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ABSTRACT Extraterrestrial celestial patrol missions have introduced very strict requirements for the
performance of rovers, due to their high cost. Vision-based or Lidar-based environment sensing technology
has matured. However, due to its perceptual characteristics, it is impossible to predict the traversability of
the terrain completely, and it lacks the judgment of the physical properties of the terrain, such as the degree
of hardness and softness. Due to the spectrum of risks that the rover is facing, a wide range of detection
processes is required. This research paper proposes a terrain classification approach based on 3-D vibrations
induced in the rover structure by the wheel-terrain interaction. Initially, the acceleration information of the
three directions is obtained by using the Inertial measurement unit of the rover. Then, the characteristics of
the vibrations of the known terrain are learned. The Fast Fourier Transformation (FFT) is used to transform
the labeled three-axis vibration vectors into a frequency domain. Then the training feature vectors are
obtained through normalization. Taking into account the characteristics of the environment, an improved
back propagation (BP) neural network is used to get the mapping relationships between the vibrations and
the terrain types. Finally, classification testing has been conducted on five kinds of environments, including
concrete, grassland, sand, gravel, and mixed. After 20 times random testing experiments, the classification
accuracy has proven to be in the range 88.99%–100%, which verified the validity and the robustness of the
algorithm and laid a foundation for the subsequent identification of terrain characteristic.

INDEX TERMS BP artificial neural network, rover, terrain classification, vibration.

I. INTRODUCTION
Intelligence is the development trend of mobile robots in the
future. High-efficiency perception of the environment can be
achieved through the fusion of multi-sensors. Especially for
terrain recognition, it will determine the success or failure of
the task execution of mobile robots. As a kind of intelligent
mobile robots, planetary rovers will provide effective support
for planetary exploration.

Extraterrestrial celestial patrol mission is very difficult
and costly. It has high safety requirements, autonomy, and
very low fault tolerance. Due to the unpredictability of the
environment, adding cognition to the planetary exploration
rover so that it can understand the surrounding environment
of the premise, is particularly crucial [1]. With the advance-
ment of control technology [2], [3], the rover can operate
autonomously. In the face of more and more abundant detec-
tion tasks, accurate terrain classification is vital.

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

At present, relying on sensing devices such as Vision, Lidar
and so on, the rover information and the relative position data
of the environmental obstacle can be well obtained. At the
same time, the features are processed and analyzed to get
more accurate terrain classification results [4]–[6].

However, vision is susceptible to changes in lighting image
distortion and other factors. At the same time, the existing
sensing mode cannot effectively realize the physical proper-
ties of the flat surface (e.g. the type of material, the degree
of hardness). As a result, there are unforeseen risks in the
detection task. For example, the rover may fall inside when
it passes through a loose and flat place. Faced with similar
non-geometric hazards, identification of the detected ter-
rain is significant in order to perform robust high-precision
classification [7].

According to different sensing modes, the terrain classi-
fication can be divided in two main categories. The first
is the contact classification, such as vibration and touch;
the second is the non-contact classification, such as vision,
laser radar, sound and so on. Among them, the non-contact
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type has high discrimination capability on objects like large
stones and steep slopes of the terrain. This enables the rover
to avoid the most obvious dangers [8]. In Wuhan Univer-
sity, He et al. [9], proposed a hierarchical classification
approach. The Conditional Random Field (CRF) and the
Bayesian Network (BN) were employed to incorporate prior
knowledge, in order to facilitate SAR image classification.
Manduchi et al. [10] proposed a new obstacle detection and
terrain classification method for autonomous offline naviga-
tion. Initially, binocular ranging was used to detect obstacles.
Then, a color-based classification system was designed to
mark the identified obstacles. Finally, the algorithm was used
to analyze the radar data and to achieve effective classifi-
cation of the terrain and the obstacles. Lalonde et al. [11]
from Carnegie Mellon University, successfully divided Lidar
data in three categories using local 3D point cloud statis-
tics. The ‘‘scatter’’ class characterized porous volumes, such
as grasses and canopies; the ‘‘linear’’ class characterized
elongated objects such as lines and tree ridges; and the
‘‘surfaces’’ onewas related to solid targets such as the ground.
Valada et al. [12] used the sound features of wheel interac-
tion to perform successful classification-identification. They
proposed a learning method based on Convolutional Neural
Networks. The robustness of this algorithm was verified as
follows: 1) It outperformed the traditional audio classifica-
tion methods; 2) It maintained its robustness under varying
Gaussian white noise and fine-tuning noise enhancement;
3) Though low-quality data loggers were used in a very noisy
environment, the algorithm had still reliable performance.
After that, A. Valada and Burgard also applied the deep long-
short term memory (LSTM) based recurrent model to the
proprioceptive terrain classification [13]. Zhao et al., also
proposed a terrain classification method based on the sound
and vibration data of the wheel-terrain interaction. Com-
pared with the traditional handcrafted domain-specific fea-
tures, a two-step selection method of optimal feature subsets
that combines ReliefF and mRMR algorithms was proposed.
Finally, the effective classification of different data was per-
formed by the combination of multiple classifiers [14].

The contact terrain classification is mainly based on vibra-
tion and touch. It is analyzing the vibration and the accelera-
tion signals caused by the interaction between the rover wheel
and the surface of the celestial [15]. Iagnemma et al. [16]
of the Massachusetts Institute of Technology proposed an
online terrain parameter estimation method, based on sim-
plified forms of classical terramechanics equations in 2002.
This research introduced for the first time, the visual and
the vibration based rover terrain classification and recogni-
tion method. It mainly realized the following: a) measuring
the sinking of the planet rover wheels with a vision-based
approach b) online estimation of the terrain parameters
using tactile-based approach and c) classification of the
terrain using the vibration feedback based method [17].
Based on [16], Brooks et al. [18] proposed a more com-
plete vibration-based terrain classification method in 2005.
The offline learning training of the classifier, used the

vibration data of the mark number. At the same time, linear
online classification and identification of the terrain was per-
formed [19]. Weiss et al. 2006, from University of Tübingen,
Germany [20], used Support Vector Machines (SVM) to per-
form vibration-based terrain classification. They employed
a Radial Basis function kernel and a feature extraction
method. Initially, unprocessed acceleration data were intro-
duced. Totally 8 features were calculated, and normalized
to form a feature vector. In 2007, Weiss et al. proposed a
technique for measuring vibration acceleration in different
directions, in order to improve classification performance.
Through FFT transformation, each feature was normalized
and processed using SVM. The results have shown that when
the y-direction acceleration was the feature vector, the clas-
sification accuracy rate was higher than that the case of the
z-direction acceleration feature vector. Moreover, the highest
accuracy was obtained when the three were combined [21].
Collins and Coyle [22] proposed a response-based terrain
input classification method. Speed dependence was elimi-
nated or reduced compared to existing vibration methods.
This approach, used the AGV vibration transfer function to
map the vibration output to the terrain input, and validated
it in the simulation, using surface contours from real ter-
rain. Tick et al. [23] proposed a multi-level terrain classifier,
based on angular velocity in 2012. The innovation lied in
the use of acceleration and angular velocity measurements
to characterize features in all basic directions. They also
employed sequential forward floating feature selection for
feature screening, and linear Bayesian normal classifiers for
classification. Different feature sets were generated accord-
ing to different speed conditions, and the classifier was also
switched according to different speeds.

In addition, with the continuous development of artificial
intelligence, more and more intelligent algorithms, such as
CNN and unsupervised leaning, are used for terrain sens-
ing [24]–[26]. Zeltner [27] used a deep convolutional neural
network to implement a vision-based terrain classification.
Park et al. [28] proposed a new classification network frame-
work based on LSTM unit and ensemble learning. They
provide a good research direction for the subsequent output
of terrain classification results from vibration data [29]–[32].

Combined with the above analysis, an improved terrain
classification method based on three-dimensional vibration
information is proposed. The main contribution of this paper
is that the effective mapping of vibration features to terrain
classification is realized based on improved BP neural net-
work for the first time. Meanwhile, a selective method for
terrain classification is added. Compared with the previous
methods such as SVM, the improved BP structure is simpler,
and it does not need artificial design features. Besides, it is
easy to implement in practical applications, and has stronger
adaptability to unknown environments. The remainder of this
paper is organized as follows.

In Section 2, we give a detailed description of terrain
classificationmethods, including the elaboration of algorithm
framework, feature extraction based on FFT, and the design
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FIGURE 1. Schematic diagram of algorithm flow framework.

of improved BP neural network. The Section 3 compares
and analyzes the rationality and correctness of algorithms
based on actual test environment. In the end, the conclusion
is presented in Section 4.

II. TERRAIN CLASSIFICATION METHOD
A. METHOD OVERVIEW
The entire classification process is divided in two phases:
1) off-line training; 2) online classification. Themodel should
be trained properly, in order to obtain a higher resolution
for different terrains, in the online classification process.
As shown in figure 1, the 3-D vibration raw data collected
by the sensor is first initialized and divided to form a vector
with a duration of 1 second; Then, the frequency domain is
transformed by the Fast Fourier Transformation (FFT), and
the eigenvectors for training are obtained by normalization;
Finally, a BP neural network is developed to perform param-
eter learning and a network model that can be used online is
obtained.

B. FEATURE EXTRACTION
In the training process, it is always necessary to learn the
vibration signal characteristics of the known terrain type.
For this reason, the experimental platform needs to traverse
different surfacesmultiple times, to collect vibration informa-
tion. The performed experiment used three single-axis vibra-
tion sensing units with an operating frequency of 100 Hz.
In order to facilitate the processing of the data, the collected
vibration data was segmented. Each segment corresponded to
one second travel of the unmanned platform, so that a vector
of 1 × 100 size could be generated. Finally each vector was
marked as its corresponding terrain type.

Then, the original vibration signal was converted to the
frequency domain. First, the raw data processing was stan-
dardized, and each vibration vector was normalized to a
vector with a mean value of zero and a standard deviation
of one. Then a Fast Fourier Transformation of 100 points was
performed. Thus, the original time-domain data of the exper-
imental platform was transformed in the frequency domain.
This transformation has proven capable to determine the
difference between various terrains. After applying the FFT to
all vectors, they were normalized in the closed interval [0, 1].
Standardization prevented high-level data from prevailing in
later training. In this way, after the original data was normal-
ized, each index was in the same order of magnitude, which
was suitable for a comprehensive comparative evaluation.

As it was mentioned in the introduction, the current
vibration-based terrain classification methods are mainly
based on separate measurements in the vertical direction (z).
The reason is that the terrain changes have a greater impact on
the upper and lower directions. Based on this, the paper adds
the measurements of the horizontal data, that is, the front-
back (x) and left-right (y) directions, which increases the
dimension of the data. This approach aims to find the best
representation pattern between the multi-dimensional data
and the terrain categories.

At the same time, this paper also introduces a simple
and effective three-axis information classification method.
In each terrain testing phase, the vibration data of the three
axes, namely (x1:100), (y1:100), and (z1:100) are obtained first.
Then, the normalized signal is transformed by the FFT to
obtain the F(x)1:100, F(y)1:100, F(z)1:100. Finally, each signal
is normalized in the closed interval [0, 1]. Next, the trans-
formed three-axis signal is connected as a feature vector.
At this time, the dimension of the feature vector is 1 × 300.
Finally, the Artificial Neural Network (ANN) is trained on
these feature vectors.

This paper collects vibration data for 2 minutes for dif-
ferent terrain. According to the above segmentation method,
120 sets of data are collected for each type of terrain, so a
total of 600 sets of data are collected. In the training process,
500 sets of data are selected randomly, and the remaining
100 sets of data are used as test samples.

C. BP ARTIFICIAL NEURAL NETWORK TRAINING
The BP ANN is a multi-layer feedforward one [33]. It per-
forms forward signal and reverse error transmissions. In for-
ward propagation, the input signal is processed from the
input layer, through the hidden layer, to the output one.
The neurons’ state of each layer can only affect the state
of the next layer of neurons. If the error in the output layer
is not acceptable, the signal is redirected backwards, and
the network weights and the threshold are adjusted according
to the prediction error. In this way, the predictive output of
the BP ANN is continuously approaching the expected one.
The architecture of the BP ANN is shown in the following
figure 2.
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FIGURE 2. Architecture of a BP artificial neural network.

In the figure above, I1, I2, · · · , In is the input vector
of the BP ANN. Here it is the preprocessed eigenvector.
Y1,Y2, · · · ,Ym is the predicted vector of the BP ANN. As it
can be seen from the above figure, the BP ANN can be
regarded as a nonlinear function. The input and the predicted
value are the independent and dependent variables of the
function, respectively. When the number of input nodes is n
and the number of output nodes is m, the ANN expresses the
mapping function relationship from n independent variables
to m dependent ones.
A BP neural network must be trained before the perfor-

mance of online classification. It is characterized by associa-
tive memory and it retains prediction ability through training.
The training process includes the following steps:

1) Network initialization. Determine the number of the
nodes (neurons) for the input layer, for the hidden layer, and
for the output layer, denoted as n, l, m respectively, according
to the system input sequence (I ,Y ). Initialize the connection
weights ωjk , ωij between the neurons of the input, hidden and
output layers. Initialize the hidden layer’s threshold a, and the
threshold b of the output layer, and also do the same for the
given learning rate and the neuron excitation function.

2) Implicit layer output calculation. The hidden layer out-
put H is calculated based on the following: the input vari-
ables I , the connection weights ωij of the input and implicit
layers and the threshold α of the hidden layer.

Hj = f (
n∑
i=1

ωijIi − aj) j = 1, 2, · · · , l (1)

In equation 1, l is the number of the hidden layer nodes;
and f is the hidden layer excitation function (see function 2).

f (x) =
1

1+ e−x
(2)

3) Output layer. The BP ANN prediction outputO is calcu-
lated based on the hidden layer’s outputH , on the connection
weight ωjk and on the threshold b.

Ok =
l∑
j=1

ωjkHj − bk k = 1, 2, · · · ,m (3)

4) Error calculation. The network prediction error e is
calculated based on the ANN’s prediction output O and on
the expected output Y .

ek =

√
1
m

∑
(Ok − Yk)2 k = 1, 2, · · · ,m (4)

5) Weight update. Update the ANN’s connection weights
ωij, ωjk according to the obtained prediction error e.

ωij = ωij + ηHj(1− Hj)Ii
m∑
k=1

ωjkek

(i = 1, 2, · · · , n; j = 1, 2, · · · , l)

ωjk = ωjk + ηHjek
(j = 1, 2, · · · , l; k = 1, 2, · · · ,m) (5)

where η is the learning rate
6) Threshold update. The node’s thresholds a, b is updated

based on the ANN’s prediction error e.

aj = aj + ηHj(1− Hj)
m∑
k=1

ωjkek j = 1, 2, · · · , l

bk = bk + ek k = 1, 2, · · · ,m (6)

7) It is determined whether the algorithm’s iterations
should stop. If they should not stop, return to step 2.

For classification of five different terrain types, a three-
layer BP neural network is designed in this paper. The input
layer consists of 300 neurons, corresponding to the input
eigenvectors. Hidden layer contains 25 neurons. And there
are 5 neurons in the output layer, which correspond to five
different terrain types. The activation function of the hidden
layer chooses sigmoid function.

After the training is completed, the neural network can
enter the online classification stage. The experimental plat-
form traverses the unknown terrain and it collects vibration
signals. Once per second, the acceleration signals emitted in
three directions are combined to generate a 1 × 300 vector
(x1:100, y1:100, z1:100). Normalize each component, then trans-
form the three components of the vector with FFT to get
(F(x)1:100,F(y)1:100,F(z)1:100). They should be normalized
separately in order to get the testing vector. The trained
ANN is used to classify the testing vectors and it returns an
estimation of the terrain type.

The BP ANN employs the gradient correction learning
algorithm, for the update of both the weights and the thresh-
old. The weights and the threshold are corrected from the
negative gradient direction of the network prediction error.
The accumulation of the previous experience is not consid-
ered, and the learning process converges slowly. An addi-
tional momentum method can be used to solve the problem.
The weight learning function of the additional momentum is
the following:

ω(k) = ω(k−1)+ η1ω(k)+ α [ω(k−1)− ω(k−2)] (7)

where ω(k), ω(k − 1), ω(k − 2) are the weights at
time k, k − 1, k − 2; α is the learning momentum. The
parameters of this paper are set to η = 0.1, α = 0.05.
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According to the network prediction error, the training
error can be calculated by the following formula

E =
1

train_size

∑
train_size

√√√√ 1
m

m∑
k=1

e2k (8)

Corresponding to this experiment, m = 5, train_size = 500.

FIGURE 3. Jackal unmanned ground vehicle and sensors.

III. EXPERIMENTAL RESULTS
A. PLATFORM OVERVIEW
In order to verify the correctness of the method described
above and the feasibility of its application in the actual envi-
ronment, we have used the Jackal unmanned ground vehi-
cle [34] as the carrier. It was tested in five different terrains
(flat concrete, grass, sand, gravel, grass and stone mixed)
withmeasuring equipment such as vision (Kinect), laser radar
(SICK LMS 100), vibration sensor (AFT601D), and IMU
(LPMS-USBAL2). This paper focuses on the vibrations’
testing. As shown in Figure 4, the comparison of vibration
data from different terrains is given. Subsequent research
will compare and analyze the relationship between different
sensors and their potential fusion values.

B. RESULTS AND ANALYSIS
First, the original signals of five terrain types have been
collected. The processed data that have been found suitable
for the classification, have been obtained by the abovemethod
as shown in Figure 5. It has been found that the original
signal in the time domain has small discrimination, and the
feature becomes relatively obvious after transforming it into
the frequency domain. This can be beneficial to the training
of the subsequent neural network and it can greatly improve
the classification accuracy.

Moreover, the five types of terrain (flat concrete,
grass, sand, gravel, mixed) have been represented by the
numbers 1, 2, 3, 4, and 5 respectively. Figure 6 shows a
comparison between the predicted versus the actual terrain
categories in the testing process.

The abscissa indicates the number of test samples, and the
ordinate corresponds to the above five topographies
respectively. Red snowflakes represent the predicted value,
while triangles and circles represent the true value of different
topographies. Combining with Figure 7, it can be seen that

FIGURE 4. Raw data and preprocessed data from different terrain.

there are two prediction errors in 100 test samples, so the
accuracy of this experiment is 98%. In addition, the error
values of this two misclassification are 1 and 3, which can
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FIGURE 5. The original signal and the FFT processed one.

FIGURE 6. Comparison of predicted terrain and actual terrain.

FIGURE 7. Classification error results of BP neural network.

be found in Figure 6. That is terrain 3 is misclassified
into terrain 4, so its error is 1, terrain 2 is misclassified
into terrain 5, so its error is 3. By this way, the mismatched
association between terrain can be defined, which can provide
reference for improving classification accuracy. According to
this experiment, sand and gravel, as well as grass and mixed,
are easy to confuse. There are two reasons for this. One is that

FIGURE 8. Convergence curve of training error.

FIGURE 9. 20 times experimental comparison results.

the distinction between the features of the selected terrain
is not large, and the other is that the training has a certain
randomness.

The experimental results show that the flat concrete terrain
has a correct rate of 100%, the grass terrain has a correct
rate of 95.65%, the sand terrain has a correct rate of 93.75%,
the stone terrain has a correct rate of 100%, and the mixed ter-
rain has a correct rate of 100%. At the same time, according to
Figure 8, we compare the declining trend of the error between
the improved BP neural network and the non-improved BP
neural network. It can be seen that although the final error is
close and the improved accuracy is limited, the training speed
of BP network is accelerated by the method of additional
momentum when the weight is updated, which shows that
the proposed method has a certain improvement in training
convergence.

Considering the randomness of a single experiment,
the experiment used a multi-validation model, and a total
of 20 classification verifications were performed. The results
are shown in the Figure 9. From the final results, the clas-
sification accuracy of five types of terrain is 98.64%,
94.81%, 88.99%, 97.71%, 97.07% respectively. The results
show that the classification accuracy of flat concrete, grass,
stone and mixed terrain is better than that of sand terrain.
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At the same time, according to Figure 9, the classification
accuracy of sand terrain is only 73.33% in the 13th experi-
ment. Combining with the recognition accuracy of the whole
sand terrain, it can be seen that the low accuracy may be
caused by the randomness of single training. The random
selection of training samples may contain a small amount of
sand characteristic data, which makes the learning accuracy
inadequate. In addition, sand terrain is less distinguishable
from other types of terrain. Through the analysis of each
prediction result, it can be seen that the probability of sand
being misclassified into stone is higher, which is also the
reason of its low accuracy. Besides, the choice of platform
and the speed of operation will have an impact on the final
accuracy, which will be analyzed in depth in the follow-up
study.

IV. CONCLUSION
On the one hand, terrain classification and recognition tech-
nologies can make up for the lack of visual perception on
physical properties. On the other hand, it can provide a new
navigation means in the case of sensor failure. Due to the
fact that no additional infrastructure is required the overall
cost is not increased. At the same time, the verification of the
method has proven its contribution towards the increase of
rover’s reliability. Both its potential value and its significance
are huge. From the experimental results, it can see that there
are higher recognition rates for five different types of terrain
materials. Moreover, the accuracy rate of the verifications
(which were performed 20 times in a random mode) is main-
tained above 88.99%. In the future research, the unmanned
platformwill be equippedwith Vision, Lidar, IMU, and sound
sensors to extend the experiment. The advantages of vibra-
tion perception can be given by comparison, and the fusion
between multiple sensors can also be explored.
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