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ABSTRACT The proliferation of the Internet of Things (IoT) requires to accommodate diverse applications
with stringent performance requirements. Delay is one of the keymetrics in the IoT, particularly, for domains,
such as health care, where critical cases requiring an emergency response frequently occur. In this paper,
we analyze the performance data generated using the IEEE 802.15.4 standard to derive an accurate predictive
model for delay-sensitive applications. A deep neural network (DNN) is adopted to model the relationship
between diverse communication parameters (e.g., queue size, application traffic rate, and transmission
power) and delay. Evaluation reveals that the DNN model achieves a prediction accuracy of over 98% and
outperforms other popular regression models. In addition, a fine-grained analysis of the size of training data,
depth (number of layers), width (number of neurons per layer), and epochs (number of iterations) is carried
out in an attempt to achieve best possible prediction results with minimally complex DNN. The statistics
show that the derivedmodel achieves a comparable accuracy even when trained with a small fraction (≥10%)
of data. The proposed model recommends the values for different controllable communication parameters
to the transmitter that can be fine-tuned considering the desired delay bounds.

INDEX TERMS Delay prediction, deep learning, e-health, internet of things, multi-layer neural networks,
wireless sensor networks.

I. INTRODUCTION
Growth and proliferation in communication and sensing tech-
nologies has been enormous in recent years. This has acceler-
ated the realization of the Internet of Things (IoT), connecting
ubiquitous physical objects in massive numbers. Wireless
Sensor Networks (WSNs) have been at the heart of IoT [1],
facilitating diverse application scenarios. IEEE 802.15.4 is
one of the most popular communication standards used in
WSN deployments. According to a recent survey, WSN
deployments for which communication standard is known,
more than 50% are based on IEEE 802.15.4 [2]. Application
domains served byWSNs include but not limited to: area and
health-care monitoring; environmental, earth and industrial
sensing; smart grids, and many others [3]–[5]. Depending
on the domain of deployment, WSNs have different Quality
of Service (QoS) requirements to meet; including energy,
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reliability, delay, and throughput [6]–[8]. Accordingly, there
has been a tremendous research effort in the past couple
of decades to improve QoS in WSNs with an aim to serve
diverse application requirements [8]–[10]. With considera-
tions of energy at the center of WSN design, applications
need to meet multiple, often conflicting QoS metrics, simul-
taneously. Optimizing multiple and conflicting metrics are
frequently modeled as optimization problems. These opti-
mization problems, requiring certain constraints to be met,
are often intractable and are identified as NP-hard. To cope
with the complexity of these problems and devise practical
solutions, a compromise on the accuracy of the solutions has
to be afforded. Mathematical programming based serializa-
tion methods and nature-inspired meta-heuristic algorithms
are popular choices in this context [10]. Besides, most of
the solutions are proposed in the form of some protocol at
any layer. Realizing the potential benefit(s) of the proposed
solution, if any, requires standardization and arduous effort
to implement it in the hardware. More so, these solutions
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lack in self-learning and do not adapt as the situations evolve.
In summary, the limitations in conventional solutions include:
• Computational complexity of the intractable problems
to optimize QoS metrics

• Strenuous effort of implementations to realizing the
potential of solutions proposed in the form of protocols
at different layers

• Lack of adaptivity and self-learning in legacy solutions
The limitations found in conventional approaches to facil-

itate QoS in WSN require devising alternative solutions that
can potentially eliminate these shortcomings or minimize
their effect. Data-driven approaches, using performance data
and sophisticated learning algorithms, have emerged as a
prime candidate to enable intelligence and adaptivity in mod-
ern communication systems with sufficient accuracy. Deep
learning, in particular, with its rich armory of customizable
neural network structures has been a lucrative playground for
researchers from diverse fields including the communication
domain. In addition to the increasing computation power to
run these sophisticated algorithms comfortably, the avail-
ability of quality data is of paramount importance. With the
spread of IoT, more and more performance data is becoming
available from real-world deployments and testbeds. Con-
sidering the growing QoS concerns and demands, availabil-
ity of state-of-the-art learning algorithms and quality data
coupled with rich computation and communication infras-
tructure, we are motivated to devise an adaptive solution
for the delay-sensitive application, based on Deep Neural
Networks (DNN) using a real-world dataset collected for
IEEE 802.15.4 standard.

There have been a number of studies focusing QoS
predictions in wireless and IoT [11]–[18]. Delay predic-
tion is focused in wireless multi-hop routing environments
in [11]–[13]. Data from real-world experiment along with
large-scale simulation is used to predict delay using regres-
sion in industrial WSN [11] with acceptable prediction accu-
racy. However, the limitations of this study include: the
load of running machine learning algorithms is placed on
the sensor nodes, and the intervals for which data collec-
tion is performed are measured as small as a few seconds.
Thus, both limited capacity of sensor devices and lack of
sufficient amount of data makes it very difficult to achieve
even moderately generalizable results. The studies [12]–[14]
focus mobile ad-hoc environments, where mobility and path
characteristics are treated as primary concerns in determining
delay. Another important factor is that the data used in these
research efforts is generated using simulations. On the other
hand, the focus in [15] is QoS prediction in IoT environments.
The predictions include service response time and through-
put. However, the approach used is based on matrix factor-
ization technique and limited to missing value predictions
in a data matrix containing values for both response time
and throughput. The metrics focused in [16]–[18] include
reliability, lifetime, transmission power, distance and energy
in WSN. These studies use neural networks to predict the
metrics in focus. However, the major limitation is the number

of parameters available for making adequately informed pre-
dictions. In addition in order to predict one metric at the
sender-side (e.g., packet loss ratio), the receiver-side quan-
tities (e.g., number of erroneous packets and signal strength)
are used as input to train the model in [17]. Whereas in [16],
to predict any one of the many metrics, the other ones are
supplied as input to the learning model (e.g., in order to
predict any one of lifetime, distance and transmission power,
the other two are used as input). These kinds of designs ren-
der the effectiveness of learning and applicability of results
as impractical. Moreover, there is no literature that investi-
gates the prediction potential of QoS attributes in relation
to comprehensive communication parameters to achieve a
more accurate, practical and adaptive model.We have already
demonstrated the potential of deep learning in predicting
packet delivery ratio and energy consumption, compared to
legacy regressionmodels [19]. Based on the gaps found in the
literature and our previous work [19], the motivations behind
this study include:
• To avoid using receiver-side parameter configurations to
predict receiver-side QoS metrics,

• Lack in understanding of delay in relation to diverse
communication parameters settings

• Lack in fine-grained analysis of deep learning for
achieving an adequate prediction accuracy

• To remove the barrier of using rich computation as well
as data for by putting the load on remote server instead
of resource-constrained sensor devices

Keeping in view the limitations of existing solutions,
the focus of this paper is predicting delay in IEEE
802.14.5 network under diverse communication parameters
configurations. A number of application areas are identified
to be delay-sensitive and mission-critical (e.g., health-care,
safety and emergency response). In such applications e.g.,
in case of remote intense patient care, a critical event must
be reported to a monitoring point observing a time limit,
to decide a proper action. In addition, this may also involve
varying volumes of data depending on the number and types
of sensing and observations being done. To carry out pre-
dictive modeling of delay using DNN, we contribute the
following:
• Analyze the delay in relation to diverse communication
parameters in order to identify their respective contribu-
tion in determining delay

• Train deep learning models against each individual
parameter to figure out their prediction accuracy

• Identify the critical set of parameters that contribute
categorically in predicting delay

• Carry out a fine-grained analysis of different hyper-
parameters of deep neural networks (e.g., number of
epochs, layers and neurons), and the fraction of data used
to train the learning model, to achieve precise predictive
configurations

To the best of authors’ knowledge, this is the first work that
uses deep learning for data-driven predictions of delay in
IEEE 802.15.4.
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TABLE 1. Communication parameters details.

Rest of this paper is organized as follows: Section II
explains the data used and insights in terms of relationships
among different parameters and delay. Section III details
the adapted DNN. The prediction results and evaluation of
hyper-parameters is presented in section IV. Section V con-
cluded the paper and highlights shortcoming in the current
study and suggests the future work.

II. THE DATASET AND INSIGHTS
A. THE DATA
For the purpose of analysis, predictions, and evaluations a
publicly available dataset of delay measurement in IEEE
802.15.4 network [20] is used. In the experiments, delaymea-
surements were taken for more than 48 thousands configura-
tions of seven communication stack parameters from different
layers. Table 1 summarizes both types of parameters (pre-
configured and per-packet) along with their explanation and
the range of values tried in the experiments. The application
layer parameters include packet Inter-Arrival Time (IAT), and
Payload Size (PS). Medium Access Control (MAC) layer
parameters consist of maximum Queue Size (QS), Maximum
Transmissions (MT) and Retry Delay (RD). At the physical
layer, the parameters are Transmission Power level (TP) and
Distance (DT) between the nodes. All these seven parameters
were pre-configured with certain values detailed in Table 1.
For each configuration of these parameters, 300 packet trans-
missions were done. For each packet transmission, there is
rich meta-information consisting of average Actual Queue
Size (AQS) and average Actual Transmission number (AT).

B. RELATIONSHIP BETWEEN PARAMETERS AND DELAY
In Fig. 1 and Fig. 2, the relationships among the
communication parameters and delay are presented in
2 and 3-dimensions, respectively. The 3-dimensional plots
are used to highlight the complex relationships where a
combination of parameters seem to define the relationship
better than a single parameter. Fig. 1(a) − Fig. 1(i) show
relationships of delay with AQS, PS, IAT, TP, DT, AT, QS,
MT and RD, respectively. The most prominent parameter
that influences the delay values is AQS (Fig. 1(a)), thus
highlighting queuing as the most defining factor for delay.
With the increase in AQS, there is a significant hike in delay
values.

With increase in PS (Fig. 1(b)) the delay increases mono-
tonically. The combined effect of AQS and PS is shown
in Fig. 2(a) with a consistent drop in delay as AQS and
PS decrease. For IAT (Fig. 1(c)), the values of delay keep
decreasing with the decrease in traffic rate at the application.
However, the variation, when IAT is 20 or more, is very small.
To better capture the trend IAT is also plotted with AQS
(Fig. 2(b)) and the density of higher delay values is when
IAT is 20 or less. In Fig. 2(c) delay is plotted against the
combination of IAT and PS, confirming the same trend as
witnessed previously. Thus, these three parameters (i.e., AQS,
PS, and IAT) seem to have a fairly consistent relationship
with the delay. In the case of TP (Fig. 1(d)), the delay tends
to be higher when TP is minimum (i.e., 3). This is due
to retransmissions as the TP is not adequate to guarantee
successful transmission. However, as TP rises beyond 7, its
relationship with delay does not change much. DT (Fig. 1(e))
does not seem to have any definitive relationship with delay
because of the dominance of queuing factor.

The relationships of AT and MT with delay are shown
in Fig. 1(f) and Fig. 1(g). MT is a pre-configured parameter
with discrete values (i.e., 1, 3, and 5), whereas AT is the
average of the actual number of transmissions made and rep-
resents per-packet values. Since the number of values tried for
MT are limited, the relationship of both AT andMT is further
studied alongside AQS. Fig. 2(d) presents the relationship of
MT and AQS with delay and the trend highlights that both
AQS as well as delay tend to grow with increasing value of
MT. Following MT, AT is plotted against delay alongside
AQS in Fig. 2(e). It is apparent that as long as the average
AT remains under a certain level, both AQS and delay do not
vary. However, as the average AT rises, there is a consistent
rise in both AQS and delay. The relationship between QS and
delay (Fig. 1(g)) also suggests a direct proportion. However,
the availability of a fine-grained parameter AQS renders QS
less effective. The relationship of RD with delay is shown
in Fig. 1(i). Although RD directly influences the delay in
case of retransmissions, however, the results (Fig. 1(i)) do not
convey much information because the dataset contains only
two variations of RD values (i.e., 30 and 60). Fig. 2(f) shows
a confusion matrix highlighting the correlations between
the communication parameters and actual delay values. The
dominance of AQS over other parameters is clear with a
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FIGURE 1. Relationship between communication parameters and delay. (a) AQS vs delay. (b) PS vs delay. (c) IAT vs delay. (d) TP vs delay. (e) DT vs
delay. (f) AT vs delay. (g) MT vs delay. (h) QS vs delay. (i) RD vs delay.

correlation of 0.91. The confusion matrix also confirms the
positive (AQS, QS, PS, and MT) and negative (IAT and
TP) correlations of the parameters under consideration. The
weaker correlation between DT and RD is also apparent.
Whereas, a lower negative correlation of AT indicates the
complexity of its correlation with delay.

In summary, both Fig. 1 and Fig. 2 demonstrate the rela-
tionship among delay and different communication parame-
ters, motivating the use of deep learning in predicting delay
based on these parameters.

III. SYSTEM MODEL
A. APPLICATION FRAMEWORK
The application scenario considered in this study comprises
an intelligent healthcare systemwhere various delay-sensitive
operations, for example, critical patient care, remote monitor-
ing, hospital equipment management and emergency services

are running. Delay, beyond a certain limit, can have fatal con-
sequences. Performance data from multiple sites is periodi-
cally communicated to the remote server where the adopted
DNN is trained to predict delay and send back the recom-
mended values of different parameters considering the delay
bounds. The application model is described in Fig. 3.

B. DEEP NEURAL NETWORK
DNN is adapted for modeling the predictive relationships
between the stack parameters and delay. Since there are nine
input parameters (seven pre-configured and two per-packet)
and one prediction target, the feature vector is represented as:

(Pn,1,Pn,2, . . . ,Pn,9,D) (1)

where P, n and D represent the features (parameters), tuple
number in the data which are 48384 to be exact and the
prediction target (delay), respectively. Data is divided into
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FIGURE 2. Relationships between communication parameters and delay. (a)AQS and PS vs delay. (b) AQS and IAT vs delay.
(c) PS and IAT vs delay. (d) AQS and MT vs delay. (e) AQS and AT vs delay. (f) Correlation matrix.

three fragments where 50% is used for training, 20% is used
for validation, and 30% for testing the model. As regard
DNN hyper-parameters; the number of layers, neurons per
layer, epochs, and learning rate are set to 10, 64 and 2000,
and 0.001, respectively. The activation function used is rec-
tified linear unit since the prediction target is continuous

in nature. These hyper-parameters are chosen empirically
to facilitate unconstrained learning with a sufficiently large
network. A fine-grained analysis of these hyper-parameters,
as well as the fraction of training data, is carried out in
section IV-B, however. The computation in DNN is car-
ried out in two phases regarded as forward and backward
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FIGURE 3. System model.

propagation, respectively. A forward pass is completed using
output vector O calculation at a layer l:

O[l] = W[l] · X[l−1] + c[l] , (2)

where W represent weights given to the input feature vec-
tor X , and c is the parameter of regression. The activation
function f is applied to this raw output O to calculate the
actual output X of the current layer which also behaves as
input to the next layer.

X[l] = f[l] (O[l] ), (3)

The completion of the forward pass is followed by back-
ward pass which is used to update weights through computa-
tion of the rate of change d for O,W , c,X and f :

dO[l] = dX[l] × df[l] (O[l] ). (4)

dW[l] =
1
n
(dO[l] · X[l].T ), (5)

dc[l] =
1
n

n∑
i=1

O[l] , (6)

dX[l−1] = W[l].T · dX[l] , (7)

where n represents the number of records in the training
data. Following the backward propagation, gradient descent
is performed till convergence, updating W and b, aiming the
error minimization:

W[l] = W[l] − α × dW[l] . (8)

b[l] = b[l] − α × dc[l] . (9)

C. EVALUATION
In order to analyze the prediction accuracy of the DNN
Root Mean Absolute Error (MAE) and Mean Absolute Per-
centage Error (MAPE) are used as shown in (10) and (11),
respectively:

MAE =
1
nt

nt∑
i=1

|Ei| (10)

MAPE =
100
nt

nt∑
i=1

|Ei|
Yi
. (11)

whereas,

Ei = Yi − Y
′
i , (12)

where i represents the row index, Yi and Y ′i represent actual
and predicted values for ith row in training data and nt is the
number of training examples.

IV. PERFORMANCE EVALUATION
In the following, we discuss the prediction results, character-
ize the error, and carry out a fine-grained analysis of DNN.

A. EFFECTS OF PARAMETERS AND THEIR COMBINATIONS
Fig. 4 presents the prediction results for different communi-
cation parameters and their combinations. MAE against each
parameter is shown in Fig. 4(a). It is evident that AQS (with
MAE of 29.7) outperforms all other parameters and is at least
3.8 times more accurate than any other parameter. Next is AT
that achieves an MAE of 113.2. It is interesting to note that
the top two parameters in achieving good prediction accuracy
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FIGURE 4. Prediction results for individual and combinations of communication parameters. (a) MAE for individual parameters.
(b) Absolute error for individual parameters. (c) MAE for combinations of parameters. (d) Absolute error for combinations of
parameters.

are the ones that contain fine-grained per-packet values as
against the other pre-configured parameters. Following AQS
and AT, are IAT and QS, achieving accuracies of 116.4 and
151.4, respectively. TP, PS, DT, MT, and RD are next in the
sequence, all achieving almost similar accuracies. In order to
present a closer perspective, box plots are used to highlight
the absolute error quartiles in Fig. 4(b). The third quartiles
of errors for AQS, AT, IAT, QS, TP, PS, DT, MT and RD
are 4.8, 96.5, 96.0, 169.5, 100.5, 140.0, 124.5, 114.5, and
107.0, respectively. This indicates that the spread of error
is not necessarily aligned with MAE. Fig. 4(c) presents the
prediction error for the combinations of different features.
Starting with AQS, iteratively the next best features that
minimize the errors are AT, IAT, RD, PS, DT, TP, QS and
MT, offering improvements of 45%, 4%, 14%, 5%, 4%,
7% and 3%, respectively. Therefore, it is evident that all
features make some contribution in predicting delay thought
the proportional contributionmonotonically keeps decreasing
with the addition of features. The confusion matrix (Fig. 2(f))

shows the correlations of the parameters with actual as well as
predicted delay values and the values for both actual as well
as predicted values are the same. Fig. 4(d) shows the box plots
for the same combinations of parameters. The third quartiles
of errors with addition of AT, IAT, RD, PS, DT, TP, QS and
MT are 4.96, 4.32, 4.47, 4.26, 2.26, 2.71, 2.24, 2.48 and 2.25,
respectively. Therefore, it can be concluded that the 75th error
percentile of 2.24 ms, where delay ranges between 7 and
3100 ms, indicates an excellent prediction accuracy.

Fig. 5 further characterizes the prediction error. Actual
values are plotted against predicted values in Fig. 5(a) and
Fig. 5(b) in the form of scatter-plot and line-plot, respectively.
Both plots indicate highly precise prediction results. A his-
togram and CDF of percentage errors are shown in Fig. 5(c),
where 50, 75 and 90th percentiles indicate that the predicted
values are within at least 5.2, 10.3 and 17% of the actual
values, respectively.

A comparison of different machine learning models is
shown in Fig. 5(d) Values of MAE indicate the superiority
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FIGURE 5. Prediction results of DNN. (a)Actual values vs Predicted values. (b) Actual values vs Predicted values. (c) Mean
percentage error. (d) Comparison of machine learning models.

FIGURE 6. Epochs vs training data vs delay.

of DNN where linear regression, multi-layer perceptron,
boosted trees regression, baseline neural network, decision
trees regression, and DNN achieveMAE values of 51.0, 15.9,
13.5, 11.3, 10.5, and 7.8, respectively.

FIGURE 7. Epochs vs number of hidden layers vs delay.

B. EFFECT OF DIMENSIONALITY
The results for fine-tuned DNN are shown in Fig. 8. The per-
formance of DNNwith varying sizes of training data, number
of layer and number of neurons per layer are illustrated
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FIGURE 8. Epochs vs neurons per layer vs delay.

in Fig. 8(a) − Fig. 8(c), respectively. According to Fig. 8(a)
the prediction error decreases as the fraction of data used for
training theDNNmodel increase. TheMAE improves rapidly
when training data is increased from 1 to 10%. However,
the improvement after 10% is only fractional. This shows
that DNN can perform very well even with a small fraction
of data is used for training the model. It is further evident
that the number of epochs to achieve stable results is around
600, after which no further significant improvement is gained.
In Fig. 8(b), results are presented for the number of layers
using 10% of the data for training the model. It is clear
that the most significant gain in MAE is achieved when the
model moves from zero hidden layers to one. Addition of
any further hidden layer after the first layer again fails to
contribute any significant improvement. It is further observed
that 400 epochs suffice to reach a stable value forMAE.Using
the fine-grained observations of 10% training data and a
single hidden layer, Fig. 8(c) highlights the effect of different
numbers of neurons used in the hidden layer. It is clear from
Fig. 8(c) that 15 neurons suffice to achieve a stable value for
MAE with 1000 epochs. However, as the number of neurons
is increased beyond 35, the numbers of epochs to achieve a
stable figure for MAE decrease.

In summary, from the fine-grained analysis of DNN, it can
be concluded that a small fraction of training data (10%),
a single hidden layer, and a very few neurons (15) achieve
sufficient prediction accuracy. This observation strengthens
the case for adopting DNN for QoS predictions without need-
ing a huge amount of data and affording a very complex and
time-consuming neural network structure and computation.

V. CONCLUSION
In this paper, DNN is adopted for predicting delay in IEEE
802.15.4 based applications in IoT. Results reveal that DNN
achieves a prediction accuracy of over 98% in predicting
delay. Different hyper-parameters are fine-tuned in order to
further understand the behavior of DNN. The fine-grained
analysis revealed that DNN achieves a very good prediction
accuracy even when trained with 10% of the data, a single
hidden layer with just 15 neurons. A comparison ofDNNwith
other popular machine learning models is also carried out.

The results from this study strengthen the fact that deep learn-
ing possesses the potential to predict QoS metrics in IoT with
very good accuracy without having to deal with intractable
NP-hard optimization problems. In the future, we aim to
develop a working prototype of the proposed approach with
a focus on factors surrounding the frequency of invocation of
DNN, the choice of data in the temporal domain and others.
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