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ABSTRACT In a time-to-event model, Cox proportional hazards (CoxPH) analysis is the most frequently
used method for estimating overall survival. However, the CoxPH analysis is limited to explaining only
single or partial risk effects among clinicopathological factors. We introduced DeepCoxPH, a risk score
estimation strategy based on deep learning (DL) and CoxPH, to improve the risk stratification for overall
survival analysis. The abstracted weight from the DL and the hazard ratios from the CoxPHwere transformed
into the risk score estimation in the fully adjusted model. The DeepCoxPH exhibited more comprehensive
risk weight estimation for overall survival. The DeepCoxPH was applied to predict ten-year overall survival
in breast cancer. A Kaplan–Meier curve revealed that the DeepCoxPH improved discrimination of high-
and low-risk stratification in both short- and long-term breast cancer for overall survival. To the best of our
knowledge, this is the first report of the risk score estimation based on machine learning and parametric-
statistical analysis aimed at identifying risk stratification for overall survival through the consideration of
comprehensive risk effects among multiple clinicopathological factors.

INDEX TERMS Deep learning, CoxPH, risk stratification, overall survival.

I. INTRODUCTION
The identification of complex multifactor associations in
diseases is among the crucial challenges facing human
health [1]–[4]. Overall survival is a major primary endpoint
for evaluating the outcome of a specific disease and deter-
mining its complex multifactor associations [5], [6]. Survival
analysis based on a time-to-events model has been widely
used to yield reliability models in biomedicine [7]–[9].

Breast cancer is themost commonly diagnosedmalignancy
among women worldwide. In Taiwan, the standardized breast
cancer incidence of 2013 was 93 per 100,000 person-years
(1.8 fold higher than that in 1997), and breast cancer has
been the fourth leading cause of cancer deaths since 2005
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(12.9–18.2 per 100,000 people) [10]. The disease burden of
breast cancer is associated with human development [11];
thus, more precise methods for prognosis estimation are
required. Several interpretations of associations between
breast cancer prognosis and clinicopathological characteris-
tics can be found in the literature [12]–[14].

Such survival analyses incorporate Cox models, Kaplan–
Meier plots, log-rank tests, and survival tree analyses
[15], [16]. Among Cox models, the Cox proportional hazards
(CoxPH) model is the most commonly used survival analysis
method in biostatistics [17], which examines time-varying
effects in disease progression or mortality [15]. However,
a CoxPH model can only singly or partially explain the
risk effects of clinicopathological factors in a disease model.
Comprehensive assessment of risk and interaction effects
remains one of the greatest challenges for CoxPH analysis.
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FIGURE 1. Illustration of deepCoxPH computation.

Deep learning (DL) is a promising machine-learning tech-
nology [18] that employs multilayered abstraction levels to
learn input data representations. For classification problems,
DL can discriminate and suppress irrelevant variations in the
higher layers of representation to amplify characteristics of
input data. DL has made major advances in bioinformat-
ics [19] and numerous fields of science and engineering [20].

In this study, we proposed a comprehensive risk
weight assessment strategy for overall survival estimation.
A DeepCoxPH risk score estimation strategy based on
DL and parametric statistical analysis was introduced to
improve high-risk stratification for overall survival analysis.
Abstracted weights were obtained from a network of DL
and hazard ratios (HRs) were calculated by CoxPH. Deep-
CoxPH employed matrix operation to combine the abstracted
weights with the hazard ratios and then transformed them
into risk score estimation. We demonstrated that DeepCoxPH
can improve risk stratification for overall survival through
consideration of comprehensive risk effects among multi-
ple clinicopathological factors. DeepCoxPH exhibited more
comprehensive risk weight estimation for overall survival.

II. METHODS
TheDeepCoxPH risk score estimation strategy consists of DL
and a CoxPHmodel. DeepCoxPH—illustrated in Fig. 1—can
be divided into the following three parts. 1) Deep neural net-
works (Symbol A in Fig. 1): the DLwas used to train an effec-
tive network with a minimum classification error cost. DL
weights were obtained from the trained network. 2) CoxPH
was used to calculate HRs (Symbol B in Fig. 1). 3) The DL
weights and HRs of all clinicopathological variables were

ranked in ascending order and then divided into three risk
degrees according to the ranking order. Thus, HR and DL
weight risk degrees can be combined throughmatrix multipli-
cation (i.e., the DeepCoxPH multiplication model) or matrix
addition (i.e., the DeepCoxPH addition model) to identify
high-risk stratification for overall survival. The flowchart of
DeepCoxPH is shown in Fig. 2; all steps are detailed in the
following subsection.

A. DEEP NEURAL NETWORKS
DL is multileveled approach to representation learning within
a network composed of nonlinear models that transform a
representation at one level into another at a higher, more
abstract level. A complex function y = f (x; θ ), f : RN →
R2, where x denotes the input data and θ is the network
parameters, can be learned through sufficient transformations
of the representation at more abstract levels. The objective of
DL is to produce the optimal parameter θ .

In this study, a deep neural network (DNN) was used to
produce a classification and then obtain a deep abstraction to
identify the factor importance associated with risk stratifica-
tion (symbol A in Fig. 1). DNN consists of an input layer,
numerous hidden layers, and an output layer, with the fully
connection between all layers. DNN comprises three steps:
(a) feedforward network, (b) backpropagation, and (c) update
parameters. In feedforward network, each layer includes neu-
rons that compose a dot product between the weight w and
input vector x, to which a bias b is added. Its representation
is z = w · x+b, where w is a weight vector, x an input vector,
and b a bias vector. Each neuron behavior is determined by a
non-linearity (activation) function. We used a sigmoid-based
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FIGURE 2. Flowchart of deepCoxPH.

logistic function (Eq. 1) as the activation function to obtain
nonlinear mapping.

σ (z) =
1

1+ e−z
(1)

In the output layer (denoted as L), a softmax function σ L

was used to handle binary classification (i.e., yes or no).
The softmax function normalizes the outputs into the values
between 0 and 1 (Eq. 2). The probability of this input being
in a particular class can thus be obtained.

σ L(z)j =
ezj∑K
k e

zk
for j = 1, . . . ,K (2)

A vector y in the output layer is obtained through a recur-
sion function:

y = f (x)

= σ L
(
W L
· · · σ

(
W 2
· σ
(
W 1x + b1

)
+ b2

)
· · · + bL

)
(3)

where x is a vector in the input layer, W l is a weight matrix
in layer l, and bl is a bias vector in layer l.
The cost can be evaluated by comparing outputs with the

correct answer (target) to obtain error derivatives using the

cross-entropy function C =-logyr , where r = 0 indicates
target as control group, and r = 1 indicates target as case
group. A mini-batch stochastic gradient descent procedure
with momentum was used for backpropagation and update
parameters. Therefore, the cost based on a mini-batch update
strategy can be formulated as follows:

C = −
1
m

s+m∑
i=s

logyir (4)

where m is the mini-batch size, i is the index of the training
data sample, and s is the sample’s start index according to the
mini-batch. To backpropagate gradients in DNN, the weight
W and bias b were updated using (5) and (6), respectively.

W = W − η
∂C
∂W

(5)

b = b− η
∂C
∂b

(6)

where η denotes the learning rate.
We used epochs to run the DNN multiple times and obtain

the optimal parameters θ̂ . One epoch is defined as when the
training dataset passes forward and backward through the
DNN only once. We used 80% of the dataset as training data
for the DNN and 20% as validation data for early stopping.
The optimal parameters θ̂ =

{
Ŵ 1, b̂1, Ŵ 2, b̂2, . . . , Ŵ L , b̂L

}
may be obtained when the DNN is stopped.

A = f
(
Ŵ 1

)
=

[ ∑m
i=1 ŵ

1
1i

m
· · ·

∑m
i=1 ŵ

1
ni

m

]
(7)

The DL-weights of all clinicopathological variables were
ranked in ascending order and then categorized into three
risk degrees according to this ranking order. Finally, the risk
degree of DL-weight, expressed as the vector Drisk_degree,
could be obtained through a ranking approach (Eq. 8).

Driskdegree = Ranking
(
AT
)

=

 d1...
dn

 (8)

B. CoxPH MODEL
Multifactor effects on overall survival are considered simul-
taneously in a CoxPH model, thus enabling the influence of
each clinicopathological variables of disease progression and
mortality at a particular observation time to be determined.
A hazard rate is commonly used to determine the effect of
individual clinicopathological variables. The associated clin-
icopathological variables in the survival analysis are usually
termed covariates. In the CoxPHmodel, a hazard is estimated
as follows:

h (t) = h0 (t) exp(β1x1 + β2x2 + · · · + βkxk ) (9)

where t represents the survival time, and h(t) is the hazard
function determined by a set of k covariates (x1, x2, . . . , xp).
The coefficients (b1, b2, . . . , bp) measure the effect
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(i.e., the effect size) of covariates. The term h0 is called the
baseline hazard and represents the hazard value if all xi equal
0 (i.e., the quantity exp(0) equals 1). Because a hazard may
vary over time, the t in h(t) represents time-varying effects.
The CoxPH model provides estimates of β1, . . . , βk but no
direct estimate of h0(t), that is, the baseline hazard. Formally,
h0(t) is not estimated directly but can be obtained as an
estimate of cumulative hazardH0(t) and, consequently, of the
baseline survivor function S0(t).
Given two subjects k and k’ that differ in their x-values,

the corresponding hazard function can be formulated as the
following hazard ratio for the two observations k: hk (t) and
k’: hk ′ (t).

hr =
hk (t)
hk ′ (t)

=
h0 (t) e

∑n
i=1 βx

h0 (t) e
∑n

i=1 βx
′

=
e
∑n

i=1 βx

e
∑n

i=1 βx
′

(10)

The baseline hazard is an ‘‘intercept’’ term that varies with
time, and the hazard logarithm of xi variables is estimated
using multiple linear regression of the CoxPH model accord-
ing to the baseline hazard. The quantities ebi are HRs. A bi
greater than 0 or, equivalently, a HR greater than 1 indicates
an increasing hazard event and, therefore, a decreasing sur-
vival length as the ith covariate increases. Therefore, a HR
greater than 1 indicates a covariate highly associated with the
event probability and thus negatively associated with survival
length. Whereas an HR equal to 1 indicates no effect, an HR
less than 1 indicates a reduced hazard and an HR greater than
1 indicates an increased hazard.

H =
[
hr1 · · · hrn

]
(11)

The HRs of all clinicopathological variables are ranked in
ascending order and then categorized into three risk degrees
according to this ranking order. Finally, the risk degree of
the CoxPH HR, expressed as the vector Hriskdegree, can be
obtained through a ranking approach (Eq. 12; symbol B
in Fig. 1).

Hriskdegree = Ranking
(
HT

)
=

 h1...
hn

 (12)

C. DeepCoxPH
The HR from CoxPH model and DL-weight from DL model
were abstracted and ranked in ascending order. We then
categorized the HRs and DL-weights into three risk degrees
according to the ranking order. Each HR and DL-weight was
converted into a risk degree and then entered in the risk score
calculation. Using HR and DL-weight risk degrees, we cal-
culated four risk scores by means of the CoxPH HR model,
DL-weight model, DeepCoxPH multiplication model, and

DeepCoxPH additionmodel. The DeepCoxPHmultiplication
model is calculated using Eq. 13, as follows:

DeepCoxPHmultiplication

= Hriskdegree × Drisksdegree =

 h1...
hn

×
 d1...
dn

=
 h1 × d1...

hn × dn


(13)

The DeepCoxPH addition model is calculated using Eq. 14,
as follows:

DeepCoxPHaddition

= Hriskdegree + Driskdegree =

 h1...
hn

+
 d1...
dn

=
 h1 + d1...

hn + dn


(14)

The fully adjusted model included all the clinicopatho-
logical factors in the multivariate CoxPH model. We then
constructed risk schemas by adding the risk degree for
each clinicopathological factor in the fully adjusted model.
Receiver operating characteristic curve (ROC) analysis was
used to calculate the sensitivity and specificity corresponding
to overall survival dichotomous for each score in the range
of the risk score schema. The best cutoff point for each risk
score model was chosen according to the highest sum of
sensitivity and specificity in ROC analysis. Each risk schema
was transformed into risk stratifications using the best cut-
off point by the corresponding risk degree model (CoxPH
HR, DL-weight, DeepCoxPH multiplication, or DeepCoxPH
addition models). The performance of each risk stratifica-
tion schema was evaluated using an overall survival func-
tion Kaplan–Meier curve between high- and low-risk groups,
which was dichotomous according to different risk stratifica-
tion schemas. The risk function between high and low risk
in each risk stratification schema was tested using CoxPH
analysis to ensure risk effects in high-risk strata.

D. STATISTICAL ANALYSIS
The distribution difference between cases and controls were
evaluated using the chi-square test. Univariate and multivari-
ate CoxPH models were used to estimate the association of
clinicopathological factors in breast cancer overall survival.
The relationship between the risk scores of each model were
summarized and visualized using a matrix plot. The postesti-
mation of each schema was determined using Akaike’s infor-
mation criterion (AIC) and Bayesian information criterion
(BIC) values. Schemas with lower AIC and BIC values were
considered more likely to be the true model. The level of
significance was set at P≤ 0.05. All statistical analyses were
performed using STATA (version 11.1).

III. RESULTS
A. DATASETS
All of the data were collected from the single-center Tai-
wan Breast Cancer Consortium (TBCC) database, which
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is prospectively maintained by the Breast Surgery Division
of Kaohsiung Medical University Hospital (IRB number:
KMUIRB990174). Patients diagnosed with ductal carcinoma
in situ or who had incomplete clinicopathological data were
excluded. A total of 1646 breast cancer patients were included
in an age-matching case–control procedure. A case was
defined as a patient who expired or whose disease progressed
within the follow-up period, whereas a control was defined
as a patient who survived with no progression during the
follow-up period. The case–control ratio was set at 1:1.
After the age-matching procedure, a total of 458 patients
were included, with 229 cases and 229 controls. All case
and control patients were tracked from 2000 to 2016 using
records in the TBCC database. The clinicopathological fac-
tors in this dataset were age, grade, estrogen receptor (ER),
progesterone receptor (PR), human epidermal growth fac-
tor receptor 2 (HER 2), tumor size (AJCC (American Joint
Committee on Cancer) stage), lymph node (AJCC stage),
lymph vascular invasion (LVI) status, dermal invasion, per-
ineural invasion, operation method, radiotherapy, chemother-
apy, and hormone therapy. The 10-year overall survival of
all breast cancer subjects was tracked from the date of first
diagnosis to the date of death or the end of the study.
Patients lost to follow-up before the end of the study were
censored.

The distribution of all clinicopathological characteris-
tics between the case and control groups is summarized
in Table 1. The results indicated that the case group had
a significantly higher proportion of the following fac-
tors: HER2 positive, ER positive, PR positive, tumor size
with AJCC stage T3–T4, positive lymph node invasion,
positive dermal invasion, positive neural invasion, with
chemotherapy, without hormone therapy, and without target
therapy.

B. CoxPH MODEL FOR OVERALL SURVIVAL IN BREAST
CANCER
The association between each clinicopathological factor and
overall survival in breast cancer is shown in Table 2. The
results of both univariate and multivariate Cox regression
analysis indicated that patients with the following character-
istics had a higher risk of all-cause mortality: grade III (crude
HR= 1.64, 95% CI= 1.25–2.16, P < 0.001; adjusted HR=
1.50, 95% CI = 1.12–2.02, P < 0.001); PR positive (crude
HR = 1.57, 95% CI = 1.21–2.05, P = 0.001; adjusted HR
= 1.79, 95% CI = 1.17–2.73, P = 0.007); T3–T4 tumor size
(crude HR= 1.74, 95% CI= 1.22–2.49, P = 0.002; adjusted
HR = 1.60, 95% CI = 1.04–2.46, P = 0.007); perineural
invasion (crude HR= 1.45, 95% CI= 1.06–2.45, P = 0.021;
adjusted HR = 1.45, 95% CI = 1.02–2.05, P = 0.038).

C. ESTIMATED RISK SCORE SCHEMAS BASED ON DL AND
Cox MULTIVARIATE REGRESSION MODEL
The optimal DL model, identified using a grid search tech-
nique, had the following characteristics: hidden layer size
= 15 (the layer unit sizes were 30, 30, 30, 20, 20, 20, 20,

20, 20, 20, 15, 15, 15, 10, and 10), learning rate (η) =
0.01, and mini-batch = 5. Learning in the optimal model
was learning at 1460 epochs through early stopping on the
validation and training sets. The estimated risk scores and
degrees were derived from HRs by CoxPH regression anal-
ysis, DL-weight value, and multiplication and addition of
both risk degrees (Table 3). According to the ranking order
of CoxPH HRs, grade III, no target therapy, lymph node
invasion, age over 50, and perineural invasion were assigned
a risk degree of 1. The clinicopathological factors assigned
a risk degree of 2 were ER negative, no radiotherapy, lymph
node invasion, no hormone therapy, and HER2 negative. The
remaining clinicopathological factors, including PR nega-
tive, total mastectomy, dermal invasion, larger tumor size,
and no chemotherapy, were assigned a risk degree of 3.
Furthermore, the DL-weight ranking order assigned a risk
degree of 1 to age over 50, dermal invasion, HER2 negative,
no target therapy, and no chemotherapy, whereas larger tumor
size, lymph node invasion, perineural invasion, no radio-
therapy, and total mastectomy were assigned a risk degree
of 2. The remaining clinicopathological factors, including
PR negative, lymph node invasion, no hormone therapy,
ER negative, and grade III were assigned a risk degree
of 3.

D. COMPARISON OF FOUR RISK STRATIFICATION
SCHEMAS FOR OVERALL SURVIVAL IN BREAST CANCER
For each model, the summation of the risk degrees in the
fully adjusted model generated a risk score for each patient.
The relationship between the risk scores from each model
are summarized in Fig. 3. The slopes from the lower left
to the upper right indicate the positive correlation between
the risk scores. All the models showed a positive and non-
conflicting mutual correlation. When the tighter together the
points are clustered, the correlation between the risk scores is
strong, revelingDeepCoxPH additionmodel has the strongest
positive correlations between the risk scores. Next, four risk
stratification schemas were devised according to the best
cutoff value from ROC analysis using the risk degree sum-
mation in the fully adjusted model for each schema. The
risk stratification of the DeepCoxPH multiplication model
(risk degree multiplication) showed the highest area under
the curve (AUC) in ROC (AUC = 0.672, 95% CI = 0.623–
0.721), followed by the DL-weight model (DL-weight risk
degree; AUC = 0.671, 95% CI = 0.621–0.720), the Deep-
CoxPH addition model of (risk degree addition; AUC =
0.669, 95% CI = 0.620–0.718), and the CoxPH HR model
(CoxPH HR risk degree model; AUC = 0.660, 85% CI =
0.611–0.710). As shown in Fig. 4, although the risk stratifica-
tion of the CoxPHHRmodel (sensitivity= 79.5%, specificity
= 44.5%) and the DL-weight model (sensitivity = 83.8%,
specificity = 45.4%) achieved a higher sensitivity, the Deep-
CoxPH multiplication model (sensitivity = 64.6%, speci-
ficity = 63.3%) and addition model (sensitivity = 64.6%,
specificity = 63.3%) performed better for specificity in both
high- and low-risk stratification. Our results demonstrated
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TABLE 1. Clinicopathological factors of age-matched case-control patients in breast cancer.

that the DeepCoxPH model (multiplication and addition) can
provide better recognition in both low- and high-risk stratifi-
cation for breast cancer overall survival.

The Kaplan–Meier curves in Fig. 5 illustrate consistent
results for the four risk stratification schemas between high-
and low-risk strata. According to these curves, the DL-weight
model achieved suitably dichotomous results for breast can-
cer overall survival. The hazard function analysis for high-
and low-risk strata in Fig. 5 displays theHR risk ratio between
both strata. All the high-risk stratas which is stratified using
the four risk stratification schema, obtained higher hazard
function in breast cancer overall survival compared to low-
risk stratas. The DL-weight model achieved the highest HR
[HR (95% CI) = 1.96 (1.38–2.79), P < 0.001], followed

by the DeepCoxPH addition model [HR (95% CI) = 1.85
(1.41–2.44), P < 0.001], the CoxPH HR model [HR (95%
CI) = 1.75 (1.27–2.42), P = 0.001], and the DeepCoxPH
multiplication model [HR (95% CI) = 1.67 (1.28–2.19),
P < 0.001]. The postestimation results showed that the
DeepCoxPH addition model obtained lower AIC and BIC
values (AIC = 2160.110, BIC = 2164.206). Analysis with
the Kaplan–Meier method indicated that the DeepCoxPH
addition model has superior risk stratification ability than
the CoxPH HR and DL-weight schemas. Overall, the Deep-
CoxPH addition model has superior risk stratification ability
for 10-year overall survival in breast cancer patients through
indication of the risk degrees of 15 clinicopathological
factors.
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TABLE 2. CoxPH regression model for overall survival in breast cancer.

TABLE 3. Estimated risk score schemas based on DL and Cox multivariate regression model.

IV. DISCUSSION
In this study, we introduced a DeepCoxPH method for iden-
tifying overall breast cancer survival risk stratification. For
this, CoxPH can estimate the HRs of all clinicopathological
variables for overall survival. The HRs can determine the
effect of individual clinicopathological variables. DL pro-
duced a classification and then obtained a deep abstraction
to identify the factor importance associated with risk strat-
ification. The HRs from CoxPH and deep abstraction from
DL were ranked in ascending order to generate the HR
and DL weights. DeepCoxPH employed matrix operations
to combine the HR and DL weights and then transformed
them into risk score estimations. The DeepCoxPH method
was based on a DL approach to address weak assessment of
risk and interaction effects associated with CoxPH methods.
The DL weights potentially include the interaction effects
between molecular subtypes and treatment effects that are

generally neglected by CoxPH. Applying DeepCoxPH,
parameters derived from CoxPH are improved by abstracted
DL weights, enabling DeepCoxPH to achieve more compre-
hensive risk weight estimation for overall survival. Perfor-
mance evaluation based on 10-year overall survival using
breast cancer datasets confirmed that DeepCoxPH satisfacto-
rily identified risk effects amongmultiple clinicopathological
factors.

We employed sensitivity and specificity to compare the
performance of the DeepCoxPH model, DL model, and
CoxPH model. Sensitivity and specificity are statistical clas-
sification functions of the performance of a binary classi-
fication test. Sensitivity measures the proportion of actual
progression correctly identified as high-risk stratification—
also known as the true positive rate. Specificity measures
the proportion of actual survival correctly identified as low-
risk stratification—also known as the true negative rate.
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FIGURE 3. The relationship between risk scores from CoxPH HR,
DL-weight, deepCoxPH (multiplication), and deepCoxPH (addition)
models.

FIGURE 4. Comparison of risk score schema for risk stratification by
sensitivity and specificity. The white bars indicate the sensitivities of the
four models, and the gray bars indicate their specificities.

The high sensitivity results in the DL and CoxPHmodels may
have contributed to the higher precision in high-risk subject
recognition; however, the low specificity may have led to
more false positive results. Although results with high sensi-
tivity are desired, low specificity can lead to clinical burden.
TheDeepCoxPHmodel obtained higher sensitivity and speci-
ficity than did the CoxPH HR model. Hence, we combined
the DL and CoxPH approach to improve the stratification
ability for breast cancer overall survival risk classification.
Our results revealed that DeepCoxPH performed effectively
as a stratification approach and provided more comprehen-
sive risk weighting in overall survival estimation. Moreover,
the DeepCoxPH model results provided superior recognition
in both low- and high-risk stratification for breast cancer
overall survival.

All risk stratification schema used a fully adjusted model
to achieve more comprehensive estimation of risk for all
clinicopathological factors. Alongside advances in oncology
research, inclusion of genomes and other biological factors
must be verified through similar approaches in further stud-
ies. DeepCoxPH retained the benefits of DL andCoxPHmod-
els. First, combined use of CoxPH and DL in a fully adjusted
model could provide comprehensive risk estimation owing to
the advantages of both methods. An alternative risk stratifi-
cation schema could provide superior alternatives in clinical
practice and could be used as an assisted alert management
tool for clinical follow-up risk assessment. Using an appropri-
ate risk stratification schema for breast cancer characteristics
could assist oncologists and clinicians in follow-up and mak-
ing treatment decisions. Second, DeepCoxPH is a model-free

FIGURE 5. Comparison of Kaplan-Meier curves based on four models for
high-risk and low-risk strata based on risk stratification.

method that does not require a specific mode of inheritance.
Designing suitable feature extractors by using the conven-
tional CoxPH model requires considerable domain expertise
related to the disease in question; however, this requirement is
unnecessary when suitable features are learned automatically
through a DL procedure. Third, DL deep networks have non-
parametric advantages over conventional learning algorithms
that do not use distributed representations. A nonparametric
method does not require that the data distribution be assumed
before statistical analysis; this prevents problems associated
with the use of parametric statistics for overall survival.

We evaluated overall survival in breast cancer by means
of the common clinicopathological factors through both a
machine learning and a parametric-statistical approach, mak-
ing use of the TBCC database [21]. Other studies have pro-
posed various prognostic factors for breast cancer overall
survival, in which these clinicopathological factors usually
played a crucial role in clinical treatment decisions [22]. The
most common clinicopathological factors are the molecular
subtypes of breast cancer, including ER, PR, HER2, Ki-
67 level, and p53 genemutation [23], [24]. Apart frommolec-
ular weight, tumor burden factors in breast cancer survival
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prognosis such as tumor size, lymph node metastases, dermal
invasion, and LVI are also considered major discriminant
factors in breast cancer overall survival [25].

Advances in oncological medicine have generally pro-
longed overall survival in breast cancer, resulting in long-term
follow-up of patients with breast cancer. Higher breast cancer
proliferation grade generally show poor survival [26], [27].
Similarly, our results indicated that grade III subjects had
a poor survival outcome in terms of 10-year breast cancer
overall survival. Our findings for tumor size and lymph node
invasion were also consistent with those of other studies [28].
Breast cancer molecular subtype played a major role in breast
cancer prognosis which is mainly based on ER, PR, and
HER2 expression in tumor tissue [29]–[31]. Target therapy
has been the main treatment strategy, especially for HER2
overexpression in breast cancer [32]. The CoxPH HR model
gives a risk degree of 2 and DL-weight model gives a risk
degree of 3 for patients without target therapy. We assume
the DL-weight model might make a comprehensive risk con-
sideration which is potentially including the interaction effect
between molecular subtype and treatment effect that are gen-
erally neglected by CoxPH model [33]. Total mastectomy
showed a highermortality risk in our results, possibly because
most total mastectomy patients would have a larger tumor
size or more malignant characteristics according to the total
mastectomy indications. Whereas LVI and dermal invasion
showed poor survival in breast cancer, consistent with other
findings [28], [34], hormone therapy showed a good overall
survival in breast cancer [35], [36].

V. CONCLUSION
We proposed a new DeepCoxPH method for breast cancer
overall survival risk stratification based on common clinico-
pathological factors. The matrix operations in DeepCoxPH
were able to combine the abstracted risk weights from both
the CoxPH and DL models and then exhibit more com-
prehensive risk weight estimation for overall survival to
yield enhanced risk stratification performance compared with
either the single CoxPH model or the DL model. Overall,
survival estimation usually neglects the potential interaction
between clinicopathological factors in a CoxPH model and
does not consider the time effects in a DL model. Thus, the
DeepCoxPH method offers the advantage of simultaneously
combining both risk weights in the CoxPH and DL models
and of providing more precise risk stratification results for
overall survival using common breast cancer clinicopatholog-
ical factors.
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