android devices named Geinimi was observed, during
the end of 2010. Primarily found in China, it employed
a simple HTTP-based C&C infrastructure and was capa-
ble of sending SMS, e-mails, fetch the location of the
infected device and also made possible the further propa-
gation of malware [80], [111]. Lately, botnet creators have

taken advantage of the wide adoption and constant increase of
the IoT, and we have already scene examples of IoT botnets
and what they are capable of.

Botnets comprised of IoT devices were the next evolu-
tionary step of botnets. The most well-known first appeared
in September 2016, under was aliased as Mirai [59]. Mirai
performed some of the most powerful DDoS attacks in Inter-
net History, namely: 620 Gbps against Brian Kreb’s website,
1.1 Tbps agains French Cloud service provider OVH and in
October 2016 attacked Dyn service provider and took down
portions of the internet like Twitter, Netflix and GitHub.
After the release of Mirai’s source code, various variants
appeared like Persirai which is active sinceApril 2017, amore
refined version of Mirai which targets specific devices of
select vendors. Other IoT botnets include Hajime, which
appeared in October 2016, and utilized a decentralized C&C
infrastructure which appeared to ‘shield’ devices from Mirai
infections. Finally, BrickerBot was observed in April 2017,
and as the name suggests attempted to ‘brick’ IoT devices in
what can be considered a permeant DoS attack.

B. BOTNET ARCHITECTURES AND CHARACTERISTICS
Botnet architectures include several elements. To start with,
a bot is a program which, after reaching a vulnerable host,
infects it and makes it a part of the Botnet [58], [101]. Bots
differ from other malware, in that they include a chan-
nel of communication with their creators, allowing them
to issue commands to their network of bots (i.e., zombies)
and thus making botnets versatile when it comes to their
functionality [58], [101]. A botnet’s malware gets delivered
to vulnerable targets through what is known as a propagation
mechanism. Most commonly there exist two types of propa-
gation, passive and active.

Passive propagation techniques require users to access
sites, emails or other compromised network elements and
through user interaction download the malware (bot), infect-
ing it and making it part of the botnet [58], [78]. Active
or self-propagation techniques employ sub-portions of their
network to actively scan the Internet for vulnerable devices,
attempting to exploit the identified vulnerabilities, turning the
compromised hosts into bots themselves [58], [78].

The characteristic that makes botnets unique is the fact that
they allow their controller, commonly referred to as a bot-
master (a.k.a botherder) to issue instructions to their network
of infected devices and receive feedback, as shown in Fig-
ure 2. This is made possible through a Command and Control
(C&C) infrastructure. There exist multiple different types of
C&C infrastructures based on their topology and those types
are: centralized, P2P, hierarchical and hybrid [14], [78]. In a
centralized topology, bots connect, receive instructions and
report/deliver their work in a central infrastructure, with most
common technologies employed here being IRC and HTTP
protocols [14], [101]. The main drawback of the centralized
topology is that the C&C is a single point of failure.

A decentralized or P2P architecture is the natural successor
of the Centralized, where the bots can assume either the
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FIGURE 2. Centralized Botnet and activities [99].

responsibilities of a C&C server or a worker bot that performs
tasks on behalf of the botmaster. Such architectures generally
face higher latences than preferred regarding command distri-
bution, though they are quite resilient to takedown attempts,
as the compromise of a single host would only affect a small
portion of the botnet [14], [58].

A Hybrid architecture is, in a way, a combination of the
P2P architecture with the Centralized, reaping the benefits
of both [14], [58]. Here, the C&C is implemented in P2P
form, with the bots that make up the C&C (called servant
bots) forwarding commands to each other and to the bots that
perform the actions (client bots). Finally, in this architecture,
a botamaster adds proxy bots between their machine and
the botnet, with each bot forwarding commands to the bots
that they compromised, creating a hierarchical topology and
making takedown attempts difficult, as-well-as allowing the
botmaster to rent portions of their botnet.

C. BOTNET ACTIVITIES
Botnets are some of the most versatile pieces of code to
traverse the Internet. The main reason why they get so much
attention is not because of the masterful ways that botmasters
employ to obfuscate their bots from law enforcement, but
rather the practical capabilities that botnets possess and the
services they provide to the botmasters and their clients.
There are various hacking techniques used by botnets, includ-
ing Distributed Denial of Service attacks (DDoS), Keylog-
ging, Phishing, Spamming, Click fraud, Identity theft and
even the proliferation of other Bot malware [7].

Botnets tend to be specialized into performing a small
subset of the aforementioned hacking techniques, though
there have been cases where variants of botnets were capable
of multiple types of malicious activities, an example being
Gameover Zeus which could perform DDoS attacks, send
spam e-mails and steal bank account information. There are
many ways a botnet can perform a DDoS attack, and based
on the technique and protocols employed, there are multi-
ple examples of such attacks, some of which are: Denial
of Sleep attack, UDP flood attack, TCP SYN flood, ICMP
ping flood, Ping of Death, Smurf attack, DNS amplifica-
tion, HTTP flood [68], [116]. In a Denial of Sleep attack,
the attacker targets functionality provided by the Medium
Access Control (MAC) layer, where devices are set into a
‘low power mode’, to decrease battery consumption, which
is of vital importance for network sensors [68].

A UDP flood attack exploits the connectionless nature of
the UDP protocol and sends a large number of forged packets
to random ports of the target machine, forcing it to expend
resources to detect any applications which could be waiting
to receive the incoming information and then issuing ICMP
responses when that check fails [116]. On the other hand,
TCP SYN flood attacks utilize the structure of the ‘three way
handshakes’ that is performed in order to set up the parame-
ters for any TCP connection. In this case, the attacker floods
the target with SYN packets, which are used to initiate a TCP
session, receives the response from the target but does not
send the final packet that establishes the connection, forcing
the target to maintain the connection open and thus eventually
cause the target to become unresponsive [68], [116].
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FIGURE 3. Phases of digital forensics mechanisms (DFRWS Investigaiton Model).

An ICMP ping attack is similar in nature to the UDP attack,
in the sense that a large number of packets are sent to a target
which forces the target to respond, taking up network and
processing resources [68]. A Ping of Death, though it utilizes
ICMP is somewhat more interesting, as it exploits the fact
that the IP is designed with an upper limit of 65,535 Bytes,
and when a larger packet is received, it causes memory over-
flow issues and eventually crashes the machine [68], [116].
Finally, a Smurf attack consists of a large number of ICMP
packets which have the intended target’s IP address spoofed
in place of the packets’ source address, causing the replies
received from such packets to be sent to the target [116].
When a botnet performs keylogging, it silently records the
keystrokes of a user and after a certain amount of time,
it sends its gathered information to the botmaster. Phishing
is the process through which the adversary attempts to trick
a user in revealing sensitive information, such as login cre-
dentials or even bank account information, through carefully
crafted messages, websites, and emails. Finally, botnets are
sometimes used to proliferate other malware, spam email
being one way to do so.

There are different security controls, for example threat
detection and intelligence, as well as intrusion detection
techniques have been used for recognizing and prevent-
ing botnets from network and IoT systems. These tech-
niques are beneficial to some extent, because they can only
detect knows cyber-attacks, but they cannot identify zero-day
attacks (i.e., new/future attacks), as there are no signatures
of those attacks stored in blacklists. This is the motivation
of focusing on digital forensics mechanisms in order to
track and define cyber-attack origins, and assist in exam-
ining how botnet structures occur in IoT systems; hence
improving security controls in discovering known and new
botnets.

V. DIGITAL FORENSICS
In this section, information related to Digital Forensics, its
origin, investigation models, sub-domains and developed
methods for investigating botnets in multiple fields including
the IoT is presented.

A. ORIGINS AND EVOLUTION OF DIGITAL FORENSICS
As criminal activities moved to cyberspace, with cyber crim-
inals exploiting systems to their own ends, it was only
natural that law enforcement would also adapt their oper-
ations accordingly, as such, digital forensics was coined.
Its roots can be traced back to 1984, when law enforce-
ment entities, among which was the FBI laboratory, started
developing programs in order to examine computer-related
crimes [54], [117]. Over the years, many organizations have
proposed their own definitions and standards for performing
forensics investigations in the digital world, with multiple
investigation models appearing, most of which share some
common phases but are designed to be applied in different
circumstances [117].

One such definition that describes the essence of digital
forensics, is the one given by Rodney McKemmish, where
he states that digital forensics is “the process of identifying,
preserving, analyzing and presenting digital evidence in a
manner that is legally acceptable” [91]. An investigation
model proposed by the first Digital Forensics ResearchWork-
shop in 2001 named the DFRWS Investigation Model, which
functioned as an inspiration for other such models, comprised
of six phases: Identification, Preservation, Collection, Exam-
ination, Analysis and Presentation [54], as shown in Figure 3.

In the Identification phase, sources of possible evi-
dence are identified. This phase takes under considera-
tion that the amount of data an investigator can collect is
constrained [117]. In the Preservation phase, proper chain
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of custody is established, and further actions are taken to
ensure the integrity of data to be collected [117]. During the
Collection phase, the investigators make use of appropriate
techniques and tools to safely collect the data which has been
identified as important for the case.

The Examination and Analysis phases are considered to be
of utmost importance, as here the collected data is scanned,
filtered and processed in order to identify crucial evidence
and establish timelines which are then provided in reports
during the Presentation phase [54]. During the Investigation
phase, a range of devices could be investigated for potential
evidence, from mobile phones and laptops to routers and
lately even fridges and light-bulbs. Some well-known digital
forensics investigation models are listed in Table 3.

Over the years, digital forensics have been further parti-
tioned into sub-fields, each of which provides specialized
techniques for investigating security incidents in different
domains of the IT sector. Popular forensics sub-fields are
Network forensics, Cloud forensics, and IoT forensics [49],
as described in the following points.
• Network forensics- emerged as a way to identify,
understand and ultimately amass evidence to pursue
legal action for malicious activities that used the Inter-
net and other networks as a bridge for attacks with
some examples being DDoS attacks and data theft [57].
In a network, evidence is usually short lived, as pack-
ets are produced from one device and sent through
intermediary nodes to their destination. As such, var-
ious Network forensics techniques have been devel-
oped over the years [42], [57], [74]. Famous tools in
network security are Intrusion Detection Systems (IDS)
and Honeypots [56], [60], [75]. IDSs are trained and
validated to recognize patterns of malicious traffic in the
network [42], while Honeypots mimic vulnerable legit-
imate devices, luring hackers and botnets into attacking
them, with the added bonus of allowing investigators to
observe what actions are performed by the attacker [57].

• Cloud forensics- is a branch of digital forensics tasked
with investigating security incidents in the Cloud [96].
It is a cross disciplinary field combining disciplines
like computer device forensics and network forensics,
which poses some unique challenges, like difficulty
in defining jurisdiction, as a Cloud provider could be
based in Europe and be providing services in the U.S.,
breach of privacy, as a machine that could be investi-
gated could host services for multiple users, including
suspects and an increase in generated data quantity,
as an ever-increasing number of devices utilize the
Cloud [96].

• IoT forensics- is an emerging new field of foren-
sics for investigating cybercrimes by analyzing IoT
devices, protocols, in terms of software-, platforms-,
and infrastructure- as services. IoT forensics is slowly
being developed as in [55]. Major challenges that are
hindering the adoption of conventional digital forensics
techniques for investigating incidents in the IoT, are

heterogeneity of systems and data, the high quantity
of data produced as the number of IoT devices rises
constantly and the speed with which data is generated.

• Malware forensics-is a discipline of forensics, which
focuses on reverse engineering, and analyzing the source
code of malware [17], [109] acquired from captured
binaries. Analysis of malware samples can be cate-
gorized as static, dynamic or code, depending on the
methodology used. In addition to these methods, vir-
tual machines have also been used, as they provide a
resilient environment where malware behavior can be
observed in relative safety. Over the years, attackers have
started to incorporate anti-forensics logic in their code,
to elude detection [109]. With anti-forensics techniques,
malware infections become more resilient, for example,
allowing it to alter its behavior, if it identifies that it is
running in a virtual environment.

B. NETWORK FORENSIC METHODS FOR
INVESTIGATING BOTNETS
Investigating botnets, is a multifaceted problem. It requires
interdisciplinary actions to be taken, to ensure effective
analysis and a more spherical understanding of an infected
network’s actions, enabling the design of better counter mea-
sures, or at the very least attribution. As mentioned above,
Network Forensics is the branch of Digital Forensics, where
the evidence is network-related, and thus exist in the form of
logs, packets and network flows. In this section, we focus on
Network Forensic techniques, which have been developed to
analyze Botnet activities, their general characteristics (lifes-
pan, size) between the years 2011 and 2018. These techniques
have been organized into distinct methodologies as follows:

• Honeypots
• Network Flow Analysis
• Deep Packet Analysis
• Attack Recognition
• Visualization of Network Traffic
• Intrusion Detection Systems (IDS)

These methodologies are further discussed below.

• Honeypots- [48], [62], [73], [77], [87], [87], [90]- are
devices, many times simulated ones which run in a con-
trollable virtual environment, that have been designed
to appear as an appealing target to attackers and mal-
ware infections. Honeypots are generally separated into
high interaction and low interaction honeypots, with the
former imitating entire systems (e.g., Windows, Linux)
and allowing for extended interactions and information
gathering, while the latter simulates certain services
available through the net, which are often targeted by
attackers. The benefit of this method is that the attacks,
malware binaries and access attempts, are monitored
and logged by the Honeypot operators, allowing for
the generation of rules to predict similar future attacks.
Additionally, it enables the extraction of malware bina-
ries and communication patterns between C&C and bot,
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TABLE 3. Well-known digital forensics investigation models.

while it does not take part in any of the attacks issued by
the botmaster.
A low-interaction honeypot system was proposed by
Pham and Dacier (2011) [90], who focused on devel-
oping an automated and systematic way of identifying
Botnet attacks in vast datasets. By employing the ser-
vices of LeurrÃľ.com, which includes multiple machines
in more than 25 countries, running low-interaction hon-
eypots and collecting network traffic, they were able
to show that by grouping together closely correlated
traces of attacks, they were able to identify attack events.
Kumar et al. (2012) [62] proposed a distributed virtual
and fully automated Honeynet architecture, capable of
dynamically reconfiguring itself. Their proposed system
is partitioned into three components. In this system,
a distributed honeynet client, which is comprised of
a combination of low interaction and high interaction
honeypots, would run in a VirtulBox with the incoming
and outgoing traffic moderated by a Honeywall.
A method for extracting Intrusion Detection Sys-
tem (IDS) rules from data collected from Honeypots,
was developed by Mittal and Singh (2016) [73]. The
researchers employed a Support Vector Machine, which
they trained by using data collected from a Honey-
pot to produce the necessary rules for the IDS. Not
much information is given regarding the source of the
Honeypot-produced dataset or the parameters of the
SVM that was used. Although Honeypots can produce
extensive information regarding Botnet activities, they
require huge amounts of storage space tomaintain all the
traces, extracted payloads and malware binaries. Low
and High interaction honeypots have their tradeoffs,
with the former needing a lot of effort to pass as a legiti-
mate device, and the latter running the risk of being taken
over completely, thus requiring data control measures to

be taken, so that the honeypot does not take part in any
malicious activities itself.
Attackers have been known to target social networks,
where they are capable of gaining sensitive information
from unsuspecting users, proliferating malware infec-
tions and more. As such, Paradise et al. (2018) [87]
presented ProfileGen, a tool that produces realistic and
compelling social profiles, which function as honeypots,
in that they attract the attention of attackers. The pro-
posed system, makes use of an automated process that
relies on the generation of a Markov model from col-
lected data. Emphasis was given in generating realistic
education records for the crafted profiles.
It is not uncommon for cyber-attacks to span large seg-
ments of the Internet, with a prominent example being
DDoS attacks. To that effect, Jeong et al. (2018) [48]
worked on tracking large-scale events. Apart from
improving accuracy, emphasis was given on reducing the
communication toll due to sensors reporting an observed
event in a distributedmonitoring system, akin to the hon-
eynet. In the proposed detection protocol Bitmap-Based
Widespread Event Detection, bitmaps are exchanged
between the agents and the coordinator, and are used
by the latter to identify events monitored by all agents,
which are then categorized as widespread events. This
approach improves on previous schemes, as it does not
produce any false positives.
Naik et al. (2018) [77] proposed a fuzzy-based
technique that identifies fingerprinting attacks in a
low-interaction honeypot. This technique identifies
abnormal TCP, UDP and ICMP traffic, and uses fuzzy
logic to produce a probability of a fingerprinting attack
targeting the honeypot. One shortcoming of this tech-
nique, is that new fingerprinting attacks that rely on
different patterns might not be identified effectively.
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• Network Flow Analysis- [15], [16], [24], [28], [83],
[103]- uses metadata gathered from network commu-
nication, to make inferences regarding the legitimacy
of the traffic under scrutiny. Traffic is aggregated, and
metrics are collected to create Network Flow Records.
Records are identified by the source and destination IP
addresses, port numbers and the protocol used for the
communication. The benefit of this approach, is that
privacy is no concern, as the actual data being communi-
cated isn’t investigated and it doesn’t require extensive
storage capacities, as traffic is aggregated, with only
certain metrics maintained. At the same time, it is not
affected by encrypted communications, a problem faced
by Deep Packet Inspection (DPI) while at the same time
it does not make use of signatures to identify network
attacks, as it relies on statistics and the application of
machine learning.
In their work, Francois et al. [28] created a system
which focused on identifying members of P2P bot-
nets. In their implementation, they employed Hadoop,
the open source implementation of MapReduce, to run
the PageRank algorithm on trace data collected by hon-
eypots. Hosts with high connectivity to each other were
categorized as potential P2P bots, as this characteristic
was deemed a good indication that a host is part of a P2P
botnet. Their approach, performed adequately on certain
types of P2P botnet topologies, where linkage between
bots is high, although some legitimate P2P clients could
be misrepresented as bots, if no prior knowledge is used
to fine tune the PageRank process. Bijalwan et al. [15],
focused on the investigation of UDP flooding attacks.
In their experiments, they worked on identifying ran-
domized UDP flooding attacks, which can be designed
to pass undetected by IDS systems and other security
mechanisms. They simulated an attack environment,
by developing scripts which would extract the source IP
address of the user that would be targeted, and then gen-
erated the randomized attack payload (forged packets).
Detecting suspicious patterns in network traffic by uti-
lizing a Linear Regression model was the focus of
Divakaran et al. [24]. Their solution relies on the combi-
nation of network flows into sessions, and the detection
of illegitimate TCP states by using Finite StateMachines
to determine whether an attack is taking place, gathering
evidence in the process. Oujezsky et al. [83] focused
on time behavioral analysis, by extracting information
from Network Flow data aggregations. The researchers
employed survival analysis, a technique based on proba-
bility theory, developed to study the duration of virtually
any process, and focused on the identification of C&C
communication, which tends to be periodic in nature.
The merits of such a technique, as mentioned by the
researchers, is that deep packet inspection is not neces-
sary, as they focus on analyzing timing data from Net-
work Flows, thus bypassing Law restrictions, concerns
of privacy and the time-consuming process of inspecting

all collected packets. Additionally, this method does not
require knowledge of when a Network Flow occurred,
but how long it lasted, rendering the process of trying to
convert from one time system to another obsolete.
Bou-Harb and Scanlon (2017) [16] focused on dis-
tributed malicious events that take place in vast areas
of the internet, dubbing them campaigns, with their goal
being the development of efficient techniques to analyze
vast quantities of network traffic and produce network
forensic evidence. However, this approach focused on
the identification of probing botnets alone, which means
that other botnets that do not employ such mechanics
will not be detected. Additionally, as mentioned by the
researchers, this approach suffers from poor scalability,
that is, when the number of infected machines prob-
ing the system exceeded 1000, both false positive and
false negative rates started to increase. A drawback of
using network flow analysis, compared to other methods
such as Deep Packet Inspection, is that it bypasses the
payload of packets which means that certain informa-
tion is ignored. Thus, it can’t be used for malware and
command extraction from traffic and some attacks that
rely on the payload such as SQL injections can pass
undetected.
Sivaprasad et al. (2018) [103] proposed a monitor-
ing system which relied on machine learning tech-
niques applied to network flow-summarized data. The
researchers used a combination data from the CTU-
13 dataset and packets that were collected from a
DDoS attack they performed. Their task was to cre-
ate a user-friendly interface, where data was uploaded
to the system, pre-processed with Weka and after the
feature-extraction process, NaÃŕve Bayes and SVM
classifiers were built. On a similar note, Mathur et al.
(2018) [70] proposed a model for botnet traffic dis-
crimination. The researchers investigated the predictive
capabilities of five different classifiers, randomized fil-
tered classifier, logistic regression, random committee,
random subspace, multi class classifier. After features
were extracted from a combination of data from CTU-
13, ISOT and live captures, the five classifiers were
trained and compared. It was then shown that the logistic
regression and multi class classification algorithms had
the best performance in both accuracy and false positive
rates. This work is a good indication of the relative per-
formance of various classifiers when tasked with botnet
identification, even though neural networks were not
included.
Kozik (2018) [61] used a distributed Apache spark envi-
ronment to train an Extreme Learning Machine (ELM)
classifier. ELMs differ from other neural networks,
as they often include a single hidden layer, and have dif-
ferent activation functions. The key contribution of this
work, was that the distributed environment was incorpo-
rated in the training of the ELM classifier, by splitting
calculations performed at the hidden layer into chunks
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of computation which could be performed by the dis-
tributed environment’s elements. Results showed that
the proposed method is promising.
Pektas and Acarman [88] proposed a deep learning sys-
tem to process network flow patterns and identify bot-
nets. In a botnet, communication between C&C and bots
is frequent, as such their approach was to target these
channels. Their choice of deep learning was justified,
as their method relies on processing large quantities
of data, in which deep learning thrives. During fea-
ture extraction, collected flows were turned into graphs,
grouped by communication endpoints, which allowed
them to produce new statistical features. A number of
different configurations were tested, with varying num-
bers for layers and neurons. The researchers concluded
that deep learning presents acceptable accuracy for bot-
net identification in flow data, with the added bonus
that feature selection is not necessary, as deep networks
identify the best features.

• Deep Packet Analysis (also known as Deep Packet
Inspection or DPI)- [20]- is a form of packet filtering,
that relies on the inspection of both headers and the
data segment of a packet, for the purpose of identifying
malicious traffic based on known patterns. Although it
raises privacy concerns, faces problems when trying to
parse encrypted traffic and relies on a signature database
to perform its identification, thus being unable to iden-
tify Zero-day malware, DPI is still used to this day.
By scanning the content of packets, more information
can be gathered, and the behavior of the packet’s origin
can be better understood.
Chen et al. [20] proposed and implemented a cloud-based
collaborative network security management system,
which takes advantage of Cloud storage and process-
ing, to perform offline forensic operations on captured
raw network traffic with emphasis given on SPAM
incidents. The research team utilized the Collabora-
tive Network Security Management System (CNSMS),
which managed the security of four different sites (net-
works), by making use of NetSecu nodes and Probers
to gather, monitor and manage network traffic. The
NetSecu nodes have the advantage of interacting with
locally deployed security mechanisms (such as firewalls
and IDS), dynamically responding to security incidents
threatening the network. Additionally, they can be inte-
grated with self-protection solutions, in the event they
becomes the target of an attack. Furthermore, NetSecu
nodes communicate with similar devices deployed in
other networks, thus creating an overlay network. It was
observed that this cloud-based scheme could be applied
to the investigation of other network-related security
incidents.
Cheng and Watson [21] developed D2PI , a system that
identified malware in network traffic, by using a Deep
Neural Network. The proposed system was a Convolu-
tional Neural Network (CNN) which classified collected

traffic, into either ‘malicious ’or ‘benign ’, based solely
on the payload. After extracting the payload, their length
was regulated to a predefined length and incorporated in
a matrix, in order to be processed by the CNN. Results
indicated that, although more work is needed to improve
this method, it is a promising first step towards incorpo-
rating CNNs in DPI systems.
Another mechanism that has been leveraged in DPI
systems, is finite state automata. Finding ways to
improve these mechanisms, in order to be able to han-
dle the ever increasing variety and volume of traffic
was the focus of Yin et al. [115]. As regular expres-
sions, which can be used to identify complex patterns
in packet bodies, are often implemented in finite state
machines, improving their efficiency is of vital impor-
tance. Initially, the researchers discussed deterministic
and non-deterministic finite state automata, comparing
the memory requirements for each category. They con-
cluded that a non-deterministic approach is needed for
a DPI implementation, and provided improvements that
help reduce processing time and memory consumption.
Experiments s that were made, between two automata,
based on regular expressions from Snort, showed that a
non-deterministic finite state automaton machine with
the proposed improvements used less memory, as the
number of conversion edges were reduced.

• Attack recognition- [12], [38], [53], [120]- is a collec-
tion of machine learning techniques applied to any num-
ber of sources (e.g., network traffic and logs). It is
utilized in investigating the identification of known pat-
terns exhibited by malicious software. Although pattern
identification is generally used in some form or another
in different techniques, in this section, such patterns are
identified not only in packets, but from other sources as
well, like network logs, and are used to better understand
the sequence of events which lead to an attack. This
forensics method, in some situations, requires access
to the physical device, from which logs and files are
extracted and then examined offsite.
In their approach, Zhu [120] developed an algorithm,
that identified a sequence of attack events, by scan-
ning network logs. Their algorithm identified what the
research team dubbed ‘attack bubbles’, with high sus-
picion values. An ‘attack bubble’ was defined as a
tuple containing: a collection of network events found
in the logs, a suspected type of attack which these
events might constitute, a probability that the identified
events constitute the suspected attack, and an identifi-
cation of the source of these events (IP address). Han
et al. [38] proposed a technique that examined the com-
munication behavior of network nodes. In their process,
they focused their efforts on identifying Command and
Control communication which exhibit a pattern of syn-
chronicity, for instance, the C&C server sends instruc-
tions to all botnets simultaneously, and all bot respond
at the same time.
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Karthika [53] proposed a highly scalable system for
detecting stealthy peer to peer botnets, akin to an Intru-
sion Detection System. Their system identified all P2P
(Peer-to-Peer) traffic in a network, relying on DNS
look-ups which the system collected, and reasoned that
most P2P applications do not rely on DNS to establish
the destination IP address in legitimate P2P communica-
tion. A system for investigating the existence of botnets,
composed of several modules was proposed by Bansal
et al. [12]. This system gathered all network data that
are sent or received by the internal network, creating a
repository of stored packets, which were later filtered,
flagged as legitimate or illegitimate traffic and then used
to identify the presence of any unknown botnets. The
process would then scan any involved systems, to gather
traces that were not identified by previous steps. In the
final step a report was generated, with all identified
evidence being visualized.

• Visualization of Network traffic- [8], [36], [50] a
number of diverse visualization techniques have been
employed, to improve Botnet investigations. One use of
such techniques is as a support tool for investigators,
which can assist security experts to track the rout taken
by a malware infection carried out at large workstation
areas.
Such a visualization method was developed by
Joslin et al. [50], who studied the representation of Net-
work Flows (or IPFlows) as a directed graph, combined
with relational information, making the argument that
the proposed combination motivates the creation of new
hybrid graph-relational systems. Concentrating more on
the visual representation of network traffic and security
incidents, Gugelmann et al. [36] produced Hviz, a traffic
visualization program that processes HTTP/S traffic in
order to reduce the number of events that an investi-
gator would have to work on. They employed various
mining techniques (FIM) to aggregate the sites visited
by workstations during an investigation. Also, by com-
paring traffic between workstations, they attempted to
figure out if the traffic in question is malicious or not.
On the other hand, an investigation of UDP flooding
attacks, by using the UDP flow graph was performed by
Anchit and Harvinder [8]. The researchers made use of
a testing environment, setup in their lab, choosing Wire-
shark for the collection of network traffic. As stated by
the researchers, this approach could assist investigators
in identifying network attack incidents, as patterns of
network communication become easier to spot with the
naked eye.

• IntrusionDetection Systems- [6], [56], [60], [74], [75]
are generally a defensive mechanism deployed either
in the network (Network IDS) or in a device (Host
IDS), which can either employ pre-made signatures
(signature-based IDS) or machine learning (anomaly-
based IDS). In the context of Network Forensics, IDS
systems can function as alarm triggering mechanisms

which, after identifying malicious activities (for exam-
ple Botnet traffic), can raise further forensic mecha-
nisms, allowing for an automated solution.
AlRoum et al. (2017) [6] developed a Botnet Detec-
tion System that focused on DNS records, as some
botnets harness DNS communication in order to make
their Command and Control infrastructuremore resilient
and avoid detection. Their solution relied on seven fac-
tors, domain reputation, geo location, destination port,
known C&C, domain owner, frequent DNS changes and
behavior.Weights were assigned to each factor, the sum
of which would produce a DNS flag, based on which an
alarm would be raised. Furthermore, the seven factors
were further partitioned into two groups, the must-stop
factors and the partial-stop factors. If one must-stop fac-
tor or three partial-stop factors were detected, then a flag
would be raised, indicating a suspicious domain record.
The research team reported an accuracy of close to 63%
when they tested their solution against similar results
derived from the cyber security company FireEye.
In the field of anomaly network IDS, Aldwairi et al. [4]
investigated the applicability of Restricted Boltzman
Machines (RBM), in order to distinguish between nor-
mal and abnormal flow traffic. An RBM is a special kind
of neural network, where layers are either visible or hid-
den and two layers of the same type cannot be connected.
In their experiments a balanced subset of the ISCX
dataset was used to train the model. The algorithms
that were used to train the RBM, were constructive and
persistent constructive divergence. Results showed that
RBMs are a valid choice for an anomalous network IDS
with the capability to identify novel abnormal traffic.
On the other hand, the performance of several supervised
classification models for network IDS was investigated
by Ugochukwu and Bennett [107]. Four classifiers were
tested, Naive Bayes, C4.5, Random Forest and Random
Tree. Out of the four classifiers, Random Forest and
Random Tree outperformed the rest.

C. NETWORK FORENSIC METHODS FOR INVESTIGATING
BOTNETS IN THE IOT
In this section, we focus on network forensics methods, that
were designed to be applied in an IoT environment. One
might consider, that pre-existing network forensics mecha-
nisms could be employed in the IoT, with the same accuracy
and efficiency as when applied to conventional computing
systems. The fact is that the quantity and speed with which
data is produced in the IoT, as-well-as its diversity, require
the development of new methods which take under account
these characteristics of the IoT. Popular methods and recent
studies are explained as follows.

• Honeypots [30], [34], [39], [65], [84], [110]- which
would be an ideal decoy for malware that target IoT
devices was developed by Pa et al. [84], named IoT-
POT. Their proposed system was a combination of
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a low-interaction front-end interaction program, and
a high-interaction back end system, named IoTBOX
which is a collection of virtual IoT machines (Linux
OS), that help make the Honeypot appear as a legit-
imate, more dynamic device. In this design, they
also incorporated a Profiler, which stored incoming
“malicious”commands and the responses produced by
IoTBOX. This would allow the system to produce
the appropriate response in future interactions without
invoking IoTBOX. Another module that was used was
a Downloader, which managed all downloads prompted
by the attackers, and a Manager which handled the con-
figuration of the system. It is mentioned that the virtual
environment requiredmanual OS image resets from time
to time, a process which could possibly be automated.
It should be mentioned that, some malware include
anti-forensics capabilities which can thwart attempts
to scan them in a virtual environment, which was not
discussed in this work.
With the intent to produce an initial framework for a
high-interaction, seemingly geographically-distributed
and vendor/type-of-device diverse Honeypot, Guarnizo
et al. [34] proposed SIPHON. Their implementation
allowed for the deployment of more than 80 high-
interaction virtual IoT devices, with their IP addresses
being distributed around the globe, and having only
7 physical devices exposed. The projected scalability
of this system was reported to be i*w, with ‘i’ being
the number of physical IoT devices and ‘w’ being the
wormholes in use. Collected data from a two-month
period, showed a significant amount of incoming attack
trafficwhich targeted SSH services that were exposed by
the experimental system. Additionally, the team noted
that the proposed honeypot was not identified as such
by Shodan, making this framework a viable solution.
An IoT-based honeypot, which focused on the emula-
tion of an entire IoT platform was developed by Wang
et al. [110], named ThingPot. Their design was an open
source project, that could be characterized as a “Middle
Interaction Honeypot”which made use of both high and
low interaction modules. The proposed framework of
ThingPot included three groups of entities, Extensible
Messaging and Presence Protocol nodes (client, server)
used for communication between “user”and Controller,
REST API which represented the IoT device that Thing-
Pot wasmimicking, Controller whichwas represented as
a PC that gathered log files from the other nodes in the
setup. To test the applicability of ThingPot, an arrange-
ment of devices which ran on Raspberry Pi, connected
to a PC, and simulated Philips Hue lightbulbs was setup.
This implementation was, as reported by the research
team, a proof of concept that focused solely on the
Philips Hue lightbulb IoT platform, with support for
other such devices pending. Also, the research team’s
experiments ran for 1.5 months, a possible extension of
this time could have yielded different results.

In the field of military network security and operations,
Hanson et al. [39] introduced the concept of ‘Honey-
man’, an IoT honeynet architecture that, instead of func-
tioning as a mitigation and attack analysis platform, its
primary functionality would be to provide indication
and warning as-well-as distributed deception capabili-
ties. The proposed system’s function would primarily
be to deceive attackers about the location and status
of military IoT devices, whose goal was to corrupt
their intelligence about either geo-spatial or system
data. A multi-tier architecture was proposed, where
a combination of light-weight devices would be used
in tandem with virtualized machines and a software
defined network, gathering data from the attacks. All
collected information would then be forwarded to an
RNN-based analysis module, where inferences could
be made about the motivation of an adversary. Several
difficulties hinder the development of such a system,
with two being discussed in this research being: securely
emulate embedded os communications, avoiding detec-
tion of emulated environments.
A server-based IoT honeypot system was proposed
by Gandhi et al. [30] and named HIoTPOT. The pro-
posed system relied on a Raspberry Pi to act as the
‘middle-man ’, and divert users with unknown creden-
tials, with such attempts being recorded in a database,
to a virtualized image of the real IoT devices. From
there, alerts would be sent to legitimate users and logs
would be created, that record the attacker’s interaction
with the environment. The proposed system was shown
to providemore interactions as-well-as newmechanisms
than an existing one, further comparing their perfor-
mance and showing that HIoTPOT outperformed the
existing solution in packet loss, consumption of band-
width and added delays.
The problem of developing realistic IoT honeypots
was addressed by Luo et al. [65]. The researchers
proposed an automated method for crafting low but
intelligent-interaction honeypots. To build such a honey-
pot, attack requests were collected by an initial honey-
pot, which were then forwarded to a specialized module
that probed live IoT devices to get legitimate responses.
In this way, the honeypot would be able to gather
relevant responses from real devices. Machine learn-
ing would then be applied on the collected responses,
in order to craft a ‘profile ’that best represents the IoT
device that the honeypot would mimic. The evaluation
of the proposed method indicated an improvement in the
functionality of the honeypot, extending its interaction
time with attackers.

• Network Flow Analysis [26], [29], [72], [79]- the
research team of Galluscio et al. [29], having the intent
to clarify the severity and magnitude of IoT infected
devices worldwide, worked from an empirical point of
view. They utilized unsolicited darknet-generated data,
which by definition, imply a potential malicious scan.
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As such, and to be able to identify scanning (other-
wise known as probing) activities, they developed an
algorithm which utilized network flow features. The
proposed algorithm compared the observed packet count
and rate of a flow within a set time window, to pre-
determined packet count and rate values. If observed
values exceeded the pre-determined thresholds, then the
flow was flagged as a malicious scan. As the research
team was interested in IoT infected devices, they then
made use Shodan, to infer whether the identified mali-
cious probe originated from an IoT device, which would
imply that that IoT device was compromised. Their find-
ings showed that IP cameras and routers were the top two
most heavily exploited household IoT devices, while
sectors likeManufacturing and Building automation had
the largest portions of exploited devices. The proposed
algorithm, although fast is simplistic in its nature, with
the assumption behind it being that benign Darknet IP
devices don’t perform Internet-wide scans.
Being able to identify consumer IoT devices that are part
of network attacks is an important task. Towards that
goal, Doshi et al. [26] worked on the identification of
IoT devices which took part in launching DDoS attacks.
Their approach was to utilize several characteristics of
IoT-generated traffic that distinguishes it from other
non-IoT traffic, such as the frequency of communica-
tion. As such, through an initial feature engineering
process, the researchers trained five machine learning
models, including a neural network, and concluded
that, real-time detection of DDoS originating from IoT
devices is possible.
Akin to the previous study, Meidan et al. [72] devel-
oped a method that identified botnet membership in
commercial IoT devices. Their proposed method, was
based on deep autoencoders, one for each of the nine IoT
devices used in their experiments, with the life-cycle of
their method being: data collection, feature extraction,
training of autoencoder model, continuous monitoring.
The principle behind their work was that IoT devices
have a finite set of states, and as such, their autoencoder
was trained to model normal traffic, flagging its errors
as abnormal/bot activities. By testing their approach
against real IoT botnets Mirai and Bashlite, they demon-
strated a FPR of close to 0 for themajority of IoT devices
under scrutiny. On a similar note, Nguyen et al. [79]
developed DÎŹoT. In this system, data was first gathered
from on-line IoT devices, and fingerprints of device
communication were derived from them. This system,
utilized an unsupervised technique to create clusters of
fingerprints of IoT devices, and distinguish between
different device types and models. An anomaly detec-
tion module, that implemented a k-Nearest Neighbors
classifier, identified abnormal traffic, which worked as
an indication of a compromised IoT device.

• IntrusionDetection Systems [3], [95]- Roux et al. [95],
created an intrusion detection system for IoT, which

focused on identifying potential attacks, based on their
relative position in the environment which was moni-
tored by this IDS. Their design made use of wireless
sensors, strategically positioned around the premises
(house), which were tasked with gathering information
regarding signal strength and direction. The gathered
information would then be forwarded to a central device,
where it would be processed by a neural network that has
been trained to identify legitimate transmissions from
legitimate positions inside the network. Any transmis-
sion that originated from outside the network, would
then be flagged as illegitimate, causing alarms to be
triggered. Such a technique can be used to counteract
war-driving and war flying, which can be employed to
infect IoT devices with bot malware. A possible exten-
sion of its functionality, would be to use the flagging
mechanism to automatically trigger forensic solutions
for the IoT, when such illegitimate transmissions are
identified.
Although not explicitly stated, Al-Dabbagh et al. [3]
proposed a framework for designing distributed IDSs
of an IoT-like wireless control network. The proposed
distributed IDS consisted of individual IDSs in each
node/actuator in the control network, with the network
itself modeled as a linear time invariant system. This
allowed for the identification of cyber-attacks in a neigh-
boring group of nodes of the network.
Abhishek et al. [1] introduced a centralized IDS for IoT
clusters. The researchers identified the gateway of an
IoT cluster as a weak point, and thus they focused their
efforts on monitoring the gateway. The novelty of the
proposed IDS is that focus was placed on the downlink
channel of the gateway. The proposed IDS identified
malicious gateway attacks that sought to corrupt packet
integrity, thus forcing retransmissions and taxing battery
life. These attacks were identified by investigating the
packet drop probability of the downlink between each
IoT device and its gateway. In the future the researchers
intend to extend their work by studying the uplink pack-
ets, as-well-as different types of attacks.
The process of active learning for the development of
IDS in wireless IoT networks was investigated by Yang
et al. [112]. The concept of active learning relies on
training a model on a small group of unlabeled data and
periodical re-training, by requesting the missing labels
of a record from a human operator. The proposedmethod
relied on an initially detection of outliers by using an
unsupervised outlier detector followed by the applica-
tion of the active-learning-based scheme. During the
active-learning-base learning process, first supervised
learning was employed, followed by label selection and
finally labeling by the expert operator, with the process
being repeated until precision and recall reach appropri-
ate values. Still challenges exist in this field which affect
active-learning, such as the constrained power of such
devices.
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An ensemble NIDS was proposed by
Moustafa et al. [76]. The researchers focused on iden-
tifying botnet attacks targeting the DNS, HTTP and
MQTT protocols. Statistical methods were used on
data, to produce additional features that improved the
classification process. Feature selection was performed
through the calculation of the Correlation Coefficient
value between features. TheAdaBoost ensemblemethod
was implemented, usingDecision Tree, Naive Bayes and
Artificial Neural Network classifiers. Results showed
that the proposedmethod outperformed equivalent exist-
ing ones in processing DNS and HTTP flows.

VI. DEEP LEARNING AND ITS ROLE IN
NETWORK FORENSICS
Artificial Neural Networks (ANNs) which were inspired by
the inner mechanics of the human brain, specifically the
underline interconnected networks of neurons, are a type of
machine learning technique which convert input data into
output by employing non-linear transformations. ANNs can
be roughly grouped by the number of layers that make up
their architecture (excluding input layer), into textitshallow
and deep [97]. Although there exist no strict definitions for
them, a shallow ANN typically has one to two layers, while
deep ANNs can have hundreds [98]. With the wide adoption
of deep ANN architectures in various fields (e.g. computer
vision, pattern recognition, . . . ), new specialized architectures
have emerged.

Deep NNs can be further classified based on the way that
they view the data and the classification problem, as given
by Hodo et al. [40]. These two groups are discriminative
and generativemodels. Discriminative models are supervised
methods tasked with separating the data into classes by focus-
ing on the decision boundary of the classes and calculating the
conditional probability of the class feature, with respect to the
data features (P(Y/X)). Prominent examples include:
• Recurrent Neural Network (RNN) - as a discrimina-
tive model, an RNN can be useful when the information
maintains some temporal relation to its previous states.

• Convolutional Neural Networks (CNN) - is a type
of space-invariant Multilayer Perceptron, inspired by
the interconnections present in the visual cortex of the
brain. It is comprised of multiple hidden layers such
as: convolutional layers, pooling layers, fully connected
layers and normalization layers.

On the other hand, generative models are considered to
be unsupervised, as they do not require labeled data, and
instead calculate the joint probability of data and class fea-
tures (P(X,Y)) and build models that best describe each class
separately. Some prominent examples of such models are
described below.
• Deep Auto Encoder (DAE) - is a type of NN that is
used to learn efficient data coding in an unsupervised
manner. Typically, it includes an input layer, multiple
hidden layers and an output layer of the same size as
the input layer, where the input data is reconstructed.

• Deep Boltzman Machine (DBM) - produces binary
results by relying on stochastic units and energy states.
A restricted Boltzmann machine (RBM) is comprised of
a visible input layer and a single hidden layer. By stack-
ing multiple RBMs, so that the hidden layer of one
produces the input for the next, one can build a DBM.

• Deep Belief Network (DBN) - are networks of inter-
connected layers comprised of multiple stacked RBMs.
Again, connections between nodes of the same layer
are not allowed, similar to DBMs. Training a DBN in
an unsupervised manner requires for each layer to be
greedily trained.

• Recurrent Neural Network (RNN) - is a type of deep
NN that can be trained either as a supervised or unsu-
pervised model. The main difference between RNN and
a deep Multi-Layer Perceptron, would be that the RNN
maintains an internal memory of previous calculations
performed inside the network. Hidden layers of RNN
‘feed ’information that is used for the next iteration of
the algorithm.

Multiple deep learning solutions have been pro-
posed for application in the field of Network Foren-
sics in recent years [5], [52], [64], [82], [100], [114], [118].
Yin et al. [114], proposed a Recurrent Neural Network
based IDS which outperformed other classifiers used for
the same purpose. Similarly, Kang and Kang [52], proposed
an IDS for a vehicle network capable of performing in
real-time, with an average accuracy of 98%. In work by
Zhao et al. [118], a Deep Belief Network was first applied,
to reduce data dimensionality, followed by the training of
a probabilistic neural network. Shone et al. [100] com-
bined non-symmetrical auto-encoders with a random forest
classifier to classify network traffic from the KDD99 and
NSL-KDD dataset, with results indicating an increase in
accuracy, when compared to DBNs.

Niyaz et al. [82] used stacked auto-encoders in their imple-
mentation of a DDoS detection system for software defined
networks. The multiple auto-encoders were greedily trained
layer-by-layer, with the output of one layer being the input
of the next. Then the entire network was fine-tuned as
a classifier. Reported accuracy for distinguishing between
normal and attack traffic was 99.82%, outperforming other
classification methods such as shallow NN, while individ-
ual types of DDoS attacks were identified with an accu-
racy of 95.65%. Lotfollahi et al. [64] used a combination
of a one-dimensional CNN and stacked auto-encoders for
automatic feature extraction and classification of network
traffic, achieving both application identification and traffic
characterization in either encrypted or unencrypted traffic.

VII. INHERENT CHALLENGES IN NETWORK FORENSIC
INVESTIGATIONS OF IOT BOTNETS
The process of designing IoT protocols and sensors and the
lack of standards are the main reasons why the IoT is an
easy target for botnets. This gives rise to many challenges
for experts who intend to investigate such security incidents.
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TABLE 4. Most vulnerable communication Layers in IoT systems.

FIGURE 4. Architecture of IoT [67], [92].

We discuss the main challenges that could inhibit network
forensic investigations of botnets in IoT systems, as explained
in the following section.

• Interoperability- there are constraints in the interoper-
ability of the IoT. As no single set of standards and spec-
ifications have been widely accepted [19], [46], every
vendor implements their IoT products differently, choos-
ing technologies, operating systems and protocols to
serve the needs of their products, which often require
a Sensor Bridge to co-exist, as shown in Figure 4. More-
over, we describe in Table 4 the most vulnerable com-
munication layers and protocols in this architecture. It is
obvious that the lack of specifications causes problems
to the development of a single forensics solution that is
capable of handling a family of IoT systems and devices.

• Availability- another harmful consequence of an IoT
Botnet, is the depletion of the already constrained
resources of deployed devices. As such, IoT-enabled
services may exhibit a drop in performance or become
entirely unavailable, which can be considered as a type
of DoS attack. As such, businesses and industries relying
on the constant function of these devices, or even the
manufacturers that produced the hijacked IoT devices
can be considered liable for any loss of service [46].

• Cloud storage of information- locating the evidence in
an IoT Botnet-related security incident can also be chal-
lenging. In most implementations of the IoT, low-power
physical devices are used as actuators, with local hubs
and network nodes employed to gather and transport
the collected information to a central Cloud Service
provider. Through these Cloud Service providers, IoT
services become available to users [41], as shown in
Figure 1. With this scheme in mind and knowing that
actuators (the intelligent “things”) are equipped with a
limited amount of memory and power, data is quickly
gathered and transferred to the Cloud, freeing up space
in the actuators for further tasks to take place. As such,
evidence will most probably be found in the Cloud,
which introduces a new family of challenges to forensic
investigations, among which jurisdiction limitations and
conflicting laws are two prominent examples.

• Forensic soundness- with the IoT designed to work
in an autonomous and ubiquitous form, following a
forensically sound process becomes a challenge [22].
Preserving the scene of a crime where IoT devices are
involved is challenging, as data is in constant motion and
the scope of investigation is not clear. There is a lack
of documented methods and reliable tools for collecting
evidence in a forensically sound manner. As most IoT
devices don’t retain metadata that can indicate alter-
ations or manipulations of files, and the time when these
changes occurred, correlation of evidence between IoT
devices is challenging. Finally, without a forensically
sound monitoring system, attribution becomes difficult.

• BigData characteristics generated from IoT systems-
some of the challenges present in investigating the IoT,
coincide with the main characteristics of Big Data,
indicating that the latter technology could be a possi-
ble approach of handling these challenges [19]. These
Big Data characteristics are, Variety, Velocity, Volume,
Value and Veracity as discussed below.

F Variety- data produced by the IoT may exist in
either structured (database tables), semi-structured
(XML, JSON) or unstructured (audiovisual files)
form, depending on the type of device in
question [19], [22]. At the same time, data
produced by a single IoT system may be themati-
cally heterogeneous. For example, in an automated
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home, a thermostat and some motion sensors can
be connected to each other, so that when the motion
sensors detect motion, the thermostat sets the room
temperature to a preset value. Thus, with the possi-
bility that in a single IoT system there can exist any
combination of heterogeneous devices (Web cam-
eras, digital locks, routers, thermostats), produced
data, and thus also evidence, will vary in format,
making it necessary for a process capable of scan-
ning diverse data and locating traces a necessity.

F Velocity- the increases in Internet speed over
the years, ensures that communications are nigh-
instantaneous, which functions as one of the
enabling factors of the IoT. This translates to a
large number of constantly functioning, small sen-
sors and actuators (’smart things’) sending collected
data and feedback, at high speeds, to the service
providers (usually located in the Cloud), which in
the context of IoT botnets means that such botnets
will possess an army of high-speed and always
available bots. With data and evidence produced
fast, and having a relatively short life in the net-
work, a need to analyze data in real time (or as near
as possible) is essential, if the results produced by
investigations are to be of any real value.

F Volume- with more than 8 billion IoT devices
deployed in 2017 and projections for the near future
rising even higher, it is evident that data produced
by the IoT will also skyrocket. As such, having
many small embedded devices in constant use pro-
duces huge quantities of data that, in the context
of forensics (regardless of the type of investiga-
tion), will inhibit the effectiveness of investigations,
burying useful traces and evidence under a sea of
noise (in the form of collected data). On top of that,
increasing number of deployed devices equates to
an enhancement of numbers for potential hijacked
Bots, allowing adversaries to take advantage of the
sheer volume of data that the IoT can produce
and thus launch massive and reliable Cyber-attacks
(examples Mirai [59]).

F Value- with IoT introduced in several sectors
of everyday life, such as home automation,
the health domain and more, concerns about pri-
vacy arise [19], [22], as sensitive information is
recorded, exchanged, maintained and stored by the
IoT devices and their service providers. As such,
forensics investigations need to be conducted with
a level of transparency and steps must be taken to
ensure that private data are not exploited.

F Veracity- deployed in a dynamic world, it is
easy for environmental conditions to change
inexplicably, causing the validity of recordings
from finely calibrated IoT sensors to be faulty
and producing inaccurate, low quality or noisy
data [19]. As such, identifying such problems with

the collected data is a challenge, as ‘contaminated’
data could lead to false results in an investigation.

VIII. FUTURE DIRECTIONS OF RESEARCH
In this section, we discuss research directions for future work
based on existing challenges of investigating botnets using
forensics mechanism. Having reviewed some of the work
conducted in the discipline of network forensics, initially
with regards to botnets in general, and then narrowing down
our search for solutions applied to the Internet of Things,
as explained in the following section.

• Honeypot development- With some work already done
in the field of building convincing Honeypots specifi-
cally targeting IoT-related adversaries [34], [84], [110],
it is expected that further advances will be made.
Some ways of enhancing Honeypot implementations
might include, making them more resilient against
anti-forensics mechanisms, increasing the number of
supported protocols thus increasing the range of mim-
icked IoT devices and handling the massive quantities
of incoming traffic which could be generated by an IoT
Botnet.

• Network Flow Analysis- Although Network Flow
Analysis can be implemented in the context of IoT
Botnet investigations [29], such methods are still being
developed. More work is needed in this area, as it is an
easy to implement and non-intrusive way of utilizing
real world data, without the fear of privacy violation,
it requires less space for saved data compared to other
solutions DPI) and is resilient to encryptions of the
payload.

• Providing Forensic Soundness- Having presented a
number of diverse ways by which researchers conducted
network forensic investigations of botnets (including
IoT botnets), one topic that wasn’t discussed much, was
proving that the process they provided was forensically
sound. In other words, a forensic process that is used by
law enforcement, needs to produce results that would
be admissible in a court of law [22]. As such, in the
future, steps need to be taken in order to consider how
new techniques can be enhanced to produce acceptable
forensic results.

• Dealing with Variety, Velocity and Volume of IoT
data- Although the field of network forensics as applied
to the Internet of Things is still in development,
by reviewing research done on this conjunction of fields
(network forensics of IoT-botnets) it was observed that
not much emphasis was given on dealing with the
following problematic issues: its polymorphic nature,
the sheer quantity and speed with which information is
recorded and transmitted. These characteristics of the
IoT make applying network forensic techniques estab-
lished in conventional IT systems inapplicable, thus
directing future research towards dealing with these
challenges [19].
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IX. CONCLUSION
In this review paper, we explored the effects that the expand-
ing IoT domain has had in Network Forensic Investigations of
IoT botnets. We initially provided background of the Internet
of Things, botnets and Digital Forensics, as a foundation.
We give a new definition for the IoT, which places the inter-
connection of “Things ”and their service-like functionality in
the forefront.We argue that Deep Learning is a viable solution
to handling the types of data produced in the IoT, and thus
discuss its applicability in Network Forensics. Furthermore,
we provided a taxonomy of Network Forensic mechanisms
which could be applied to botnets in both non-IoT and IoT
environments, including their strengths and weaknesses. The
Network Forensic mechanisms that were discussed, were
Honeypots, Network Flow Analysis, Deep Packet Analysis,
Attack Recognition, Visualization of Network Traffic and
Intrusion Detection Systems. Several challenges were pre-
sented, including regional jurisdiction issues derived from
Cloud computing, providing forensics soundness from short
lived traces and evidence and interoperability issues due to
lack of standards. Finally, future directions for research in
the area were discussed. Some such directions were: devel-
opment and improvement of Honeypots and Network Flow
analysis, handling vast quantities of high-speed and hetero-
geneous data produced by the IoT, and proving that any pro-
duced solutions are Forensically sound and results produced
would be admissible in a court of law.
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