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ABSTRACT Graph learning often boils down to uncovering the hidden structure of data, which has been
applied in various fields such as biology, sociology, and environmental studies. However, distributed sensing
in realistic application often gives rise to spatiotemporal signals, which can be characterized through new
tools of graph signal processing as a time-varying graph signal. It calls upon the development from static
graph signal studies to the joint space-time analysis. In this paper, we study the problem of learning graphs
from time-varying graph signals. Based on the correlated properties in observed signals, a dynamic graph-
based model is first presented, which particularly takes into account space-time interactions in signal repre-
sentation. Considering the case that the time correlation pattern is unavailable, the graph learning problem is
cast as a joint correlation detecting and graph refining problem. Then it is solved by the proposed correlation-
aware and spatiotemporal smoothness-based graph learning method (CASTS), which novelly introduces
the spatiotemporal smooth prior to the field of time-vertex signal analysis. By promoting such smoothness
in each learning steps, the graph learning accuracy can be efficiently improved. The experiments on both
synthetic and real-world datasets demonstrate the improvement of the proposed CASTS over current state-of-
the-art graph learningmethods, andmeanwhile show the capability of dynamic prediction in climate analysis.

INDEX TERMS Graph learning, time-varying graph signal, spatiotemporal smoothness, correlation,
space-time interaction.

I. INTRODUCTION
With the explosive growth of dataset in a variety of applica-
tions, fromfinance and biology to social and sensor networks,
spatiotemporal data often emerges as long time series mea-
sured and stored over a certain spatial region. For instance,
environmental sensor networks are often deployed in a cli-
mate zone. The geographical location of distributed sensors
leads to spatial correlation. Meanwhile, real-time distributed
sensing in days, months and years, collects a large number
of time series which exhibit time dependence of sensors in
dynamic evolution. Nevertheless, though the analysis of spa-
tiotemporal data has been successful in sociology [1], brain
imaging [2] and climate researches [3], it is still a challenging
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problem due to the correlation properties and complex
space-time interactions.

A flexible way to characterize the spatiotemporal data liv-
ing on an irregular domain is to use a graph [4], referred to as
time-varying graph signals. In recent years, graph signal pro-
cessing (GSP) [5], [6] provides a new engineering paradigm
for processing and analyzing signals on graphs, by utilizing
graph Laplacian matrices to deal with multiple tasks such
as graph filtering [7], [8], graph signal compression [9], [10]
and sampling and reconstruction on graph signals [11], [12],
etcetera. These researches in GSP have taken full advan-
tage of graph structure which is prior known or pre-defined,
e.g., road connection of transportation network [5], [13] or
geographical k nearest neighbor (KNN) models [11], [14].
However, in many cases the graph structure itself may be

unknown, which significantly raises demands for efficient
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methods to reveal the underlying mechanism in real-world
complex systems. For example, air temperature provides
valuable information for monitoring climate dynamics. Due
to a potential relationship between geographical locations,
the temperature in neighboring area interacts with each other
and exhibits similar variation tendency when affected by
atmospheric circulation or ocean currents. Hence, it is critical
to extract the structural information from collected data for
weather condition forecasting and advanced decisionmaking.
For another example, in water evaporation sensor network,
graph structure is not readily available nor easy to define.
In order to determine the optimal deployment of sensor nodes
and complete further processing such as adaptable sampling
and fast inpainting, it also calls for graph learning method
to provide some useful information. Therefore, this paper
focus on learning hidden graph from time-varying graph
signals, i.e., to recover the graph Laplacian matrix from the
observations.

A. RELATED WORKS
In the literature, since the correlation among signals may
fail to capture the causality relations, most efforts in early
researches have been dedicated to graphical model estima-
tion [15]–[18], where a sparse precision matrix (SPM) is
recovered to reflect the relationship between signals. In [15],
Dempster firstly proposes a method that regulates the SPM
with sparsity by forcing the off-diagonal entries with zeroes.
Then a widely-used method of recovering SPM is Graphical
Lasso [16]. Improvements of the Graphical Lasso in compu-
tational efficiency are gradually discussed in [17] and [18].

Nowadays the emerging GSP provides a strong impulse
to discover new techniques for inferring the graph topol-
ogy. Several GSP-based studies aim to recover the adja-
cency or Laplacian matrix by postulating the sparsity [19]
or smoothness of signals. They extend the classical methods
on SPM to combinatorial graph Laplacian (CGL) learning
and achieve satisfying results. Lake and Tenenbaum [20]
address the adjacency matrix learning by introducing loga-
rithmic function in optimization to force sparse connectivity.
To avoid the above full-rank restriction of graph Laplacian
matrix, Dong et al. [21] relax the constraints and propose
to learn a valid CGL under the smoothness prior. Partic-
ularly, they present a smooth signal representation that is
consistent with the given statistical prior to latent variables.
Later, a generalized graph learning framework is discussed
in [22], where the optimization problem is reformulated as
an l-1 minimization with an additional penalty term on node
degrees and is solved by GSP Toolbox [23]. Then, alternative
approaches [25], [26] make an assumption that the observa-
tion is a GaussianMarkov RandomField (GMRF) [24] whose
precision matrix is graph Laplacian. Egilmez et al. [25] for-
mulate the graph learning problem as recovering the preci-
sion matrix in different types of graph Laplacian given some
structural constraints. Rabbat [26] studies a threshold-based
estimator for inferring a graph, and meanwhile provides the-
oretical results on the reconstruction error for the case that

the graph is sparse. Since real-world data tend to be smooth
on graph rather than strictly bandlimited, smoothness-based
graph learning methods continue to receive a lot of interest.
Chepuri et al. [27] simplify the graph learning problem to
propose an edge selection mechanism based on the smooth-
ness assumption, while Kalofolias et al. [28] learn a time-
varying graph by imposing a new prior that graph edges
change smoothly in time.

There are a few recent researches that aim to learn graph
topology from signals based on the diffused model [29]–[32]
and casual model [33]–[35]. Segarra et al. [29] focus on
identifying graph shift operators given the only eigenvectors
of shift operators. The eigenvalues are estimated from the
covariance matrix of stationary signals that are postulated a
diffusion process on the graph. Pasdeloup et al. [30] describe
the graph learning problem in a similar way as [29], yet
through a different matrix selection strategy. To overcome
the stationary limitation, Shafipour et al. [31] explore the
problem of graph inference from non-stationary graph sig-
nals. Thanou et al. [32] propose a graph learning method,
under the assumption that graph signals are generated from
heat diffusion processes, by imposing a Laplace prior to
control the sparsity. Another works in [33]–[35] concentrate
on estimating asymmetric adjacency matrix which corre-
sponds to directed graphs. In [33], Mei and Moura propose
an algorithm for estimating the adjacent matrix that describes
the dependence among time series. Authors in [34] utilize a
structural equation model (SEM) to capture causal relation-
ships, and meanwhile jointly track the signal state and graph
structure through recursive least-squares estimator. Similar to
the SEM, Shen et al. [35] propose to model nonlinear depen-
dencies of signals based on a structural vector autoregressive
model (SVARM), in which an efficient regularized estima-
tor is developed to infer a sparse graph topology. However,
the aforementioned graph learning methods are not specifi-
cally designed for time-varying graph signals, and hence do
not explore space-time interaction and correlated property of
spatiotemporal signals to facilitate graph learning procedure.

B. CONTRIBUTIONS
In this paper, to learn the underlying structure from
time-varying graph signals that are prevalent in real-
world applications, a correlation-aware and spatiotemporal
smoothness-based graph learning method is proposed. The
main contributions of this paper are summarized as follows.
1) To the best of our knowledge, we first present a

dynamic graph-based model that integrates the property
of space-time interactions into a linear dynamic system
for comprehensive signal representation. Specifically,
by exploiting the correlated properties in both space and
time dimension, spatiotemporal smoothness is novelly
introduced to the field of time-vertex signal analysis.

2) Under the dynamic model, graph learning problem is
formulated as an optimization problem based on correla-
tion and spatiotemporal smoothness with respect to the
graph structure, which is then solved by the proposed
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Correlation-aware and Spatiotemporal Smoothness-
based graph learning method (CASTS) as an application
of the block coordinate descent scheme. Through simul-
taneously capturing the dependencies among time series
and enforcing the spatiotemporal smoothness property
of graph signal in each iteration steps, it brings improve-
ment on graph learning accuracy.

3) We provide performance analysis of the proposed
method on both synthetic and real-world datasets.
Specifically, we perform the visual and quantitative
comparison for assessing the accuracy of the graph
topology estimation. In addition, extensive tasks on real-
world datasets demonstrate the effectiveness of dynamic
graph-based model and the superior learning perfor-
mance of the proposed CASTS over the state-of-the-art
graph learning methods.

The remainder of this paper is organized as follows.
In Section II, a brief overview of the notation and the basics
including graph Laplacian and smooth graph signals are
reviewed. In Section III, a dynamic graph-based model is
proposed and spatiotemporal smoothness of time-varying
graph signal is introduced. In Section IV, we formulate the
graph learning problem as an optimization problem, and pro-
pose CASTS to alternatively solve the optimization problem.
The performance of the proposed CASTS is evaluated and
compared with baseline methods on both synthetic and real-
world datasets in Section V. Section VI concludes the whole
paper.

II. NOTATION AND PRELIMINARIES
A. NOTATIONS
Throughout the paper, the lowercase boldface letters,
e.g., x and the uppercase boldface letters, e.g., X, denote vec-
tors and matrices, respectively. Given a vector x, xi denotes
the ith entry of x, and 1 and 0 denote the constant one and
zero vectors. For a matrix X, Xij denotes the element on
the ith row and jth column. An undirected and weighted
graph is denoted as G = (V, E,W), where V is the set of
vertices with |V| = N and E is the edge set of the graph.
The matrix W is the weighted adjacency matrix, with Wij
denoting the positive weight of an edge connecting vertices
i and j. Otherwise, Wij = 0 if there is no edge. For a
vector x ∈ RN , diag (x) denotes the diagonal matrix with
its diagonal elements {x1, . . . , xN }. For a matrix X ∈ RN×M ,
the vectorization, the trace, and the Frobenius norm of matrix
are denoted as vec (X), tr (X), and ‖X‖F , respectively. In
addition, ⊗ is the Kronecker product operator.

B. GRAPH LAPLACIAN
The graph-based model in this paper focuses on an N -vertex,
undirected, weighted graph G = (V, E,W) with positive
edge weights. The CGL of G is defined as L = D−W, where
D denotes the degree matrix of G which is a diagonal matrix
with entries diag(D)i =

∑N
j=1Wij and (D)ij = 0 for i 6= j.

Based on the definition above, the set of CGL matrices can

also be written as

LN =
{
L ∈ RN×N

|L � 0,Lij=Lji≤0, i 6= j, and L · 1=0
}
.

(1)

The CGL in (1) is a real symmetric positive semidefinite
matrix. Thus, the eigendecomposition of CGL can be repre-
sented as L = U3UT , where3 = diag (λ1, λ2, . . . , λN ) and
U = [u1,u2, . . . ,uN ] are the matrix of nonnegative eigenval-
ues and orthogonal eigenvectors, respectively. The ascending
array of eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN are called as graph
frequencies in the graph spectral domain. The eigenvectors
associated with low frequencies indicate the slow variation
of graph signals across the graph, while the ones associated
with high frequencies imply a rapid variation of signals on
graph. In particular, zero value appears as an eigenvalue
(i.e., λ1 = 0), whose multiplicity equals to one showing that
the graph contains only one connected component.

C. GRAPH LEARNING FROM SMOOTH GRAPH SIGNALS
With the eigenvalues of CGL indicating the frequency, the
graph Fourier transform of graph signal x is defined as
x̂ = UT x. The frequency components corresponding to
smaller eigenvalues (i.e., frequency within [0,w) with cut-off
frequency w) are low frequency components, which brings
the concept of bandlimited graph signals in GSP. However,
the real-world data tend to be smooth, rather than strictly ban-
dlimited. Thus, smoothness-based theory extends the studies
on bandlimited graph signals to the smooth graph signals.

A static graph signal x over a G is defined as a vector
mapping from the graph vertex domain to the real number
field, i.e., x : V → RN , such that x (i) denotes the value
of graph signal on the vertex i. When it comes to graph
learning problem, the smooth property is widely used as prior
information. The smoothness of graph signals is a qualitative
characteristic that expresses how frequently a graph signal
varies with respect to the underlying graph [6]. In GSP,
the smoothness of graph signal x is quantified by graph
Laplacian quadratic form [5] as

xTLx =
∑
(i,j)∈E

Wi,j[x (j)− x (i)]2, (2)

which measures the total variation of the connecting vertices.
The xTLx is small when a large weight of edge connects the
two vertices whose values are similar. In general, the smaller
value of xTLx, the smoother the signal on graph.
For a smooth graph signal x that is assumed to yield

an attractive GMRF, smoothness-based (static) graph learn-
ing problem can be expressed as the following general
formulation

min
W∈W

‖W ◦ Z‖1,1 + S (W) , (3)

where Zi,j =
∥∥xi − xj

∥∥2
2 and ◦ is the Hadamard product.

The first term corresponds to tr
(
XTLX

)
in a matrix form

of (2) and W denotes the set of valid adjacency matrices
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(symmetric and positive). The second term, penalty func-
tion S (W), determines the sparsity of learned graph structure.
For example, Kalofolias [22] defines

S (W) = c1T log (W · 1)+ d ‖W‖2F , (4)

with regularization parameters c and d .While Dong et al. [21]
impose ‖W‖1,1 = tr (W) = N and propose

S (W) = c‖W · 1‖2 + c ‖W‖2F . (5)

The sparsity of graph in the former method is controlled by
the logarithmic term in (4) which ensures the degree of each
vertex is not empty, while the latter one penalizes the degree
of vertices in (5). A suitable choice depends on the features
of data and the application.

FIGURE 1. The time-vertex analysis of time-varying graph signal.
(a) Spatial correlation described by a graph. (b) Time correlation in one
graph vertex. (c) Time-varying graph signal. Edges connecting the vertices
at each time instant denote the spatial correlation represented by solid
lines. Time-dependent processes where edges connecting at different
time instants are shown by arrow lines.

D. CORRELATION OF TIME-VARYING GRAPH SIGNALS
As depicted in Fig. 1, spatiotemporal data can be viewed as
time-varying graph signals living on a graph of the obser-
vations with edges labeling the intrinsic relationship. It is
pointed out in [36] that nearby values in both space and time
directions tend to be more similar than those far apart. This
means the existence of a strong correlation in time-varying
graph signals which are not just the static graph signals
stacked into a sequence. These prevalent properties in time-
varying graph signal are stated as follows.
• Spatial smoothness: At each time instant in the spatial
dimension, time-varying graph signals in geographical
neighbors are close to each other.

• Temporal smoothness: For each observation site in the
temporal dimension, influenced by the temporal corre-
lation, the observed value varies smoothly over time.

To be noted, spatial smoothness prior has been applied in
many graph learning studies including [21], [22] and [27].
There are a few works, such as [11], [28], learning graphs
based on temporal smoothness. By combining the above two
types of smoothness together, we introduce spatiotemporal
smoothness in the following assumption.
Assumption 1 (Spatiotemporal smoothness): The tempo-

ral evolution of time-varying graph signal is smooth on the
graph topology.

The detail of spatiotemporal smoothness is described in
Definition 2, which can bring benefit to graph learning.

III. SPACE-TIME REPRESENTATION FOR
TIME-VARYING GRAPH SIGNALS
A. DYNAMIC GRAPH-BASED MODEL
A time-varying graph signal can be expressed by a matrix
X = [x1, x2, . . . , xM ] ∈ RN×M , where N is the number of
the observing sites and M is the number of the time instants.
We consider the following dynamic model for the measured
signal

xt = Uht + nt , (6)

ht = Aht−1 + vt . (7)

For the graph vertex domain, the Eq. (6) is an observation
model which maps the latent state space into the observed
space. The observation and latent variable at time instant t
are respectively denoted as xt ∈ RN and ht ∈ RN . The
eigenvector matrix U ∈ RN×N , which can be interpreted as
the graph Fourier basis for representing graph signal [37],
is selected as representation matrix. It linearly relates these
two variables with graph structural information. In addition,
we assume that the observation noise nt follows amultivariate
Gaussian distribution with zero mean and covariance σn2IN ,
which can be expressed as

nt ∼ N
(
0, σn2IN

)
, (8)

For the time domain, we add Eq. (7) to characterize
the temporal evolution by imposing a first-order Gaussian
Markov autoregressive process on latent variable. Concretely
speaking, the state transition matrix that is applied to the
previous state ht−1 is denoted as A = UTRU, where R =
diag (c1, c2, . . . , cN ) ∈ RN×N is the time correlation matrix
and the diagonal element ci is the correlation coefficient in
ith observation site with value ranging from 0 to 1. The
parameter c is similar to the Pearson correlation coefficient
that describes the correlation of data with a delayed copy
(one-time lag in our model) of itself. Besides, in real-world
applications such as sensor networks, due to different geo-
graphical locations of observation sites, the collected data
may exhibit different correlation property. To generalize our
model that can characterize multiple types of time-correlated
data, we set distinct ci in R. Observing that the transition
matrix A is a space-time coupling term which encodes both
spatial and temporal information through U and R, respec-
tively. Furthermore, the process variable vt is assumed to
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follow a multivariate Gaussian distribution with precision
matrix defined as the eigenvalue matrix 3 of the graph
Laplacian L, i.e.,

vt ∼ N
(
0,3†

)
, (9)

where3† is theMoore-Penrose pseudoinverse of3. Together
with the definition of U as the representation matrix, the
above assumption on vt directly links the graph structure
to the temporal evolution of graph signals, which offers a
way to model the structured data. Meanwhile, the assumption
implies that the energy of weighted difference signal tends
to lie mainly in the low frequency and thus it promotes the
spatiotemporal smoothness for the signal on the graph, which
is shown in the next section.

Notice that the above linear dynamic model in (6) and (7)
may be regarded as analogous to the equations of the Kalman
Filter. The difference between the two models is twofold.
First, at each discrete time increment, we postulate a Gaussian
Markov autoregressive on latent variable, which links the
dynamics of time-varying graph signals in the time domain
with their spatial structure in the graph vertex domain. That
is to say, spatial and temporal processes closely interact with
each other, which is shown in the following derivation. Sec-
ond, the Kalman filter works with prior known observation
model and state transition model, while the representation
matrix U in (6) and transition matrix A in (7) are unknown,
leading to an additional estimation procedure for further
processing.

To intuitively understand the space-time process inter-
acting dynamics in the proposed model, we first introduce
weighted difference signal. Utilizing the orthogonality of U,
the tth component is given as

dt = xt−Rxt−1 = UAht−1+Uvt+nt−RUht−1−Rnt−1
= Uvt+nt − Rnt−1, (10)

with the first term defined as d1 = x1. Based on (8) and (9),
the conditional probability of dt given vt and the probability
of dt are given as

dt |vt ∼ N
(
Uvt , σn2

(
IN + RRT

))
, (11)

dt ∼ N
(
0,L†

+ σn
2
(
IN + RRT

))
, (12)

where L† is the pseudo-inverse of L and it admits the follow-
ing eigendecomposition L†

= U3†UT .
As shown in Eq. (12), in a noise-free scenario where

σn = 0, the weighted difference signal dt follows a degen-
erate multivariate Gaussian distribution where the precision
matrix is simplified as graph Laplacian. Thus, dt can be
viewed as GMRF with respect to graph G, which establishes
a connection between temporal dynamics and the spatial
structure. In other words, a probabilistic interpretation of the
graph learning problem can be summarized as recovering the
GMRF model from temporal evolution of graph signals.
In the presence of noise, we see from Eq. (12) that, graph

topology recovery can be viewed as learning the principal

components of the covariance of dt under a Gaussian prior
of vt . Different from smooth graph-based model, the pro-
posed model characterizes the space-time property, which is
proved to favor the spatiotemporal smoothness in Section IV,
thereby extending the static signal analysis to the time-vertex
one. More importantly, such a dynamic representation has the
capability to deal with prediction tasks in the realistic sensor
network, which will be shown in the simulation part.

B. SPATIOTEMPORAL SMOOTHNESS PROPERTY
With special consideration of space-time interactions in sig-
nal representation, we now describe and evaluate the temporal
variation of graph signals.
Definition 1 (Weighted Difference Operator): Temporal

evolution of observation X can be expressed by a weighted
difference operator D (X) = X − RXB, where R is the time
correlation matrix and B is the shift operator defined as

B =



0 1
0 1

0
. . .

. . . 1
0


M×M ,

(13)

and weighted difference signal equals to

D (X) = [x1, x2 − Rx1, x3 − Rx2, . . . , xM − RxM−1] .

It can be seen in Definition 1, there exists multiple inter-
pretations for given different R, e.g., when R = IN , the tem-
poral difference of graph signals xt − xt−1 can be obtained.
As an extreme case, when given time correlation R = 0,
weighted difference signal degenerates to the original signal.
Incorporating the notion of time dependence, the smoothness
property evaluated in both graph vertex and time domain can
be mathematically generalized from the Eq. (2).
Definition 2 (Spatiotemporal Smoothness): It measures

the total variation in weighted difference of graph signal X
with respect to the graph structure.

M∑
t=1

dt TLdt = tr
(
D (X)TLD (X)

)
. (14)

Spatiotemporal smoothness in (14) generalizes the graph
Laplacian quadratic form (2) via defining the weighted dif-
ference operator for measuring both temporal and spatial
smoothness. The small value of (14) implies that graph signal
varies smoothly on the graph over time. To be noted, the trace
term encodes the information on spatial and temporal struc-
tures ofX in graph LaplacianL andR, respectively. Although
spatial smoothness has been widely used as a meaningful
prior, it does not emphasize the temporal dynamics. This is
where the time correlation matrix compensates. Moreover,
according to the finding in [11], weighted difference sig-
nals, instead of signals themselves, exhibit better smoothness
property which can be promoted through learning procedure
for an accurate graph topology inference. The improvement
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in graph learning accuracy is presented in the experimental
section.

IV. GRAPH LEARNING METHOD BASED ON
CORRELATION AND SPATIOTEMPORAL
SMOOTHNESS (CASTS)
In this section, we propose a graph learning method by intro-
ducing the spatiotemporal smoothness prior to the field of
time-vertex signal analysis and jointly applying the correlated
property of time-varying graph signals. In Subsection A,
we formulate the graph learning problem as a nonconvex opti-
mization problem. After which, an optimization algorithm to
the proposed problem, CASTS, is presented in Subsection B
based on block coordinate decent scheme. We also provide
convergence analysis to the proposed CASTS.

A. PROBLEM FORMULATION
As mentioned in Section III-A, time correlation of graph
signals is represented by the matrix R with correlation coef-
ficient of the observation site on its corresponding diagonal
position. In practice, prior information of correlation pattern
is unknown or not accurate enough due to the significant
data loss. For example, data from adjacent sensor nodes in
adjacent time slots are dropped together due to the commu-
nication congestion or hardware conditions (e.g., sensors are
damaged or run out of energy) [38]. Hence, in this section,
we study the case that the correlation matrix R is unknown.
According to (10), given the weighted difference signal dt

and the distribution of vt , the maximum a posteriori (MAP)
estimation of vt by applying Bayes’ rule is written as

max
vt

p (vt |dt) ∝ p (dt |vt) p (vt) . (15)

Specifically, from the multivariate Gaussian distribution
shown in (9) and (11), the posterior probability of process
variable vt is proportional to (16)

log (p (dt |vt) p (vt))= log pE (dt−Uvt)+log pV (vt) , (16)

where pV (vt) represent probability density function (p.d.f.)
of vt , p (dt |vt) is the conditional p.d.f. of dt given vt , and
pE (dt − Uδt) = pE (nt − Rnt−1). According to (16) and
Gaussian probability distributions in (9) and (11), the MAP
estimate of (15) can be expressed as

vtMAP (dt) :

= argmin
vt

2 (− log pE (dt − Uvt)− log pV (vt))

= argmin
vt

(
−2 log e−(dt−Uvt )

TW−1(dt−Uvt )−α log e−vt
T3vt

)
= argmin

vt
2(dt − Uvt)TW−1 (dt − Uvt)+ αvt T3vt (17)

where scalable value (i.e., 2 in this case) is introduced for
the following approximation, W = IN + RRT and α is a
constant parameter proportional to the variance of noise σn2.
As we can see, (17) is a difficult problem as the objective

function involves the inverse ofW, which is hard to process in
the case of unknown R. To obtain an approximation of such

problem that is easier to solve, we introduce the following
inequality as

(dt − Uvt)TW−1(dt − Uvt) ≥ λmin
(
W−1

)
‖dt − Uvt‖22 ,

(18)

where λmin indicates the minimum eigenvalue of matrix.
As 0 ≤ c ≤ 1, the inequality 0 ≤ c2 ≤ 1 is satisfied. Due to
the diagonal matrix ofW, the minimum eigenvalue ofW−1 is
λmin =

1
2 when c

2 equals to one. Next, taking advantage of the
above property, the relaxation of the minimization problem in
(17) can be denoted as

min
vt
‖dt − Uvt‖22 + αvt

T3vt . (19)

Notice that in (19) the representation matrix U and the preci-
sion matrix 3 of the Gaussian distribution on vt come from
the graph Laplacian matrix. When the graph and correlation
matrix are unknown, Eq. (19) can be written as a joint opti-
mization problem of L, � and R in a matrix form

min
L,�,R

‖D(X−�)‖2F + αtr
(
D (�)TLD (�)

)
, (20)

where � = [ω1,ω2, . . . ,ωM ] is the main component of
graph signal X, with mth element denoted as ωm = Uhm.
The first term can be read as denoising inference which
finds � close to observation X. As proved in the following
Theorem, the second term is considered as the spatiotemporal
smoothness of � which is promoted by the proposed model.
Theorem 1: Assume graph signal xt and latent variable

ht follow the dynamic graph-based model in (6) and (7)
with process variable vt ∼ N

(
0,3†

)
, the proposed model

favors spatiotemporal smoothness of the main component �
in graph signals, which can be expressed as

M∑
t=1

vt T3vt = tr
(
D (�)TLD (�)

)
.

Proof: In a noisy case, where xt = ωt + nt , the second
term in minimization problem of (19) can be formulated as

M∑
t=1

vt T3vt =
M∑
t=1

(ht − Aht−1)T3(ht − Aht−1)

=

M∑
t=1

(ωt − Rωt−1)TU3UT (ωt − Rωt−1)

= tr
(
D (�)TLD (�)

)
.

Based on the Definition 2, the above expression denotes
the spatiotemporal smoothness of the main component � in
observationX, which is enforced by minimization procedure.
A similar observation can be derived as well in a noiseless
scenario. Recalling the smooth property of graph signal intro-
duced in Section III-B, we have that the proposed model
promotes spatiotemporal smoothness of graph signal in both
noisy and noiseless cases. Hence, we complete the proof.
Having given the above analysis, we will now formally

state the problem of interest.
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Problem 1: Given the observation X that are related to
the unknown main component �, determine the valid graph
Laplacian L and temporal correlation R such that the esti-
mation �̂ has the smallest estimation error, and meanwhile
�̂ is spatiotemporally smooth on the recovered graph.

Mathematically, by adding additional constraints on
Laplacian and time correlation, we propose to solve the prob-
lem (20) with the following objective function Q1 (L, �,R):

(P1) min
L,�,R

Q1 (L, �,R)

s.t. Q1 (L, �,R) = ‖D(�−X)‖2F
+ αtr

(
D (�)TLD (�)

)
+ β ‖L‖2F + γ ‖R‖

2
F ,

L ∈ LN , tr (L) = N ,

‖R‖1 ≤ 1, std (diag (R)) ≤ κ,

where α, β and γ are positive regularization parameters
corresponding to the three regularization terms. The trace
term induces the spatiotemporal smoothness discussed in
Definition 2, and the first Frobenius norm term controls the
off-diagonal entries in L, which affects the edge weight of
graph. The second Frobenius norm controls the value in
diagonal position of R. These three terms coincide with each
other since they both favor a sparse graph structure where
weighted difference signals are smooth. Furthermore, the first
constraint on L guarantees a valid Laplacian matrix and the
other trace constraint is imposed to avoid the trivial solution,
while the second constraints on R limit the value and the
variation of diagonal entries in R. The threshold κ is set
to control the variation of correlation coefficients among
different observations and the value depends on the property
of application data.

B. OPTIMIZATION ALGORITHM
The optimization problem (P1) is not jointly convex in
L,� andR. Therefore, CASTS is proposed to solve the above
non-convex problem through a block coordinate descent
scheme where, at each step, we optimize one block of coor-
dinate directions while holding all other blocks constant. The
iteration is shown as follows

1. L̂k , argmin
L
Q1

(
L, �̂k−1, R̂k−1

)
, (SL)

s.t.L ∈ LN , tr (L) = N .

2. �̂k , argmin
�

Q1

(
L̂k , �, R̂k−1

)
. (S�)

3. R̂k , argmin
R
Q1

(
L̂k , �̂k ,R

)
, (SR)

s.t.‖R‖1 ≤ 1, std (diag (R)) ≤ κ.

It is interesting to find that the problems of (SL) and (SR)
can be cast as constrained convex optimization problems,
and (S�) is an unconstrained one. By alternating among the
three steps, we can get the final solution of (P1). The details
are summarized in Algorithm 1.

Algorithm 1 : The Procedure of CASTS
Input: X, α, β, κ , stopping criterion.
1: Initialization: �0

= X, R0
= I, k = 1;

2: repeat
3: 1) Update Lk by (24)
4: 2) Update �k by (25) or Algorithm 2
5: 3) Update Rk by [42]
6: k = k + 1;
7: until Stopping criterion satisfied.

Output: Recovered signal �, learned graph L and R.

1) COMPUTATION OF THE GRAPH TOPOLOGY L̂k

As we can see, the (SL) is a strictly convex optimization
problem, since the Hessian matrix of the objective func-
tion is 2βIN which is positive definite. Besides, it is also
a quadratic program of L subject to Laplacian constraints,
which can be solved via alternating direction method of mul-
tipliers (ADMM) [39]. We reformulate the problem (SL) as

min
L
αtr

(
D (�)TLD (�)

)
+ β ‖L‖2F ,

s.t. L− Z = 0,

Z ∈ L∗ (21)

where Z is the auxiliary variables and L∗ is denoted as

L∗=
{
L|L�0,Lji=Lij ≤ 0, i 6= j, andL · 1=0, tr (L)=N

}
.

(22)

Since the graph Laplacian in (1) form a convex set and tr (·)
is a linear function, the overall L∗ is also a convex set. Then
the augmented Lagrangian of (21) is

Lρ (L,Z,P) = αtr
(
D (�)TLD (�)

)
+ β ‖L‖2F ,

+
ρ

2
‖Z− L‖2F + 〈P,Z− L〉, (23)

where P is the Lagrange multiplier and 〈·, ·〉 is the inner
product of matrices. As proved in [39], we use the following
formulas to update L, Z and P to find a saddle point for (23)

Lk+1 : =
ρZk + Pk − αD (�)D (�)T

2β + ρ
,

Zk+1 : =
∏
L∗

(
Lk+1 −

1
ρ
Pk
)
,

Pk+1 : = Pk + ρ
(
Zk+1 − Lk+1

)
, (24)

where ρ > 0 is the Lagrangian parameter and
∏
L∗

is the

Euclidean projection onto the set L∗.

2) COMPUTATION OF THE RECOVERED SIGNAL ω̂k

The optimal update for matrix�k is provided in the following
proposition.
Proposition 1: For the given graph Laplacian and time

correlation matrix, (S�) is an unconstrained and strictly

62378 VOLUME 7, 2019



Y. Liu et al.: Graph Learning Based on Spatiotemporal Smoothness for Time-Varying Graph Signal

convex optimization problem that admits a closed-form
solution

vec (�)=
[
TdTdT + αTd (IM ⊗ L)TdT

]−1
TdTdT vec (X) .

(25)

with

Td =



IN −R
IN −R

IN
. . .

. . . −R
IN


NM×NM .

Proof: Denoting the objective function in (S�) as f2 (·),
we first verify the convexity by judging whether it satisfies
second-order convexity conditions. For the convenience of
analysis in the following derivation, we introduce the prop-
erty of the vectorization operator, that is

vec (AXB) =
(
BT ⊗ A

)
vec (X) .

Then we have

tr
(
D(�)TLD (�)

)
= vec (�− R�B)T vec [L (�− R�B)]

=

[
vec (�)T − vec (�)T (B⊗ R)

]
·

×

[
(IM ⊗ L) vec (�)−

(
BT ⊗ LR

)
vec (�)

]
= vec (�)T [(IM ⊗ IN )− (B⊗ R)] ·

×

[
(IM ⊗ L)−

(
BT ⊗ LR

)]
vec (�)

= vec (�)T Td (IM ⊗ L)
[
(IM ⊗ IN )−

(
BT ⊗ R

)]
vec (�)

= vec (�)T Td (IM ⊗ L)TdT vec (�) .

Similarly, the first term in f2 can be denoted as

‖D (�− X)‖2F = tr
(
D(�− X)TD (�− X)

)
= vec (�−X)T TdTdT vec (�−X) ,

and problem (S�) can be equivalently written as

min
y

(
yT−vec(X)T

)
TdTdT (y−vec (X))+αyTGy= f̃2 (y) ,

where G = Td (IM ⊗ L)TdT ∈ RNM×NM , and y = vec (�).
The gradient of f̃2 (y) can be deduced as

∇ f̃2 (y) = 2TdTdT y− 2TdTdT vec (X)+ 2αGy.

Then the Hessian matrix of function f̃2 (y) can be derived as

∇
2 f̃2 = 2TdTdT + 2αG.

Observing that G is positive semidefinite due to the pos-
itive semidefinite matrix L and IM ⊗ L. Since TdT is a
invertible matrix according to its definition, for any nonzero
matrix x, TdT x 6= 0. Then, TdTdT is positive definite, and
thus Hessian matrix of function f̃2 is positive definite, which

confirms the strictly convexity of the problem (S�). Next,
by setting∇ f̃2 (y) to zero, the unique optimal solution vec (�)
can be obtained as (25). Then, the Proposition 1 is proved.
However, the unique solution involves calculating the

inverse of a matrix, which is computationally expensive. The
conjugate gradient method [40] can be applied to deal with
such problem iteratively. In each iteration, it determines the
dynamic stepsize and updates the next searching directions.
In particular, due to the quadratic property of the func-
tion f2 (�), the optimal stepsize at themth step can be decided
by exact line search [41] given as

min
τ
f2
(
�m
+ τ1�m) .

where τ and1�m are the stepsize and the search direction of
themth step, respectively. By taking derivative of τ and set to
zero, we have

0 =
∂f2 (�m

+ τ1�m)

∂τ
= tr

[(
1�m)T

∇f2
(
�m
+τ1�m)] ,

where the gradient of the function f2 (�) is

∇f2 (�) = γ�−X−(γR�− RX)B

− (Rγ�− RX)BT+(RγR�−RRX)BBT , (26)

where γ = αL + IN . As a consequence, the optical stepsize
can be obtained with the Fletcher-Reeves parameter given as
θ =

∥∥∇f2 (�m+1)∥∥2
F

/∥∥∇f2 (�m)
∥∥2
F . The detailed procedure

of the algorithm is listed in Algorithm 2.

Algorithm 2 : Method for Solving Subproblem (S�)
Input: X, Rk−1, Lk , α, β, K , error tolerance δ.
1: Initialization: �0

= 0; 1�0
= −∇f2

(
�0); m = 0;

2: repeat
3: 1) Dynamic stepsize selection:

4: τ = −
tr
{
(1�m)

T
∇f2(�m)

}
tr
{
(1�m)

T [∇f2(1�m)+2D(X)−2RD(X)BT ]
} ;

5: 2) Conjugate direction update:
6: �m+1

= �m
+ τ1�m;

7: θ =
∥∥∇f2 (�m+1)∥∥2

F

/∥∥∇f2 (�m)
∥∥2
F ;

8: 1�m+1
= −∇f2

(
�m+1)

+ θ1�m;
9: m = m+ 1;

10: until m = K or
∥∥1�m

∥∥
F ≤ δ

Output: Recovered signal �.

3) COMPUTATION OF THE TIME CORRELATION R̂k

Having obtained theL and� in previous steps, we now detect
the correlation coefficient of each observation site, denoted
by diagonal elements in R, based on Proposition 2.
Proposition 2: For detecting the correlation matrix R,

the problem (SR) is strictly convex with two convex
constraints.

Proof: Being prepared for the following analy-
sis, we utilize the function f̃3 (vec (R)) = f3 (R) with
z = vec (R). Similar to the derivation in Proposition 1 by
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FIGURE 2. The learned graph Laplacian matrices for the random geometric graph GRGG. The columns from the left to the right are the groundtruth
Laplacian, the Laplacians recovered by CASTS, GL-Sigrep, GGLS and GL-logdet. The rows from the top to the bottom are the learning results for different
types of graph signal in case(i), case(ii) and case(iii), respectively.

exploiting the properties of vec-operator, the gradient of f̃3
can be easily written as

∇ f̃3 (z)

= 2 (�B⊗ IN − XB⊗ IN ) (vec (X)− vec (�))

+ 2
[(
(�− X)BBT (�− X)T

)
⊗ IN

]
z

−α (�B⊗ L) vec (�)

−α (�B⊗ IN ) vec (L�)+2α
(
�B(�B)T ⊗ L

)
z+2γ z.

Further, the Hessian matrix of objective function f̃3 is

∇
2 f̃3 = 2

(
(�− X)BBT (�− X)T

)
⊗ IN

+2α
(
�B(�B)T ⊗ L

)
+ 2γ IN 2 .

According to the definition and properties of positive
semidefinite matrix, we have that(�− X)BBT (�− X)T

and �B(�B)T ⊗ L are both positive semi-definite. As the
last term 2γ IN 2 is positive definite, the Hessian matrix of f̃3 is
positive definite, then we have f̃3 is strictly convex, so it true
for objective function f3.

Since the estimation matrix R is diagonal in a constrained
convex optimization problem (SR) proved above, it is effi-
cient to recover the diagonal elements in R via the convex
optimization package CVX [42]. Finally, by solving the three
subproblems in (P1) alternatively, we can get the final optimal
solution within a few iterations. The stopping criterion could

be a maximum number of iterations K , or the change of the
objective function Q1 less than a threshold.
Convergence analysis: In minimization of a differentiable

function over a convex set and each subproblem attains
a unique minimization, a block coordinate descent algo-
rithm guarantees convergence to a stationary point [43], [44].
As shown in (P1), both set of L and R are convex set.
Also, the objective function is continuously differentiable
over such convex set. In addition, converge conditions (see
Proposition 2.7.1 in [44]) require that the minimization of
each block-coordinate update is uniquely attained. All the
subproblems of (P1) are proved to be strictly convex, hence
there exists at most one global minimum in each subproblems
(see Proposition 3.1.1 in [43]). Since the whole convergence
conditions are satisfied, the CASTS guarantees the conver-
gence to the final solution. Moreover, due to the existence
of three subproblems in the optimization procedure, it takes
more iterations in our algorithm to achieve overall stopping
criterion, which remains a future study to further reduce the
time complexity.

V. EXPERIMENTAL RESULTS
To test the graph learning performance of the proposed
method, we conduct experiments on three synthetic datasets
with different correlation patterns and two real-world
datasets, including the China daily temperature dataset
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from National Oceanic and Atmospheric Administration
(NOAA) [50] and the California daily evaporation dataset
from California Department of Water Resources [51].

The proposed CASTS is compared with four base-
line graph learning algorithms, including GL-Sigrep [21],
GGLS [22], SpecTemp [29] and GL-logdet [20], to identify
the graph Laplacian matrix. To make a fair comparison,
we performMonte-Carlo simulations for each method to find
the best combination of regularization parameters that maxi-
mize the performance. More specifically, α, β and γ in (P1)
are selected from powers of 10 ranging from −1 to −3 with
a stepsize of 0.1, 0 to −2 with a stepsize of 0.05 and 0 to −2
with a stepsize of 0.1, respectively. Since temperature and
evapotranspiration data vary based on consecutive changes
on physics or chemistry, we heuristically take κ = 0.1.
Synthetic Datasets: In each experiment, we create several

synthetic datasets based on different graph topologies and
time correlation patterns. First, we consider a 20-vertex undi-
rected weighted graph in which graph model is chosen from
the following three options:

1) K-neighbor graph, GKN , with each vertex connected to
its three nearest neighbors, where the coordinate is cre-
ated randomly and the weight of each edge is inversely
proportional to the distance between two vertices.

2) Random geometric graph, GRGG, with coordinate of
vertex generated uniformly at random in the unit square
and the edgeweight is determined byGaussian function
W (i, j) = exp

(
−
d(i,j)2

2σ 2

)
where σ = 0.5, then thresh-

old weights< 0.7.
3) Random scale-free graph, GRSF , with the probability of

the new vertex connected to an existing vertex follows
a preferential attachment criterion proposed in [45].

Given a specific graph structure, the CGL matrix is calcu-
lated and normalized according to constraints in (P1). Then,
we generate 100 time series based on the proposed model
shown in (12) with random initialization of x1 and standard
deviation of noise σn = 0.5.Without loss of the generality, we
create three types of graph signals with varying correlation
pattern i) low correlated graph signal with correlation matrix
R = 0.2 × I20, ii) high correlated graph signals with R =
0.9× I20. iii) graph signal where diag (R) is generated from
Gaussian distribution with 0.5 mean and 0.01 variance.
Experimental settings: To show the graph learning perfor-

mance, we create various experimental scenarios by choosing
a time correlation pattern under different graph models, and
provide both visual and quantitative comparison. Particu-
larly, we average the results over 10 random instances of
three graphs with the selected type of graph signal X. For
quantitative comparison, we evaluate the performance of all
algorithms in terms of the accuracy of edge weight and the
recovery of the edge position in the groundtruth graph by
using the following metrics,

RWE
(
L̂,L

)
=

∥∥∥L̂− L
∥∥∥
F

‖L‖F
, (27)

which is the relative weight error between the groundtruth
graph L and learned graph L̂, and

F − measure =
2× Precision× Recall
Precision+ Recall

(28)

tests the overall accuracy of the learned edge set _c
with respect to the groundtruth edge set c, which
involves both Precision and Recall parameters denoted
as #

{
(i, j) : _ci,j 6= 0, ci,j 6= 0

}/
#
{
(i, j) : _ci,j 6= 0

}
and

#
{
(i, j) : _ci,j 6= 0, ci,j 6= 0

}/
#
{
(i, j) : ci,j 6= 0

}
, respecti-

vely. Finally, Normalized Mutual Information (NMI) [46] is
used to measure the mutual dependence from an information
theoretic perspective. Both F-measure and NMI take values
between 0 and 1, where the value 1 implies the perfect recov-
ered accuracy. Besides, the RWE more close to 0 indicates
that a more accurate graph is learned. For a fair comparison,
we normalize all learned Laplacians with the same scale as
the groundtruth CGL and remove the edges in the learned
graph whose magnitude is smaller than 10−4.

A. PERFORMANCE COMPARISON
In this subsection, we compare the performance of four graph
learning methods in both visual and quantitative form. Fig. 2
provides the visual comparison in three types of graph signals
under the random instance of GRGG. The first row shows the
graph learning performance from graph signals in case (i),
which from left to right denotes the groundtruth graph Lapla-
cian, the Laplacian matrices learned by CASTS, GL-Sigrep,
GGSL and GL-logdet. The second and the third row denote
the other results that are learned from graph signals in case (ii)
and case (iii), respectively. As we can see, in each type of
graph signal, Laplacian matrices learned by the proposed
CASTS are visually more consistent with the groundtruth one
than other baseline methods. One possible reason for this is
that GL-Sigrep andGGLS only exploit the spatial smoothness
in graph learning, in comparison, we learn a graph where sig-
nals are regularized to be spatiotemporally smooth. Besides,
among the three cases, stable performance is achieved by the
proposed CASTS, while the baseline methods are affected by
time correlation, as wewill see later. It is typically because the
proper modeling of space-time interactions in the proposed
model which takes into account time correlation in dynamic
evolution.

For quantitative evaluation, we choose Precision, Recall,
F-measure, NMI and RWE as evaluation metrics. Table 1
shows the comparison results in three types of graph signal
with varying graphmodels. As shown in case (i), the proposed
CASTS is superior to the others in all graph models, which
achieves higher average F-measure, NMI scores and lower
RWE scores, especially in GRSF reaching the F-measure
at 0.8612, NMI at 0.6722 and RWE score at 0.4489. Similar
results can be also seen in case (ii) and case (iii) as expected.
In addition, when it comes to a certain graph model, the per-
formance of the baseline methods significantly improve with
the decrease of correlation coefficient. Taking GL-Sigrep in
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TABLE 1. Graph learning performance from different types of time-varying graph signal in the proposed and baseline methods.

FIGURE 3. (a) Performance of the CASTS under different number of signals, and (b) Performance of the CASTS under different input SNR, for
two random instances of GRGG with graph signals in case (iii).

GKN as an example, the score of F-measure in case (i) and
case (ii) increases from 0.7298 to 0.8151 and the RWE from
0.5809 to 0.5261. One possible reason is that spatiotemporal
signals degenerate to the static (i.e., time independent) graph
signals under a small time correlation, which is suitable
for static signal analysis (e.g., GL-Sigrep, GGLS and GL-
logdet). In contrast, the performance of the proposed CASTS
is quite robust across different graph and signal models. The
improvement of CASTS over the baseline methods comes
from the proper modeling of both the spatial and temporal
correlation, which also shows the benefits of applying spa-
tiotemporal smoothness property in graph learning.

B. GRAPH LEARNING WITH RESPECT TO NUMBER OF
OBSERVED SIGNAL AND MEASUREMENT NOISE
To investigate the effect of the number of observed sig-
nals available for learning and measurement noise level,

we consider graph signal in case (iii) under two random
instances of GRGG, respectively. We show the learning accu-
racy of edge position as well as edge weight in both Fig. 3(a)
and Fig. 3(b).

First, the performance of CASTS versus a different num-
ber of signals is shown in Fig. 3(a). We see that, as more
signals are available, the Recall keeps a high value and the
Precision gradually increases leading to an increasing value
of F-measure. Meanwhile, RWE score decreases towards 0.
These results indicate the improvement in graph learning
performance. But the performance remains quite stable when
the number of signals is more than 100. Next, We test the
graph learning performance under different values of the
signal-to-noise-ratio (SNR) given the variance of noise σn2.
From Fig. 3(b) one can read that the performance improves
with the increase of input SNR. Specifically, when SNR
is higher than 1.92dB, F-measure and NMI keeps the high
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FIGURE 4. (a) The locations of 60 measuring stations in China. Different colors represent the groundtruth 4 clusters that correspond to 4 geographical
regions. (b) The clustering results utilizing learned graph Laplacian obtained by the CASTS. (c) Graph structure learned by the CASTS, which achieves the
best RI score in clustering performance. (d) Graph structure established by KNN with K = 8 from real world temperature signals. The color code in
(c) and (d) respectively represent the temporal evolution of the temperature and the realistic temperature in Celcius scale on the 20th day.

scores around 0.9 and 0.7, respectively. As the level of noise
continues to increase, both F-measure and NMI scores drop
rapidly. Similar results can be observed in terms of RWE
scores as well. This shows that CASTS is able to learn a
graph that is very close to the groundtruth one until the SNR
becomes very low.

C. GRAPH LEARNING FROM TEMPERATURE DATA
The China daily temperature dataset [50] is published by
National Oceanic and Atmospheric Administration (NOAA).
It is collected by 60 measuring stations in China over the first
five months in 2017, thus in total there are 150 continuous
samples for each measuring stations. We aim to learn a graph
structure to explore the inherent relations in different areas.

However, the groundtruth graph structure is not available
nor easy to define. According to the geographical location
and climate condition, the land of China can be divided
into four regions, including northern, southern, northwest
and Qinghai-Tibet, shown by different colors in Fig. 4(a).
We evaluate the performance of graph learning by applying
spectral clustering [47] for the learned graph to partition
the vertex set into four disjoint clusters. Metrics including
Purity, Rand Index (RI) [48] and NMI score are applied for
quantitative evaluation.

The results by the proposed CASTS are visually shown
in Fig. 4. First, compared to the groundtruth clusters in
Fig. 4(a), the clustering results in Fig. 4(b) are similar to
the groundtruth ones with slight differences. Second, graph
topology learned by the proposed CASTS and graph con-
structed byKNN scheme withK = 8 are depicted in Fig. 4(c)
and Fig. 4(d), respectively. Notice that the colors in Fig. 4(c)
and Fig. 4(d) have different meanings which represent the
weighted time difference of temperature and the realistic
temperature on the 20th day, respectively. Looking at Fig. 4(c)
and Fig. 4(d) together, we find that though signals themselves
in Fig. 4(d) exhibit similar values, their temporal evolution in
Fig. 4(c) may have a big difference, and meanwhile graph
learning from temporal evolution is more consistent with the
meteorological features. One possible explanation could be
that observation sites which are geometrically close may be
geographically separated.

TABLE 2. The performance of graph learning methods in recovering
groundtruth clusters of temperature measuring stations.

For further prove the effectiveness of the proposed method,
we quantitatively compare clustering performance between
the proposed and baseline methods. As we can see in Table 2,
the performance of the proposed CASTS is better than the
others in terms of clustering with 0.8411 for RI, 0.8333 for
Purity and 0.6712 for NMI. There are two main reasons for
the improvement of the proposed CASTS. Firstly, we learn
a graph to describe the relation among temperatures, which
adequately exploits the space-time properties of graph sig-
nals. Secondly, we utilize the smoothness of weighted differ-
ence signal rather than the smoothness of the signal itself, and
the former one is more reasonable for this time-varying graph
signal.

D. GRAPH LEARNING FROM EVAPOTRANSPIRATION DATA
The California daily evapotranspiration (ETo) dataset is pub-
lished by California Department of Water Resources [51].
It is collected by 62 active observation stations over 150 days
starting from February 1, 2018, and the size of data is
62 × 150. The selected data ranges from 0.02mm to 9.94mm,
and the average is 3.838mm. Here, we would like to infer a
graph that captures the similarities between these observation
sites in the daily variation of evapotranspiration.

In this experiment, we do not have a groundtruth graph as
well. Fortunately, a EToZoneMap [52] divides the 62 stations
into four ETo zones, which can be viewed as groundtruth clus-
ters shown in Fig. 5. As depicted in this figure, though obser-
vation sites are geographically nearby, they may come from
different clusters. By classifying the observation stations sim-
ilar to the previous application, we evaluate the graph learning
performance indirectly through clustering metrics.

Table 3 shows the clustering performance of the proposed
and baseline methods. The RI scores of the comparison
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FIGURE 5. The geographical location of 62 measuring stations in
California. The four colors from red, dark blue, yellow to light blue
represent ETo zone 14, zone 12, zone 6 and zone 9, respectively.

TABLE 3. The performance of graph learning methods in recovering
groundtruth clusters of ETo measuring stations.

methods GL-Sigrep, GGLS, SpecTemp, GL-logdet and
the proposed CASTS are 0.8065, 0.7820, 0.7612, 0.7653
and 0.8461, respectively. The performance evaluation for all
the methods in terms of Purity and NMI are also displayed
in this table. Since the higher scores are achieved by the
CASTS in all metrics, we can draw a similar conclusion as
the previous experiment that the proposed CASTS is superior
to the other graph learning methods on this ETo dataset.

E. PREDICTION PERFORMANCE OF
THE PROPOSED METHOD
In this experiment, we test the prediction performance of the
CASTS under the dynamic graph-based model on two real-
world datasets in Section V-C and Section V-D. Specifically,
the first 120 time series are training, by the proposed CASTS,
to learn the graph structure L and temporal structure R,1

and the remaining for testing. As discussed in Section III-A,
with a known space-time structure, the proposed model can
be regarded as a Kalman filter. Thus, for each testing time
instant, we use the Kalman filter method in [49] to imple-
ment one-step prediction in above two datasets. In Fig. 6(a),
we illustrate the true temperature signal presented at node 12
(black line) and the estimated one (red dotted line) in the next
30 time index. We repeat this operation for the ETo signal at
node 7 and the results are displayed in Fig. 6(b). As we can
see in Fig. 6(a) and Fig. 6(b), the estimation in both datasets
is very close to its true signal. It means that the inferred graph

1We show the correlation coefficients of selected five observation sites in
two real-world data as an example. The correlation coefficients are 0.6896,
0.6336, 0.7306, 0.5950, 0.6602, for temperature dataset; and 0.2244, 0.2797,
0.2427, 0.1858, 0.2172, for ETo dataset.

FIGURE 6. The true and predicted signals in two real-world datasets.
(a) Temperature data in section V-C, and (b) ETo data in section V-D.

is close to reality, otherwise the temporal evolution based
on a wrong graph topology could not lead to such a good
prediction.

VI. CONCLUSION
This paper studies the problem of learning graphs from time-
varying graph signal. Under the dynamic graph-based model
for time-vertex representation, we novelly introduce spa-
tiotemporal smoothness prior that accommodates time and
graph setting in graph learning procedures. By exploiting
the correlation and such smoothness property, we formulate
the graph learning problem as a multi-convex optimization
problem. A new graph learning method, CASTS, is proposed
by applying the block coordinate descent scheme to simulta-
neously detect correlation and recover the graph. Simulations
on both synthetic and real-world datasets demonstrate the
improvement in graph learning performance over the state-of-
the-art methods, and the effectiveness of the proposed model
is also verified via prediction tasks in climate analysis.
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