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ABSTRACT In this paper, the carrier frequency offset (CFO) estimation bound is presented to assess the CFO
estimation performance of an orthogonal frequency division multiplexing (OFDM)-based single relay net-
work over multipath channels, for which an amplify-and-forward (AF) protocol is adopted. We theoretically
derive the Cramer–Rao bounds (CRBs) of the CFO estimation in multipath channels. Unlike the analysis
in flat fading channels where the CFOs of the two hops can be combined together as a single estimation
parameter, the CFOs of the source-relay (S-R) and the relay-destination (R-D) links are required to be
evaluated separately in multipath channels. The first-order Taylor series expansion is applied to simplify the
calculation of the inverse of the covariance matrix which reflects the correlation of multipath channels and
relay noise. In addition, we derive the modified CRB (MCRB) of the CFO estimation to get more insight into
the influence of the system parameters on the CRB performance. Through computer simulations, we evaluate
the impact of multipath channels, the operating signal-to-noise ratio (SNR), and the number of effective
multipaths on the CFO estimation error in the dual-hop relay transmission.

INDEX TERMS Orthogonal frequency division multiplexing, relay networks, carrier frequency offset,
multipath channels, Cramér-Rao bound

I. INTRODUCTION
With the rapid growth of wireless services, next-generation
wireless systems are expected to provide higher data rates
and better quality of services. Orthogonal frequency division
multiplexing (OFDM) techniques have been widely accepted
as the most promising air interface due to its ability to com-
bat the multipath fading [1]. To further improve reliability,
multiple antennas are commonly employed to perform spa-
tial diversity [2]. However, multiple-antenna systems often
accompany with considerably high implementation cost at
the terminals as the number of antennas increases. Coop-
erative communication, which relies on multiple distributed
relays for data transmissions, is an alternative cost-effective
solution [3]. By exploiting the distributed nature of relays,
a cooperative relay network has a great potential to resist
channel fading and to increase data throughput. As such,
OFDM-based relay networks have also received a lot of
attentions in the applications of multipath environments [4].
In general, wireless relay schemes can be classified into
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two categories: amplify-and-forward (AF) and decode-and-
forward (DF). The AF relay scheme simply retransmits the
amplified version of its received signals to the destination
without causing too much computation effort. On the other
hand, the DF relay scheme firstly decodes and re-encodes
the received signals and then forwards the signals to the
destination, which usually involves higher complexity than
that of the AF scheme. Both of the AF and DF schemes
are popular in wireless relay networks. We will focus on
OFDM-based AF relay networks in this paper, and the study
of the DF scheme is beyond the scope of this paper.

Similar to the OFDM systems, the performance of
OFDM-based AF relay networks is sensitive to the carrier
frequency offset (CFO) problem caused by the mismatch
between the transmitter’s and receiver’s oscillators [5]. The
CFO will destroy the orthogonality of the OFDM signals,
leading to the inter-carrier interference (ICI) and thus dete-
riorating the system performance [6]. Furthermore, the ICI
on subcarriers becomes more severe while the system is
operated in multipath channels [7], [8]. When it comes to
the OFDM-based relay network, multiple CFOs arise due
to the distributed nature of the network with discrepant
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oscillators [9]. With multipath receptions, the multiple CFOs
estimation is mainly affected by two factors. First, the CFOs
at the relay and the destination yield complicated distortion
of the received signals at the destination node because of the
dual-hop transmission. Second, the Gaussian noise amplified
by the relay and filtered by the multipath channels becomes
colored noise at the destination. In this regard, the multiple
CFOs estimation problem is an essential issue for the suc-
cessful deployment of OFDM-based relay networks.

The Cramer-Rao bound (CRB) is a lower bound on the
variance of any unbiased estimator with nuisance parame-
ters, and it is a useful benchmark for examining the perfor-
mance of estimation algorithms [10]. The CRB of the CFO
estimation usually depends on some nuisance parameters
such as channel parameters and the timing delay in wireless
channels. In our study, we focus on the CFO estimation
under the assumption of perfect timing synchronization. The
true CRB of the CFO estimation is obtained by assuming
that all the nuisance parameters (channel parameters) are
known. In more practical scenarios, however, the CFO esti-
mation is implemented with unknown channel parameters.
The modified CRB (MCRB) of the CFO estimation can be
computed only based on the statistical distribution of the
nuisance parameters (channel parameters) [11]. The MCRB
is generally looser than the true CRB. Similar to the deriva-
tion of the true CRB, the derivation of the MCRB depends
on the definition of the modified Fisher information matrix
(MFIM), which is the expectation value of the conventional
FIM (Fisher information matrix) with respect to the channel
parameters.

For OFDM systems, the CRBs of the CFO estimation were
proposed in [12], [13]. Also, the CRBs of the blind CFO
estimation for OFDM systems over multipath channels were
derived in [12]. By considering virtual, pilot and data sub-
carriers embedded in one OFDM block, the CRB of the CFO
estimation was investigated in [13]. Someworks analyzed the
CRBs of the CFO estimation in multipath fading channels
for the DF cooperative communication systems [14], [15].
In [14], the authors considered two-phase transmission for
three-node cooperative communication systems and derived
the CRBs of the CFO estimation inmultipath fading channels.
In [15], the authors derived the CRBs of the joint channel
and CFO estimation for DF multi-relay networks. Based on
the assumption of the perfect data detection at each relay
node, both of these DF cooperative communication sys-
tems addressed the CFO estimation problem only for the
relay-destination (R-D) link. In [16], the CRBs of the mul-
tiple CFOs estimation were proposed for both DF and AF
relay networks in flat fading channels. In [17], the CRBs of
the multi-parameter estimation were derived for multi-relay
networks in the presence of multiple CFOs and multiple
timing offsets. Since the channel fading is assumed to be flat
in these cases, the two CFOs due to the source-relay (S-R)
and R-D links can be merged together as a single estimation
parameter, and the overall noise term at the destination is
still preserved as white Gaussian noise. With block-rotated

preambles design in [18], the authors derived the CRB of
the CFO estimation in frequency-selective fading channels
for two-way AF relay systems. Although multipath channels
were considered in [18], the CRB derivation was degenerated
to a single parameter estimation problem, which is only
related to the difference between the CFOs of the source
and the destination nodes, based on the specific design of
block-rotated preambles. However, this requires a particu-
lar design of preambles, which may not be applicable to
general cases. To the best of our knowledge, there have
been no literature addressing the CRBs of the CFOs esti-
mation for OFDM-based AF relay networks over multipath
channels.

In this paper, we focus on the CRBs of the CFO estimation
for an OFDM-based AF single-relay network in multipath
fading channels, which is different from the previous works
in flat fading channels where only require single parameter
estimation to extract the integrated CFO. On the contrary,
the CFOs from the S-R and R-D links are both needed to be
estimated in multipath fading channels. A closed form for the
true CRB of the CFOs estimation is theoretically presented.
The first-order Taylor’s series expansion is also applied to
ease the difficulty of calculating the inverse of the color noise
covariance matrix in the FIM. In addition, we derived the
theoretical MCRB with statistical channel state information,
but unknown channel parameters, for the CFOs estimation.
Based on this, we can get more insight into the impact of
the multipath channels and the operating SNRs on the CFO
estimation error in the dual-hop relay transmission. By com-
puter simulations, the true CRB performance and the MCRB
performance are compared at different operating SNRs and
channel scenarios. It is found that the MCRB provides a
looser bound than the true CRB does. The CRB performance
is dominated by the relay SNR and also affected by the power
delay profile of the R-D channel link. The proposed CRBs
can serve as an important benchmark for the future design
of CFO estimation algorithms in OFDM-based AF relay
networks. The main contributions of this paper are listed as
follows.
• We derive the true CRB of the CFOs estimation for an
OFDM-based AF relay network over multipath fading
channels.

• We derive the MCRB of the CFOs estimation with sta-
tistical channel state information for an OFDM-based
AF relay network over multipath fading channels, and
investigate the relationship between the MCRB and the
SNRs of the S-R and R-D links.

• We provide the numerical results of the true CRB and
the MCRB by computer simulations.

The rest of this paper is organized as follows. In Section II,
the system model for OFDM-based AF single relay networks
is described. Both the true CRB and the MCRB associated
with the CFO estimation for the considered relay networks are
derived in Section III and IV, respectively. Numerical results
of the CRB performances are presented in Section V. Finally,
the conclusions of this paper are drawn in Section VI.
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FIGURE 1. The block diagram of an OFDM-based single relay system.

II. SYSTEM MODEL
In Fig.1, we consider an OFDM-based single relay network,
consisting of a source (S) node, a unit-gain AF relay (R) node,
and a destination (D) node. During each OFDM symbol
period, the input data vector x = [x(0), x(1), . . . , x(N −
1)]T , in which each data symbol x(i) has the signal power
σ 2
S , is modulated by N orthogonal subcarriers to generate a

time-domain OFDM signal vector x̃. Here we address the
CFOs estimation problem, while the timing synchronization
is assumed to be perfect in this paper. The two-phase trans-
mission protocol and the AF relay scheme are adopted for the
considered relay network. During the first phase, the source
broadcasts the OFDM signal to the relay node. For the second
phase, the relay amplifies and forwards the OFDM signal
received from the source node to the destination node. It is
assumed that the wireless links in the network are multipath
fading channels. We define an N × 1 channel vector from the
source to the relay nodes as

hSR=
[
hSR(0), hSR(1), . . . , hSR(L−1), 0, 0, . . . , 0︸ ︷︷ ︸

N−L

]T
, (1)

where hSR(l) is the complex Gaussian channel coefficient
for the lth path with zero mean and variance σ 2

SR,l , and L
is the total number of the effective paths between the source
and the relay nodes. The CFO between the source node and
the relay node is denoted by εSR, which is normalized by
the subcarrier spacing. Similarly, the channel from the relay
to the destination nodes is denoted as an N × 1 column
vector:

hRD =
[
hRD(0), hRD(1), . . . , hRD(L − 1), 0, 0, . . . , 0︸ ︷︷ ︸

N−L

]T
,

(2)

where hRD(l) is also the zero-mean complex Gaussian chan-
nel coefficient with variance σ 2

RD,l , and without loss of gener-
ality, the total number of the effective paths between the relay
and the destination nodes is assumed to be L. In addition,
the normalized CFO between the relay and the destination
nodes is denoted by εRD. Furthermore, we assume that the
length of the cyclic prefix (CP) is larger than the maximum
channel delay spread 2L from the source to the destination
via the relay in order to alleviate the inter-symbol interfer-
ence problem. Therefore, during the first transmission phase,
the received OFDM signal at the relay node can be repre-
sented as

r = ESRHSRWx+ v, (3)

where W is an N × N inverse discrete Fourier trans-
form (IDFT) matrix, in which the (m, n)th element is given
by W(m, n) = 1

√
N
exp

(
j 2πmnN

)
, for m, n = 0, . . . ,N − 1,

and v =
[
v(0), v(1) . . . , v(N − 1)

]T is a complex additive
white Gaussian noise (AWGN) vector with zero mean and
covariance σ 2

RI. The CFO matrix ESR is a diagonal matrix
with the linear phase exp

(
j 2πεSR·nN

)
as its diagonal elements:

ESR = diag
([

1, exp
(
j
2πεSR · 1

N

)
, exp

(
j
2πεSR · 2

N

)
,

. . . , exp
(
j
2πεSR · (N − 1)

N

)]T)
. (4)

Moreover, the matrix HSR represents an N × N circular con-
volution channel matrix from the source to the relay nodes,
which can be explicitly expressed as

HSR =


hSR(0) hSR(N − 1) · · · hSR(1)
hSR(1) hSR(0) · · · hSR(2)
...

...
. . .

...

hSR(N − 2) hSR(N − 3) · · · hSR(N − 1)
hSR(N − 1) hSR(N − 2) · · · hSR(0)

 .
(5)

For the sake of simple notations, the desired signal compo-
nent in r is defined by

sR = ESRHSRWx. (6)

From (3), the received signal in the second transmission phase
at the destination node can be obtained as follows:

y = ERDHRDr+ z

= ERDHRDsR + ERDHRDv+ z (7)

where z =
[
z(0), z(1), . . . , z(N − 1)

]T is a zero-mean com-
plex AWGN vector at the destination node with covariance
σ 2
DI. Similar to the definition in (4) and (5), the CFO matrix

ERD with respect to the R-D link is given as

ERD = diag
([

1, exp
(
j
2πεRD · 1

N

)
, exp

(
j
2πεRD · 2

N

)
,

. . . , exp
(
j
2πεRD · (N − 1)

N

)]T)
, (8)

and the N ×N circular convolution channel matrixHRD from
the relay to the destination nodes can be represented by

HRD =


hRD(0) hRD(N−1) · · · hRD(1)
hRD(1) hRD(0) · · · hRD(2)
...

...
. . .

...

hRD(N−2) hRD(N−3) · · · hRD(N−1)
hRD(N−1) hRD(N−2) · · · hRD(0)

 .
(9)

Definition 1: The true CRB is a CRB requiring the perfect
knowledge of the channel coefficients hSR and hRD.
Definition 2: The MCRB is a CRB without knowing the

exact channel coefficients but requiring the statistical infor-
mation of the channel coefficients hSR and hRD.
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III. DERIVATION OF THE TRUE CRB FOR THE CFOS
ESTIMATION
In this section, we derive the true CRB for the CFOs esti-
mation at the destination node by assuming that the instanta-
neous channel coefficients is known to the destination node.
Additionally, the signal power of the data symbol is set by
one, i.e., σ 2

s = 1. First, the FIM needs to be calculated in
order to determine the CRB, and the (k,m)th entry of the FIM
can be computed according to the definition in [10]:

F(k,m) = 2Re
{∂µHy
∂εk

C−1y .
∂µy

∂εm

}
+ tr

{
C−1y

∂Cy

∂εk
C−1y

∂Cy

∂εm

}
,

k = 1, 2 and m = 1, 2 , (10)

where ε1 = εSR and ε2 = εRD for the simplicity of notation,
Re {·} denotes the real part of a complex value, tr {·} takes
the trace of a matrix, and the notations µy and Cy represent
the mean and the covariance of the received signal y at the
destination node, respectively. Using (7), the mean µy and
the covariance Cy can be calculated as

µy = ERDHRDsR; (11)

Cy = E

[(
ERDHRDv+ z

)(
ERDHRDv+ z

)H]
= σ 2

RERDRRDEHRD + σ
2
DI, (12)

where E [·] takes the expectation, (·)H is the Hermitian oper-
ation, and RRD represents the channel correlation matrix for
the R-D link:

RRD = HRDHH
RD

=


rRD(0) rRD(1) · · · rRD(N−2) rRD(N−1)

rRD(N−1) rRD(0) · · · rRD(N−3) rRD(N−2)
...

...
. . .

...
...

rRD(2) rRD(3) · · · rRD(0) rRD(1)
rRD(1) rRD(2) · · · rRD(N−1) rRD(0)


(13)

where rRD(i) =
∑N−1

n=0 hRD(n)h
∗
RD((n + i))N is the circular

autocorrelation function of the channel from the relay to
the destination nodes, and the brace ((·))N is a modulo-N
operator. From (13), it is worth mentioning that the channel
power of different channel paths is accumulated in rRD(0),
and the off-diagonal entries inRRD are typicallymuch smaller
than the diagonal entries due to the non-coherent combining
in rRD(i) as i 6= 0. Accordingly, the correlation matrix
RRD possesses a strongly diagonal property under multipath
environments. By applying (11) and (12), the derivatives in
the FIM of (10) can be explicitly calculated as follows:

∂µy

∂εSR
= j

2π
N

ERDHRDDsR; (14)

∂µy

∂εRD
= j

2π
N

DERDHRDsR; (15)

∂Cy

∂εSR
= 0; (16)

∂Cy

∂εRD
=

2π
N
σ 2
RERDQ̃RDEHRD, (17)

where D = diag
(
[0, 1, . . . ,N − 1]T

)
, and Q̃RD is given

(18), as shown at the top of the next page. To simplify the
computation of tr

{
C−1y

∂Cy
∂εk

C−1y
∂Cy
∂εm

}
in (10), the covariance

matrix Cy in (12) is reformulated in terms of ERD as follows:

Cy = σ
2
RERDQRDEHRD , (19)

where QRD = RRD + σ
−2
R σ 2

DI. As a result, the inverse of the
covariance matrix Cy can be derived as

C−1y = σ
−2
R ERDQ−1RDE

H
RD . (20)

Notice that the matrix QRD still preserves the strongly diag-
onal property, since it involves the summation of a strongly
diagonal matrix RRD and an identity matrix. To calculate the
inverse of the matrix QRD, we further define a scalar factor
δRD and a zero-diagonal matrix BRD which satisfy

QRD = δRD

(
I+ δ−1RDBRD

)
, (21)

where δRD = rRD(0)+ σ
−2
R · σ

2
D. By applying the first-order

Taylor’s series expansion into (21), the matrix Q−1RD can be
approximated as

Q−1RD ≈ δ
−1
RD

(
I− δ−1RDBRD

)
. (22)

By substituting (14)-(17) and (20) into (10) and after some
straightforward manipulations, the entries of the FIM F can
be explicitly computed as

F(1, 1) = 2Re
{
αsHRD

HHH
RDQ

−1
RDHRDDsR

}
; (23)

F(1, 2) = 2Re
{
αsHRD

HHH
RDQ

−1
RDE

H
RDDERDHRDsR

}
; (24)

F(2, 1) = 2Re
{
αsHRH

H
RDE

H
RDD

HERDQ−1RDHRDDsR
}
; (25)

F(2, 2) = 2Re
{
αsHRH

H
RDE

H
RDD

HERDQ−1RDDHRDsR
}

+ tr
[
βQ−1RDQ̃RDQ−1RDQ̃RD

]
, (26)

where α = σ−2R

( 2π
N

)2
, β =

( 2π
N

)2, and Q−1RD can be obtained
from (22) via approximation. Finally, the CRBs of the CFOs
estimation for εSR and εRD can be represented as [10]

CRBεSR = F−1(1, 1)

=
F(2, 2)

F(1, 1)F(2, 2)− F(1, 2)F(2, 1)
; (27)

CRBεRD = F−1(2, 2)

=
F(1, 1)

F(1, 1)F(2, 2)− F(1, 2)F(2, 1)
, (28)

where F−1(i, j) is the (i, j)th entry of the matrix F−1.

VOLUME 7, 2019 63903



C.-C. Chen, M.-L. Ku: CFO Estimation Bound for OFDM-Based Single Relay Networks With Multipath Receptions

Q̃RD = j



0 (−1)rRD(1) · · · −(N − 2)rRD(N − 2) −(N − 1)rRD(N − 1)
(1)rRD(N − 1) 0 · · · −(N − 3)rRD(N − 3) −(N − 2)rRD(N − 2)

(2)rRD(N − 2) (1)rRD(N − 1)
. . .

...
...

...
... · · · 0 −(1)rRD(1)

(N − 1)rRD(1) (N − 2)rRD(2) · · · (1)rRD(N − 1) 0

 . (18)

IV. DERIVATION OF THE MCRB FOR THE CFOS
ESTIMATION
For the derivation of the MCRB, it only relies on the sta-
tistical distributions of the channel parameters without the
acquisition of the exact channel coefficients. The relay SNR
and the destination SNR are denoted by 0R(= 1

σ 2R
) and

0D(= 1
σ 2D

) respectively, where the signal power of the data

symbol is assumed to be one (σ 2
s = 1). Similar to the

derivation of the true CRB with the perfect knowledge of the
channel coefficients, the derivation of the MCRB requires the
calculation of the MFIM, which is the expectation value of
the FIM as derived in (23)-(26) with respect to the random
channel parameters. Prior to deriving the MFIM of the CFO
estimation, some lemmas are provided in the following.
Lemma 1: Assume that γl , for l = 0, 1, . . . ,L − 1,

are L independent circular symmetric complex Gaussian
random variables with zero mean and distinct variance
σ 2
l . Then, the expectation value of the random variable(∑L−1

l=0 |γl |
2
+ c

)−1
, where c is a positive constant, is given

by

∑L−1

l=0

σ 2
l

L−1∏
i=0,i6=l

(
1−

σ 2
i

σ 2
l

)−1 · e c
σ l2 E1

(
c

σ 2
l

)
,

where E1 (·) is the exponential integral function and defined
by

E1 (x) =
∫
∞

x

e−t

t
dt.

Proof: The detailed proof is provided in Appendix A.
Lemma 2: Assume that x and y are two independent

random variables with the exponential distribution and gen-
eralized chi-square distribution, respectively, and the corre-
sponding probability density functions are

fX (x)

=
1

σ 2
0

e
−

x
σ20 ;

f
(
y; (L − 1) , σ 2

1 , . . . , σ
2
L−1

)
=

∑L−1

l=1

(
σ 2
l

∏L−1

i=1,i 6=l

(
1−

σ 2
i

σ 2
l

))−1
e
−

y
σ2l , x, y ≥ 0.

Let c be a positive constant. Then, the mean of the random
variable x

x+y+c is given by

E
[

x
x + y+ c

]
=

(
1− e

c
σ20 ·

c

σ 2
0

E1

(
c

σ 2
0

))

·

1−
L−1∑
l=1

ωl
σ 2
l(

1−
σ 20
σ 2l

)
− L−1∑

l=1

ωl

[
σ 2
0(

1−
σ 20
σ 2l

)2

·

(
e

c
σ20 E1

(
c

σ 2
0

)
− e

c
σ2l E1

(
c

σ 2
l

))]
,

where ωl =
(
σ 2
l
∏L−1

i=1,i 6=l

(
1−

σ 2i
σ 2l

))−1
.

Proof: The detailed proof is provided in Appendix B.
Lemma 3: Assume that γl , for l = 0, 1, . . . , (L − 1), are

L independent circular symmetric complex Gaussian random
variables with zero mean and distinct variance σ 2

l . Then,

the mean of the random variable
(∑L−1

l=0 |γl |
2
+ c

)−2
, where

c is a positive constant, is given as

E

[(∑L−1

l=0
|γl |

2
+c
)−2]

=

L−1∑
l=0

σ 2
l

L−1∏
i=0,i 6=l

(
1−

σ 2
i

σ 2
l

)−1

·

(
c−1−σ−2l e

c
σ2l · E1

(
c

σ 2
l

))
.

Proof: The detailed proof is provided in Appendix C.
Before we develop a theorem to establish the MFIM of

the CFOs estimation for the relay network with multipath
receptions, some notations are defined in the following:

δm =
∑L−1−m

l=0
σ 2
RD,lσ

2
RD,l+m, m = 1, 2, . . . ,L − 1;

Rc =
0R

0D
;

ζl = eRcσ
−2
RD,lE1

(
Rcσ
−2
RD,l

)
;

τi,m =
σ 2
RD,i

σ 2
RD,m

;

Xl,k =
∏L−1

i=0,i 6=k,i 6=l

(
1− τi,k

)−1
;

ρl =

(
σ 2
RD,l

∏L−1

i=0,i 6=l

(
1− τi,l

))−1
;

φ =
∑L−1

l=0
ρl

(
R−1c − σ

−2
RD,lζl

)
;
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1 = 2N
(
2π
N

)2

·

∑L−1

m=1
m (N − m) · δmφ;

ψl =
(
1− Rcσ

−2
RD,l · ζl

)(
1−

∑L−1

k=0,k 6=l

Xl,k(
1− τl,k

))
−

∑L−1

k=0,k 6=l

τl,kXl,k(
1− τl,k

)2 · (ζl − ζk) .
Theorem 1: The 2×2 MFIM of the CFOs estimation with

the statistical distribution of the channel parameters can be
approximated as

E [F] =
[
E [F(1, 1)] E [F(1, 2)]
E [F(2, 1)] E [F(2, 2)]

]
,

where

E [F(1, 1)] =
0R

(
2π
N

)2
3

N (N − 1) (2N − 1)

·

[
1− Rc ·

∑L−1

l=0
ρl · ζl

]
; (29)

E [F(1, 2)] = E [F(2, 1)] =
0R

(
2π
N

)2
3

·

∑L−1

l=0

[
2N 3
−3N 2

+ N+3Nl2−3N 2l
]
ψl;

(30)

E [F(2, 2)] = E [F(1, 1)]+1. (31)

Proof: To facilitate the derivation, we utilize the
strongly diagonal property of the channel correlationmatrices
RRD andHH

SRHSR, which can be approximated as the diagonal
matrices rRD (0) · I and rSR (0) · I, respectively. Accordingly,
the inverse matrix Q−1RD can be obtained by λ−1q · I, where
λq = rRD (0)+ Rc. In addition, we have E

[
WxxHWH

]
= I

and E [rSR (0)] = 1. In what follows, we in turn derive the
expectation values of F(1, 1), F(1, 2), F(2, 1) and F(2, 2),
as described in (23)-(26), to obtain the MFIM with the sta-
tistical distribution of the channel parameters.

a. Derivation of E [F(1, 1)]
Since F(1, 1) in (23) is a scalar, we can rewrite F(1, 1)
and substitute sR in (6) as

F(1, 1) = 2Re
{
tr
[
α · xHWHHH

SRE
H
SRD

HHH
RD

·Q−1RDHRDDESRHSRWx
]}

= 2Re
{
tr
[
α · ESRHSRWxxHWHHH

SR

·EHSRD
HHH

RDQ
−1
RDHRDD

]}
, (32)

where α = σ−2R

(
2π
N

)2
and D = diag

(
[0, 1, . . . ,N −

1]T
)
. Then the expectation value of F(1, 1) is given by

E [F(1, 1)]

= 2σ−2R

(
2π
N

)2

· Re
{

tr
[
E
[
rRD (0)
λq

]
·E
[
WxxHWH

]
DHDE [rSR (0)] · I

]}

= 20R

(
2π
N

)2

· E
[
1−

Rc
λq

]
· Re

{
tr
[
DHD

]}
= 20R

(
2π
N

)2 (
1− Rc · E

[
λ−1q

])
·

∑N−1

n=0
n2

=
0R

3

(
2π
N

)2

N (N − 1) (2N − 1)

·

(
1− Rc · E

[
λ−1q

])
. (33)

By using Lemma 1 and the definition of λq = rRD (0)+

Rc, we can get E
[
λ−1q

]
=
∑L−1

l=0 ρl · ζl . Thus, it leads
to

E [F(1, 1)] =
0R

3

(
2π
N

)2

N (N − 1) (2N − 1)

·

[
1− Rc ·

∑L−1

l=0
ρlζl

]
. (34)

b. Derivation of E [F(1, 2)]
Since F(1, 2) in (24) is a scalar, we can rewrite F(1, 2)
and substitute sR in (6) as

F(1, 2) = 2Re
{
αxHWHHH

SRE
H
SRD

HHH
RD

·Q−1RDE
H
RDDERDHRDESRHSRWx

}
= 2α · Re

{
tr
[
HRDESRHSRWxxHWHHH

SR

·EHSRD
HHH

RDQ
−1
RDE

H
RDDERD

]}
. (35)

The expectation value of F(1, 2) can be obtained by

E [F(1, 2)]

= 2α · Re
{

tr
[
E
[
1
λq

DHHH
RDDHRD

]
·E
[
WxxHWH

]
E [rSR (0)] · I

]}
= 20R

(
2π
N

)2

· Re
{

tr
[
E
[
1
λq

DHHH
RDDHRD

]]}
= 20R

(
2π
N

)2

·

{∑L−1

l=0

[1
6

[
2N 3

−3N 2
+ N + 3Nl2 − 3N 2 l

]]
· E

[
|hRD (l)|2

λq

]}
,

(36)

where the term tr
[
DHHH

RDDHRD
]
is derived in the

Appendix D. Moreover, we can get E
[
|hRD(l)|2

λq

]
=

E
[
|hRD(l)|2

rRD(0)+Rc

]
= ψl by applying the Lemma 2. The

expectation value E [F(1, 2)] can be finally represented
by

E [F(1, 2)] =
1
3
0R

(
2π
N

)2

·

∑L−1

l=0

[
2N 3
− 3N 2

+N + 3Nl2 − 3N 2l
]
ψl . (37)
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c. Derivation of E [F(2, 1)]
Similar to the derivation of the expectation value
E [F(1, 2)], we can first represent F(2, 1) by

F(2, 1) = 2Re
{
tr
[
αxHWHHH

SRE
H
SRH

H
RDE

H
RD

·DHERDQ−1RDHRDDESRHSRWx
]}

= 2Re
{
tr
[
αESRHSRWxxHWHHH

SR

·EHSRH
H
RDE

H
RDD

HERDQ−1RDHRDD
]}
.

The expectation value of F(2, 1) can be derived by

E [F(2, 1)]

= 2αRe
{

tr
[
E [rSR (0)]

·E
[
1
λq

HRDDHH
RDD

H
] ]}

= 20R

(
2π
N

)2

Re
{

E
[
tr
[
1
λq

HRDDHH
RDD

H
]]}

= E [F(1, 2)] . (38)

d. Derivation of E [F(2, 2)]
We can derive F(2, 2) as

F(2, 2) = 2Re
{
tr
[
αxHWHHH

SRE
H
SRH

H
RDE

H
RD

·DHERDQ−1RDDHRDESRHSRWx
]}

+ tr
[
βQ−1RDQ̃RDQ−1RDQ̃RD

]
, (39)

where β =
(
2π
N

)2
. Accordingly, the expectation value

of F(2, 2) is given by

E [F(2, 2)]

= 2Re
{

tr
[
0R

(
2π
N

)2

· E
[
rRD (0)
λq

]
DHD

·E [rSR (0)] · I
]}
+ β · E

[
tr

[
1
λ2q

Q̃RDQ̃RD

]]

= E [F(1, 1)]+
(
2π
N

)2

· E

[
tr

[
1
λ2q

Q̃RDQ̃RD

]]

= E [F(1, 1)]+
(
2π
N

)2

·

∑L−1

m=1
[2Nm (N − m)]

·E

[
|rRD (m)|2

λ2q

]
, (40)

where the value of tr
[
Q̃RDQ̃RD

]
can be explicitly

derived in the Appendix E. Since |rRD (m)|2 and λ2q are
uncorrelated with each other, form = 1, 2, . . . , (L−1),
we can further obtain E [F(2, 2)] by

E [F(2, 2)]

= E [F(1, 1)]+ β ·
∑L−1

m=1
[2Nm (N − m)]

·E
[
|rRD (m)|2

]
E
[
λ−2q

]
= E [F(1, 1)]+ 2Nβ ·

∑L−1

m=1
m (N − m) · δmφ

, (41)

where one can obtain E
[
λ−2q

]
= φ by using Lemma 3.

From (34), (37), (38) and (41), the MFIM can be deter-
mined, and the MCRBs of the CFOs estimation for εSR and
εRD can be calculated by [10]

MCRBεSR

=
E [F(2, 2)]

E [F(1, 1)] · E [F(2, 2)]− E [F(1, 2)] · E [F(2, 1)]
;

(42)

MCRBεRD

=
E [F(1, 1)]

E [F(1, 1)] · E [F(2, 2)]− E [F(1, 2)] · E [F(2, 1)]
.

(43)

To facilitate the analysis of the MCRBs, we have the
following two assumptions:

Assumption 1: The total channel power is set to one.
Assumption 2: The channel power delay profile of the L-

paths fading channels keeps unchanged.
According to (42) and (43) and the above assumptions,
we can get two corollaries for the MCRBs.
Corollary 1: The MCRB of εSR is always larger than that

of εRD. Moreover, the MCRB of εSR gets close to that of
εRD when the ratio of the relay SNR to the destination SNR
approaches infinity, i.e., Rc→∞.

Proof: From (31), (42) and (43), since the term 1 is
positive, it implies that theMCRB of εSR is always larger than
that of εRD. In addition, the term1 varies with the parameter
Rc in φ. Actually, the term φ can be approximated as [19]

φ ∼=
∑L−1

m=0
ρm

 1
Rc
−

ln
(
1+

σ 2RD,m
Rc

)
σ 2
RD,m

 . (44)

When the parameter Rc approaches infinity, it can be
observed that the term φ degrades to zero:

lim
Rc→∞

φ =

L−1∑
m=0

ρm · lim
Rc→∞

 1
Rc
−

ln
(
1+

σ 2RD,m
Rc

)
σ 2
RD,m


=

L−1∑
m=0

ρm (0− 0) = 0. (45)

Therefore, the term 1 approaches zero as the ratio of the
relay SNR to the destination SNR goes to infinity, and the
corresponding MCRB of εSR is comparable to that of εRD.
Corollary 2: If the relay SNR0R is equal to the destination

SNR 0D, i.e., Rc = 1, the MCRB is approximately inversely
proportional to the SNR.
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Proof: Under the setting of Rc = 1 and Assump-
tion 2, we can represent (29) by E [F(1, 1)] = 0R3, where

3 =

(
2π
N

)2
3 N (N − 1) (2N − 1)

[
1− Rc ·

∑L−1
l=0 ρl · ζl

]
is a

constant. Similarly, the expectation values E [F(1, 2)] and
E [F(2, 1)] can be expressed by E [F(1, 2)] = E [F(2, 1)]

= 0R2, where2 =

(
2π
N

)2
3

∑L−1
l=0

[
2N 3
−3N 2

+N +3Nl2−
3N 2 l

]
ψl is a constant. In addition, the expectation value

E [F(2, 2)] is nearly the same as E [F(1, 1)], since the term1
in (31) is much smaller than E [F(1, 1)]. Accordingly, we can
approximate (42) and (43) by

MCRBεRD = MCRBεSR
∼=

0R ·3

02
R ·3

2−02
R ·2

2
=

1
0R
·

3

32−22 . (46)

Therefore, it is concluded that the MCRBs of εSR or εRD is
almost inversely proportional to the SNR 0R.

V. NUMERICAL RESULTS AND DISCUSSIONS
We evaluate the true CRBswith the exact channel coefficients
and theMCRBswith the statistical information of the channel
parameters for the OFDM-based single-relay networks by
computer simulations. In the simulation, the training sig-
nals are randomly generated from the binary phase-shift
keying (BPSK) modulation scheme and assumed to be per-
fectly known to the destination. The system bandwidth is
5 MHz, and the number of subcarriers, N , is set to 64. The
normalized CFOs are uniformly distributed between −0.5
and 0.5. An International Telecommunication Union (ITU)
Veh. A channel model with six effective paths is adopted to
investigate the impact of multipath channels on the true CRBs
and the MCRBs, where the relative path power profiles are
set as 0,−1,−9, 10,−15,−20 (dB) [20]. The channel gains
are generated by independent identically distributed (i.i.d.)
zero-mean complex Gaussian random variables. In the eval-
uation of the true CRBs, it is assumed that the exact channel
coefficients are perfectly available at the destination. The
channel path delays are random and uniformly distributed
between zero and eight sampling periods. Finally, the average
true CRBs performances are obtained by averaging the results
over ten thousands of randomly generated channel realiza-
tions through the Monte Carlo simulations.

In the evaluation of the MCRBs, the channel path delays
for the six-path ITU Veh. A channel are assumed to be
ranged between zero and five sampling periods, in order to
examine the impact of the unknown channel gains on the
MCRBs performances. The numerical results of the MCRBs,
which are obtained via computer simulations, are provided
to validate the theoretical results of the MCRBs derived in
Section IV. We also investigate the impact of the number of
effective channel paths on the true CRBs and the MCRBs
performances by taking an exponentially-decay fading chan-
nel model in [21] into account. For this model, the average
channel power of the lth effective path, E

[
|hl |2

]
, is propor-

tional to e−l
Ts
σT , where Ts is the sampling period and σT is the

FIGURE 2. The true CRBs and the MCRBs performances for εSR (0R = 0D).

FIGURE 3. The true CRBs and the MCRBs performances for εSR at
different operating SNR values of 0R .

maximum channel delay spread. Moreover, the channel paths
are assumed to be uncorrelated with each other, and the total
channel power is normalized to one. The ratio of the sampling
period to the maximum channel delay spread is set to 0.2.
Finally, the timing synchronization is assumed to be perfect
throughout the simulation.

In Fig.2, the true CRBs and the MCRBs performances of
εSR are demonstrated in the ITUVeh. A channel, and the relay
SNR is set equal to the destination SNR. It is found that both
the true CRBs and theMCRBs of εSR monotonically decrease
as the operating SNR increases. It can be observed that for
the MCRBs, the theoretical result is slightly lower than the
simulation results due to the approximation of the channel
correlationmatrix by a diagonalmatrix in the derivation of the
theoretical MCRB. Moreover, the MCRB is a little bit looser
than the true CRB. For example, the true CRB is 3 × 10−4
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FIGURE 4. The simulated MCRBs performances for εSR and εRD at
different operating SNR values of 0R .

FIGURE 5. The true CRBs performance of εSR in the exponential fading
channel as 0R = 0D.

at 0R = 0D = 25 dB, while the MCRB is given by 10−4.
In Fig.3, we compare the true CRBs and the MCRBs of εSR
at different operating values of the relay SNR 0R. The values
of 0R are set as 10 dB or 20 dB. The theoretical MCRB is
slightly lower than the simulated MCRB as the destination
SNR is large. It is also observed that the relay network with
a higher relay SNR setting can achieve better true CRB
and MCRB performances. Overall, the performance can be
improved as the destination SNR 0D increases, whereas the
improvement becomes gradually saturated, since the noise at
the relay becomes a dominant factor for the CFO estimation.
A closer look at this figure reveals that the performance
saturation occurs when the destination SNR 0D is ten times
larger than the relay SNR 0R.

FIGURE 6. The simulated MCRBs performance of εSR in the exponential
fading channel as 0R = 0D.

To investigate the performance difference between the
CFOs εSR and εRD, we evaluate the simulated MCRBs at
different values of the operating relay SNR 0R in Fig. 4.
From this figure, we can find that the performance of εSR is
worse than that of εRD, since the term E [F(2, 2)] is larger
than the term E [F(1, 1)] in (42). Moreover, the performance
difference between εSR and εRD becomes more obvious
when the relay SNR 0R is poor. As the relay SNR 0R
increases and is larger than 0 dB, the performance gap
between them is almost zero. Fig. 5 and Fig. 6 show the
true CRBs and the simulated MCRBs performances of εSR
in the exponentially-decay fading channels with the differ-
ent numbers of the effective paths, respectively, in order to
capture the effect of the multipaths on the CFO estimation
bound. We can find that the true CRBs and the MCRBs
both decrease as the number of the effective paths increases.
The performance improvement of the true CRBs is larger
than that of the MCRBs as the number of the effective paths
increases, since the channel parameters are known for the
true CRB calculation. In addition, the performance improve-
ment is gradually saturated as the number of the effective
paths is larger than six. This is because for the case of
the eight effective paths, the accumulated power of the first
six effective paths occupies up to 88% of the total channel
power.

VI. CONCLUSIONS
The CFO estimation bounds for an OFDM-based AF relay
network in multipath fading channels have been theoretically
analyzed. Due to the multipath effect, the CFOs of the S-R
link and the R-D link for the AF relay network are needed to
be estimated separately. Both the true CRBs and the MCRBs
for the CFO estimation have been derived in closed forms.
Computer simulations are used to investigate the impact of
the multipath fading channels, the operating SNR and the
number of the effective paths on the CFO estimation errors.
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The MCRB of the CFO estimation is about 5 dB looser than
the true CRB in terms of the SNR. The CFO estimation
bound is mainly dominated by the relay SNR, and the true
CRBs performance gets saturated when the destination SNR
is larger than the relay SNR. The CFO estimation bound
for the S-R link is higher than that for the R-D link, and
the performance gap between the two links is enlarged as
the relay SNR is much smaller than the destination SNR.
The CRBs performance decreases when the number of the
effective paths in themultipath fading channels increases, and
the performance degradation gradually becomes saturated
when the number of the effective paths is larger than six. The
proposed true CRBs and MCRBs can provide an important
insight into assessing any unbiased CFO estimation algo-
rithms for an OFDM-based relay network in multipath fading
channels.

APPENDIX A
PROOF OF LEMMA 1
Let us first define x =

∑L−1
l=0 |hl |

2, which is a generalized
chi-square distributed random variable and has the probabil-
ity density function

f (x;L, σ 2
0 , . . . , σ

2
L−1) =

L−1∑
l=0

ρle
−

x
σ2l for x ≥ 0, (A.1)

where ρl = (σ 2
l
∏L−1

i=0,i 6=l (1−
σ 2i
σ 2l
))−1. Thus, the probability

density function of u = 1
x+c is given by

g(u) =
1
u2
f
(
1
u
− c

)
=

1
u2
∑L−1

l=0
ρle

c
σ2l e
−

1
uσ2l , (A.2)

where u is varied between 0 and 1
c . The mean of u can be

derived as

E [u] =
∫ 1

c

0
ug(u)du =

∑L−1

l=0
ρle

c
σ2l

∫ 1
c

0

1
u
e
−

1
uσ2l du

=

∑L−1

l=0
ρle

c
σ2l

∫
∞

c
σ2l

e−λ
(
1
λ

)
dλ

=

L−1∑
l=0

ρle
c
σ2l E1

(
c

σ 2
l

)
, (A.3)

where E1(a) =
∫
∞

a e−λ
(
1
λ

)
dλ is the exponential integral

function.

APPENDIX B
PROOF OF LEMMA 2
The cumulative density function (CDF) of the random vari-
able x

x+y+c can be computed as

Pr
[

x
x + y+ c

< t
]

= Pr
[
y > x

(
1
t
− 1

)
− c

]

= Pr
[
x
(
1
t
−1
)
− c < 0

]
+Pr

[
y ≥ x

(
1
t
−1
)
−c

∣∣∣∣x (1t −1
)
−c ≥ 0

]
. (B.1)

Note that the first term in (B.1) can be explicitly calculated
as

Pr
[
x
(
1
t
− 1

)
− c < 0

]
= Pr

x < c(
1
t − 1

)


=

∫ c(
1
t −1

)
0

1

σ 2
0

e
−

x
σ20 dx

= 1− e
−

c
σ20

(
1
t −1

)
, (B.2)

and the second term in (B.1) can be derived as

Pr
[
y ≥ x

(
1
t
− 1

)
− c

∣∣∣∣x (1t − 1
)
− c ≥ 0

]
=

∫
∞

c(
1
t −1

)
1

σ 2
0

e
−

x
σ20

∫
∞

x
(
1
t −1

)
−c

∑L−1

l=1
ωle
−

y
σ2l dydx

=

∑L−1

l=1
ωl

1

σ 2
0

∫
∞

c
( 1t −1)

e
−

x
σ20

∫
∞

x( 1t −1)−c
e
−

y
σ2l dydx

=

∑L−1

l=1
ωl

1

σ 2
0

∫
∞

c
( 1t −1)

e
−

x
σ20 σ 2

l e
−

(x( 1t −1)−c)

σ2l dx

=

∑L−1

l=1
ωl

1

σ 2
0

σ 2
l

1

1
σ 20
+

1
t −1

σ 2l

e
−( c

σ20 (
1
t −1)

)
. (B.3)

From (B.1)-(B.3), we can obtain the CDF of the random
variable x

x+y+c :

Pr
[

x
x + y+ c

< t
]

= 1− e
−

c
σ20

(
1
t −1

)

+

∑L−1

l=1
ωl
σ 2
l

σ 2
0

·
1

1
σ 20
+

(
1
t −1

)
σ 2l

e
−

c
σ20

(
1
t −1

)
. (B.4)

By using [22] and (B.4), we can derive the mean of x
x+y+c by

E
[

x
x + y+ c

]
=

∫
∞

0

[
1− Pr

[
x

x + y+ c
< t

]]
dt

=

∫ 1

0

e− c
σ20

(
1
t −1

)
·

1−
∑L−1

l=1
ωl
σ 2
l

σ 2
0

·
1

1
σ 20
+

(
1
t−1

)
σ 2l


 dt

=

∫ 1

0

(
e
−

c
σ20

(
1
t −1

))
dt −

∑L−1

l=1
ωl
σ 2
l

σ 2
0
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·

∫ 1

0

e− c
σ20

(
1
t −1

)
·

1

1
σ 20
+

(
1
t −1

)
σ 2l

 dt. (B.5)

By letting u = 1
σ 20 (

1
t −1)

, the mean of x
x+y+c in (B.5) can be

rewritten by

E
[

x
x + y+ c

]
=

∫
∞

0

(
e−cu

) σ 2
0(

1+ σ 2
0 u
)2 du

+

L−1∑
l=1

ωl
σ 2
l

σ 2
0

·

∫
∞

0

(
e−cu ·

σ 2
l σ

2
0

σ 2
l +

1
u

)
σ 2
0(

1+ σ 2
0 u
)2 du

=

∫
∞

0
e−cu ·

σ 2
0

(1+ σ 2
0 u)

2
du−

∑L−1

l=1
ωl

·

∫
∞

0
(e−cu ·

σ 4
l σ

2
0 u

σ 2
l u+ 1

)
1

(1+ σ 2
0 u)

2
du. (B.6)

Since
(

u
σ 2l u+1

)
1(

1+σ 20 u
)2 = k1

σ 2l u+1
+

k2
σ 20 u+1

+
k3(

1+σ 20 u
)2 , where

k1 = −1

σ 2l

(
1−

σ20
σ2l

)2 , k2 =
σ 20

σ 4l

(
1−

σ20
σ2l

)2 , k3 =
1

σ 2l

(
1−

σ20
σ2l

) , it then
gives

E
[

x
x + y+ c

]
=

∫
∞

0
e−cu ·

σ 2
0(

1+ σ 2
0 u
)2 du

−

∑L−1

l=1
ωl

[ ∫
∞

0
e−cuσ 4

l σ
2
0 ·

k1
σ 2
l u+1

du

+

∫
∞

0
e−cuσ 4

l σ
2
0 ·

k2
σ 2
0 u+ 1

du

+

∫
∞

0
e−cuσ 4

l σ
2
0 ·

k3
(1+σ 2

0 u)
2
du
]
. (B.7)

By mathematical integration, we can obtain the integration
results:∫
∞

0
e−cu

σ 2
0(

1+ σ 2
0 u
)2 du = e

c
σ20

[
e
−

c
σ20 −

c

σ 2
0

E1

(
c

σ 2
0

)]
.

(B.8)∫
∞

0
e−cu

k1
σ 2
l u+ 1

du =
k1
σ 2
l

e
c
σ2l E1

(
c

σ 2
l

)
. (B.9)

∫
∞

0
e−cu

k2
σ 2
0 u+ 1

du =
k2
σ 2
0

e
c
σ20 E1

(
c

σ 2
0

)
. (B.10)

∫
∞

0
e−cu

k3(
1+ σ 2

0 u
)2 du = k3

σ 2
0

e
c
σ20

[
e
−

c
σ20 −

c

σ 2
0

E1

(
c

σ 2
0

)]
.

(B.11)

From (B.7)-(B.11), we can finally derive the mean by

E
[

x
x + y+ c

]

= e
c
σ20 ·

[
e
−

c
σ20 −

c

σ 2
0

E1

(
c

σ 2
0

)]

−

∑L−1

l=1
ωlσ

4
l σ

2
0 ·

k1 · e
c
σ2l

σ 2
l

E1

(
c

σ 2
l

)

+k2 ·
e

c
σ20

σ 2
0

E1

(
c

σ 2
0

)
+k3 ·

e
c
σ20

σ 2
0

·

[
e
−

c
σ20 −

c

σ 2
0

E1

(
c

σ 2
0

)]

=

(
1−

c

σ 2
0

· e
c
σ20 E1

(
c

σ 2
0

))1−
∑L−1

l=1
ωl

σ 2
l(

1−
σ 20
σ 2l

)


−

∑L−1

l=1
ωl

[
σ 2
0(

1−
σ 20
σ 2l

)2

·

(
e

c
σ20 E1

(
c

σ 2
0

)
− e

c
σ2l E1

(
c

σ 2
l

))]
. (B.12)

APPENDIX C
PROOF OF LEMMA 3
From (A.1), we can represent the probability density function

of u =
((∑L−1

l=0 |hl |
2
+ c

)2)−1
by

g(u) =
√
u

2u2
f
(

1
√
u
− c

)
=

√
u

2u2
∑L−1

l=0
ρle

c
σ2l e
−

1
σ2l
√
u . (C.1)

Then the mean of u can be derived by

E [u] =
∫ 1

c2

0
ug (u) du

=

∑L−1

l=0
ρle

c
σ2l

(∫ 1
c2

0

√
u

2u
e
−1
σ2l
√
u du

)
. (C.2)

By the change of variables 1
√
u = t , the integral in (C.2) can

be evaluated by∫ 1
c2

0

√
u

2u
e
−1
σ2l
√
u du

=

∫ c

∞

(−2) t−3
1
2t
t2e

−t
σ2l dt

=

∫
∞

c

1
t2
e
−t
σ2l dt =

e
−c
σ2l

c
−

1

σ 2
l

· E1

(
c

σ 2
l

)
. (C.3)

As a result, we can represent the mean of u by

E [u] =
∑L−1

l=0
ρle

c
σ2l

e
−c
σ2l

c
−

1

σ 2
l

· E1

(
c

σ 2
l

) . (C.4)
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APPENDIX D
DERIVATION OF tr

[
DH HH

RDDHRD
]

From (9) and D = diag
(
[0, 1, . . . ,N − 1]T

)
, we can directly

compute tr
[
DHHH

RDDHRD
]
as

tr
[
DHHH

RDDHRD

]
=

∑N−1

m=1
m2
·|hRD(0)|2

+

∑N−2

m=1
m (m+ 1) ·|hRD(1)|2

+

∑L−1

l=2

∑N−l−1

m=1
m (m+ 1) · |hRD (l)|2

+

∑L−1

l=2

∑l−1

m=1
m (N − l + m) · |hRD (l)|2. (D.1)

Since the first three terms in (D.1) can be combined
by
∑L−1

l=0
∑N−l−1

m=1 m (m+ 1) · |hRD (l)|2, and through some
mathematical manipulations, we have

tr
[
DHHH

RDDHRD

]
=

L−1∑
l=0

1
6
(N − l)(N − l − 1)(2N − 2l − 1)|hRD(l)|2

+

L−1∑
l=0

1
6
l(l − 1)(3N − l − 1)|hRD(l)|2

=

L−1∑
l=0

[
1
6
(2N 3

− 3N 2
+ N + 3Nl2 − 3N 2l)

]
|hRD(l)|2.

(D.2)

APPENDIX E
DERIVATION OF tr

[
Q̃RDQ̃RD

]
From (18), we can directly calculate tr

[
Q̃RDQ̃RD

]
as

tr
[
Q̃RDQ̃RD

]
=

∑N−2

k=1

[∑k

m=1
m2
|rRD(m)|2

+

∑N−k−1

m=1
m2
|rRD(m)|2

]
+

∑N−1

m=1
2m2
|rRD(m)|2. (E.1)

Then, we divide the first term of tr
[
Q̃RDQ̃RD

]
into three terms

θ1, θ2 and θ3, which are

θ1 =
∑L−2

k=1

[∑k

m=1
m2
|rRD(m)|2

+

∑N−k−1

m=1
m2
|rRD(m)|2

]
; (E.2)

θ2 =
∑N−L

k=L−1

[∑k

m=1
m2
|rRD(m)|2

+

∑N−k−1

m=1
m2
|rRD(m)|2

]
; (E.3)

θ3 =
∑N−2

k=N−L+1

[∑k

m=1
m2
|rRD(m)|2

+

∑N−k−1

m=1
m2
|rRD(m)|2

]
. (E.4)

Since rRD(m) = 0 for m = L,L + 1, . . . , (N − L) due to
the L-path channel and |rRD(m)| = |rRD (N − m) |, we can

rewrite θ1 by

θ1 =
∑L−2

k=1

[∑k

m=1
m2
|rRD(m)|2

+

∑L−1

m=k+1
(N − m)2 |rRD(N − m)|2

+

∑L−1

m=1
m2
|rRD(m)|2

]
=

∑L−2

k=1

[∑k

m=1
m2
|rRD(m)|2

]
+

∑L−2

k=1

[∑L−1

m=k+1
(N − m)2 |rRD(m)|2

]
+ (L − 2) ·

∑L−1

m=1
m2
|rRD(m)|2

=

∑L−1

m=1
(L − m− 1)m2

|rRD(m)|2

+

∑L−1

m=1
(m− 1) (N − m)2 |rRD(m)|2

+ (L − 2) ·
∑L−1

m=1
m2
|rRD(m)|2

=

∑L−1

m=1

[
(2L − m− 3)m2

+ (m− 1) (N − m)2
]
|rRD(m)|2. (E.5)

From (E.3), similarly, θ2 can be further calculated as

θ2 =
∑N−L

k=L−1

[∑L−1

m=1
m2
|rRD(m)|2

+

∑L−1

m=1
m2
|rRD(m)|2

]
= 2 (N − 2L + 2)

∑L−1

m=1
m2
|rRD(m)|2. (E.6)

For the derivation of θ3, the first term in (E.4) can be rewritten
as ∑N−2

k=N−L+1

∑k

m=1
m2
|rRD(m)|2

=

∑N−2

k=N−L+1

[∑L−1

m=1
m2
|rRD(m)|2

+

∑k

m=N−L+1
m2
|rRD(m)|2

]
= (L − 2) ·

∑L−1

m=1
m2
|rRD(m)|2

+

∑L−1

m=1
(m− 1)(N − m)2|rRD(m)|2. (E.7)

On the other hand, the second term in (E.4) can be rewritten
by∑N−2

k=N−L+1

∑N−k−1

m=1
m2
|rRD(m)|2

=

∑L−1

m=1
(L − m−1)m2

|rRD(N−m)|2. (E.8)

From (E.4), (E.7) and (E.8), we can obtain θ3 as

θ3 =
∑L−1

m=1

[
(2L − m− 3)m2

+ (m− 1) (N − m)2
]
|rRD(m)|2. (E.9)

Furthermore, the second term of tr
[
Q̃RDQ̃RD

]
can be rewrit-

ten by∑N−1

m=1
2m2
|rRD(m)|2
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=

∑L−1

m=1

(
2m2
+ 2 (N − m)2

)
|rRD(m)|2. (E.10)

From (E.5), (E.6), (E.9) and (E.10), we can represent
tr
[
Q̃RDQ̃RD

]
by

tr
[
Q̃RDQ̃RD

]
= θ1 + θ2 + θ3

+

∑L−1

m=1

(
2m2
+ 2 (N − m)2

)
|rRD(m)|2

=

∑L−1

m=1
2Nm (N − m) |rRD(m)|2. (E.11)
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