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ABSTRACT Infrared sensors have been deployed in many video surveillance systems because of the
insensibility of their imaging procedure to some extreme conditions (e.g. low illumination condition,
dim environment). To reduce human labor in video monitoring and perform intelligent infrared video
understanding, an important issue we need to consider is how to locate the object of interest in consecutive
video frames accurately. Therefore, developing a robust object tracking algorithm for infrared videos is
necessary. However, the infrared information may not be reliable (e.g. thermal crossover), and appearance
modeling with only the infrared modality may not be able to achieve good results. To address these
issues, with the wide deployment of RGB-infrared camera systems, this paper proposes an infrared tracking
framework in which information from RGB-modality will be exploited to assist the infrared object tracking.
Specifically, within the tracking framework, in order to deal with the contaminated features caused by large
appearance variations, an online non-negative feature template learning model is designed. The non-negative
constraint enables the model to capture the local part-based characteristic of the target appearance. To ensure
more important modality contribute more in appearance representation, an adaptive modality importance
weight learning scheme is also incorporated in the proposed feature learning model. To guarantee the model
optimality, an iterative optimization algorithm is derived. The experimental results on various RGB-infrared
videos show the effectiveness of the proposed method.

INDEX TERMS Optical image processing, sensor fusion, computer vision.

I. INTRODUCTION
Infrared sensors, which form images by capturing the infrared
radiation of subjects, is more effective to record informative
videos under some extreme conditions (e.g. low illumination
conditions, dim environment). Therefore, infrared sensors
have been employed in many video surveillance systems
for security monitoring, traffic management, etc..The past
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decade has witnessed the rapid development of AI technology
in many fields, such as computer vision (e.g. video surveil-
lance [1]–[22], image and video classification [23]–[36],
image retrieval [37], [38], image quality assessment and pro-
cessing [39]–[45]), unmanned vehicle [46], machine learning
(e.g. [47]–[64]), and biometric security (e.g. [65]). With the
massive video data generated from infrared sensors, to save
the time and human labor, video understanding and analysis
using artificial intelligence techniques is required. To this
end, a key step is how to accurately locate the position or
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FIGURE 1. Illustration of some video frames of infrared-modality when
the infrared information is not reliable for appearance modeling.

infer the motion status of the object. Therefore, developing a
robust infrared tracking is very important and useful for many
applications such as underwater image perception [66]–[69],
multi-sensor image understanding [70], unmanned aerial
vehicle imagery [71], video surveillance [72], [73], and sev-
eral infrared trackers have been developed [74]–[78] with
improved tracking results.

However, information from infrared videos is not always
reliable [79]. For example, for the case of thermal crossover
in which the tracked target cannot be distinguished from the
background because of the similar temperature, appearance
modeling with single infrared modality may suffer the loss of
discriminability, which means the tracker may be distracted
into the background. Figure 1 illustrates some examples
when the infrared information is not reliable. Therefore, more
informative appearance cues should be incorporated to con-
struct a more robust appearance model for infrared tracking.
The rapid development of multispectral imaging techniques
has brought the wide application of RGB-infrared dual-
camera systems. Compared with infrared cameras, although
the imaging procedure of the visible spectrum camera is more
sensitive to some extreme conditions (e.g. in the darkness
of nighttime), it can characterize more visual details such as
color, texture for appearance modeling. As such, exploiting
the reliable cues from RGB modality can compensate the
weakness of infrared cues. Therefore, to enhance the perfor-
mance of infrared tracking, it is useful to further integrate the
reliable RGB information for appearance modeling.

To perform effective RGB-assisted infrared object track-
ing, there are two issues which should be considered. The
appearance variations such as occlusions, cluttered back-
ground would usually be encountered during the tracking
process, which would contaminate the training tracking sam-
ples and degrade the tracking performance. Therefore, how
to effectively learn reliable cues of RGB or infrared modality
from the potentially contaminated samples is the first issue to
address. In addition, different modalities may contribute dif-
ferent roles to appearance modeling, and some extreme situa-
tions (e.g. thermal crossover) may also degrade the reliability
of somemodalities. Therefore, how to adaptively evaluate the
reliability of different modalities is another important issues
which should be considered.

Although several RGB-infrared tracking algorithms have
been proposed, they may not well handle the aforemen-
tioned issues. Some typical feature fusion methods such
as feature concatenation [80], sum rule [81] have been
exploited to integrate the RGB and infrared modalities. How-
ever, these methods do not consider the reliability issues of

different modalities. There are also some other methods such
as [82] which regard tracking on RGB-infrared modalities
as two independent tasks and fuse the results of different
tasks to determine the final positions. However, the RGB
and infrared modalities is not integrated for appearance
modeling during the tracking process and thereby the reli-
ability of different modalities is not adaptively evaluated,
which limits the performance. Although severalmethods such
as [83] attempt to weight the reliability of different modal-
ities using some heuristic methods, the reliability weights
are not coupled with the fusion model, which may not be
an optimal estimation of reliability. Moreover, most of the
aforementioned methods do not explicitly handle the con-
tamination caused by large appearance change, and the per-
formance would be degraded if large appearance variation
happens.

To address the aforementioned issues, this paper propose
a new learning model for RGB-assisted infrared object
tracking. The proposed model aims to integrate the modal-
ity reliability weight estimation,uncontaminated modality
feature template learning and fusion into a unified opti-
mization framework. Within this framework, tracking sam-
ples are decontaminated during the feature learning process
while modality reliability is adaptively evaluated. In addi-
tion, inspired by the non-negative matrix factorization [84],
we incorporate the nonnegative constraint into the optimiza-
tion framework, which guides the learned feature templates
to capture the local part-based decomposition of the target
appearance. An online optimization algorithm is derived to
the learn the modal parameters.

In general, the contributions of this work are summarized
as follows:
• We propose a new framework for infrared tracking.
The proposed framework is able to integrate reliable
RGB information with infrared modality for appearance
modeling.

• We propose a robust nonnegative feature templates
learning model to perform feature learning and fusion,
and reliability weight estimation of multiple modality
data.

• We derive an simplified version of the learning model
which reduce the computation complexity and derive
an effective optimization algorithm to learn the modal
parameters.

The rest of this paper is organized as follows. Section II will
provide some reviews of related works on infrared tracking
and RGB-assisted infrared tracking. Section III will present
the proposed method and the related optimization algorithm.
The implementation details will be given in Section IV. The
experimental results and the conclusion will be provided in
Sections V-B and VI, respectively.

II. RELATED WORKS
This section will briefly introduce and discuss some related
works on object tracking based on single infrared modality
and the fusion of RGB and infrared modalities. For more
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comprehensive literature review of object tracking, interested
readers can refer to [85]–[89].

A. RGB-INFRARED OBJECT TRACKING
Based on level set model, Bunyak et al. proposed a unified
framework for moving object segmentation and tracking [90].
A fusion-based tracking framework is proposed to combine
the tracking results generated bymultiple spatiogram trackers
corresponding to RGB and infrared modalities for final target
position decision [82]. A probabilistic background model
is designed in [81] to infer and fuse the confidence map
of target for tracking, where the confidence maps of RGB
and infrared modalities are aggregated based on sum rule.
Inspired by the success in sparse representation-based classi-
fication [91], several sparsity-based tracking algorithms have
been proposed. They exploit the feature concatenation [80],
joint sparsity regularization [83], [92], low rank regulariza-
tion [93], collaborative discriminative learning [94], feature
learning [95] to combine multi-modality information for
appearance modeling.

B. INFRARED OBJECT TRACKING
Performing object tracking in infrared video has received
great interests in recent years [74]. In [75], an adap-
tive weighted patch-based appearance model is proposed
to deal with non-rigid deformation for infrared tracking.
Based on background subtraction, a novel multiple-target
tracking-before-detection method with δ generalized labeled
multi-Bernoulli filter is developed to track the objects as
pixel set [76]. To exploit the powerful representation abil-
ity of convolutional neural network for appearance mod-
eling in infrared video, multi-layer convolutional features
are exploited in multi-correlation-filter-based infrared track-
ing [77]. In [78], the infrared tracking is treated as the similar-
ity verification task and a hierachical spatial-aware Siamese
network is developed. However, the appearance model of this
model is developed only based on infrared modality, which
may not be effective if the infrared modality is not reliable.

III. PROPOSED METHODS
The novel aspects of the proposed methods will be described
in this section. First, the online non-negative multi-modality
feature template learning model will be introduced, and then
the optimization algorithm for model parameter estimation
will be derived.

A. ONLINE NON-NEGATIVE MULTI-MODALITY FEATURE
TEMPLATE LEARNING
To derive our model for multi-modality feature template
learning, we need to consider what criteria would be used
to guide the learning process. Considering that the learning
feature template should have a good capability for appearance
modeling, the first objective is that the learned feature tem-
plates should have good representation ability to model the
target appearance variation. Let Y k = [yk1, . . . , y

k
N ] ∈ Rdk×N ,

k = 1, . . . ,K denote the samples of the tracked object in

RGB and infrared modalities collected by the tracker for
model learning, where N is the number of samples, and M
is the number of modalities (M = 2 for our problem). Then
the first objective can be formulated as follows:

Y k = DkX k + Ek , k = 1, . . . ,K (1)

where Dk = [Dk1, . . . ,D
k
c ] ∈ Rdk×c denote the feature tem-

plates in the k-thmodality whichwill be learned in ourmodel,
X k is the reconstruction coefficient matrix which would be
used to reconstruct the object using the linear combination of
feature templates, Ek is the error termwhich would be used to
capture the contaminated features of the samples of the k-th
modality.

How to decontaminate the tracking samples and learn
feature templates of multiple modalities for accurate repre-
sentation of the tracked object under appearance variation,
is the key problems which should be considered to derive
our learning model. The learned feature template should be
robust to different appearance variations to achieve a bet-
ter representation accuracy. Therefore, for each feature tem-
plate, it should encode some specific variation of the object
appearance. As such, during the model learning procedure,
some constraints should be imposed to adaptively activate (or
select) informative template to handle the variation. In addi-
tion, the error term should be enforced to characterize the
outliers caused by appearance variations for decontamination
of the samples. Based on the aforementioned consideration,
the multi-modality feature templates and the contaminated
features can be estimated via solving the following optimiza-
tion problem:

min
{X k ,Dk ,Ek }

K∑
k=1

( 1
2‖Y

k
− DkX k − Ek‖22

+λ1‖X k‖1 + λ2‖Ek‖1

)
s.t. (Dk(·,i))

TDk(·,i) ≤ 1 (2)

where the first term
∑K

k=1 ‖ · ‖
2
2 which encode the recon-

struction error, represents the total representation accuracy of
the tracked object using the learned multi-modality feature
templates, and the second and the third term are the sparsity
constraint on the reconstruction coefficient matrix and the
error terms using the `1 norm function. The proposed model
is the integration multiple sparse representation- trackers of
different modalities [96]–[100]. We can see that optmizing
the first term can ensure that the appearance modeling with
the learned feature templates can achieve as good accuracy
as possible, minimizing the second term can enforce only
a small number of feature templates will be selected for
handing appearance variation, and minimizing the third term
enable the error terms to capture the outliers in the contami-
nated features with the same merit in [101].

Inspired by the non-negative dictionary learning [102] and
matrix factorization model [84], to make the learned feature
templates able to capture the local part-based decomposi-
tion of the target appearance, we further introduce the non-
negative constraint on the matrices of sparse coefficients and
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the feature templates as follows:

min
{X k ,Dk ,Ek }

K∑
k=1

( 1
2‖Y

k
− DkX k − Ek‖22

+λ1‖X k‖1 + λ2‖Ek‖1

)
(3)

s.t. X k ≥ 0, Dk ≥ 0, (Dk(·,i))
TDk(·,i) ≤ 1

where 0 denotes all zeros’ matrices with the same size of X k

and Dk , respectively.
Since some modalities may not be reliable and features

from different modalities may contribute different roles for
appearance modeling, we further incorporate an adaptive
importance weight learning scheme into the feature learning
model, which is shown as follows:

min
{X k ,Dk ,Ek }

K∑
k=1

( 1
2 (α

k )2‖Y k − DkX k − Ek‖22
+λ1‖X k‖1 + λ2‖Ek‖1

)
(4)

s.t. X k ≥ 0, Dk ≥ 0, αk ≥ 0,
K∑
k=0

αk = 1

(Dk(·,i))
TDk(·,i) ≤ 1 (5)

Here the important weight α is dynamically optimized and
undated during the tracking process via minimizing the
weighted sum of the reconstruction error, which ensures that
feature templates from more reliable modality play more
important role in the sparse representation. We use α2 instead
of α to avoid the trivial solution that the weights corre-
sponding to the lowest reconstruction error is 1 and the other
weights is 0.

Model Simplification The main focus of the learning
model is to learn the feature templates and reliability weights
for appearance modeling. However, to decontaminate the
features of the tracking samples, solving the problem in (4)
requires the estimation of {Ek}, which introduces more
unknown variables and may increase the computational com-
plexity. Therefore, derived a simplified model is required.
Inspired by the online robust non-negative dictionary learn-
ing [102], we exploit the Huber loss function to remove the
variable {Ek} and model the reconstruction loss in (4), which
is formulated as follows:

min
{X k ,Dk ,αk }

L =
K∑
k=1

 (αk )2
2

dk∑
i=1

N∑
j=1

gθ
(
(Y k−DkX k )(ij)

)
+λ1‖X k‖1


s.t. X k ≥ 0, αk ≥ 0,

K∑
k=1

αk = 1, (Dk(·,i))
TDk(·,i) ≤ 1

Dk ≥ 0 (6)

where gθ (•) is the Huber loss function, i.e.

gθ (a) =


1
2
a2 |a| < θ

θ |a| −
1
2
θ2 else

(7)

B. OPTIMIZATION
Since the proposedmodel involves three blocks of parameters
{Dk}, {xk}, and {αk}, we derive an iterative optimization
algorithm to alternative update {Dk}, {xk}, and {αk}.
{X k}-subproblem: With fixed αk and Dk , Problem (6) is

separable, and solving each separated problem is equivalent
to solve the following problem:

min
{X k }

1
2

dk∑
i=1

N∑
j=1

gθ
(
(Y k−DkX k )(ij)

)
+ λ1‖X k‖1

s.t. X k ≥ 0 (8)

Following [102], we utilize the following updating rule to
update X k until convergence, i.e.

(X kij )
t
=

(X kij )
t−1

[
((W k )t−1 � Y k )TDk

]
ij[

((W k )t−1 � (Dk ((X k )t−1)T ))TDk
]
ij + γ

(9)

where (·)t denote the value of t-th iteration, � denote the
element-wise product, andW k

= [wkij] is

wkij =


1 |rij| < θ
θ

|rkij |
else (10)

where rkij = Y kij − D
k
i,·X

k
·,k

{Dk}-subproblem: With fixed αk and X k we employ the
projected gradient decent to update Dk . In t + 1-th iteration,
we utilize the surrogate function to express Huber loss as a
weighted `2 loss function, and then aim to solve the following
problem:

min
{Dk }

L =
1
2

dk∑
i=1

N∑
j=1

(wkij)
t (Y kij − D

k
i,·X

k
·,j)

2
+ λ1‖X k‖1

s.t. Dk ≥ 0, (Dk(·,i))
TDk(·,i) ≤ 1 (11)

By taking the derivative of L in (11), we can obtain:

∂l

∂(Dki,·)
T
= (U k

i )
t (Dki,·)

T
− (V k

i )
t (12)

where (U k
i )
t
=

∑c
j=1(w

k
ij)
t (X k
·,j)(X

k
·,j)

T , and (V k
i )
t
=∑c

j=1(w
k
ij)
t (X k
·,j)yij. Then the projected gradient decent can be

performed by

(D̂ki,·)
t
← max

(
(Dki,·)

t
−τ (Dki,·)

t ((U k
i )
t )T+τ ((V k

i )
t )T , 0

)
(Dk
·,j)

t+1
←

(D̂k
·,j)

t

‖(D̂k
·,j)

t‖2

(13)

Here Eq.(13) first performs the gradient decent and then
projects to the intersection of non-negative orthant and the
Euclidean norm cone. The step size τ is set to 0.2.
{αk}-subproblem: With {X k ,Dk} fixed, let Rk =

1
2

dk∑
i=1

N∑
j=1

gθ
(
(Y k − DkX k )(ij)

)
, then the problem in (6) can be
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TABLE 1. Overlapping Rate. The best three results are shown in red, blue and green.

TABLE 2. Success Rate. The best three results are shown in red, blue and green.

reduced to

min
{αk }

K∑
k=1

(αk )2Rk

s.t.
K∑
k=1

αk = 1, αk ≥ 0, k = 1, . . . ,K (14)

By taking the derivatives of the Lagrange function of (14)
i.e. L

(
{αk}, β

)
=
∑K

k=1(α
k )2Rk + β(

∑K
k=1 α

k
− 1), and

setting it to be zeros. we can obtain αkrk + β = 0.
Based on the equality

∑K
k=1 α

k
= 1, we can derive

αk
′

=
(Rk
′
)−1∑K

k=1(Rk )−1
.

The optimization algorithm alteratively updates the three
blocks of variables until convergence.

IV. IMPLEMENTATIONS
This section mainly introduces some key implementation
details of the proposed tracking algorithm.

A. TARGET APPEARANCE REPRESENTATION AND
POSITION DETERMINATION
The proposed tracker is implemented within the particle fil-
tering framework. Based on the collected tracking samples
and the background samples, following the implementation
in [102], in order to remove the effect of cluttered back-
ground and preserve the informative features, we exploit
the `1-regularized logistic regression to construct the feature
selection mask Pk whose elements are 0 or 1. Given the
learned multi-modality feature templates Dk , k = 1, . . . ,K
learned from the model (15) that encode distinctive proper-
ties of the target appearance, to enhance the discriminability
of the tracking models, we further augmented the feature
templates matrix Dk with some randomly sampled back-
ground samples Bk . After the feature selection masks are
applied, we exploit them to represent the target candidates
of RGB-infrared modalities. Since the multi-modality feature
template is learned under non-negative and sparsity con-
straint, we estimate the reconstruction coefficients of the
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FIGURE 2. Qualitative comparison results on some video frames of RGB and infrared modality under some challenging situations, which includes large
scale variation (e.g. BusScale, Minibus1), poor illumination conditions(e.g. Exposure2), thermal crossover (e.g. Motorbike, Gathering), occlusion (e.g.
BlackCar). For each sub-figure, video frames of RGB modality are shown in the top row while video frames of infrared modality are shown in the bottom
one. (a) BlackCar. (b) BlueCar. (c) BusScale. (d) FastCar2. (e) Gathering. (f) Minibus1. (g) Motorbike. (h) Exposure2.

target candidate based on sparse representation model under
the same constraint as follows:

min
{xk ,zk }

K∑
k=1

(αk )2
2

dk∑
i=1

N∑
j=1

gθ
((
Pk (yk − [Dkxk + Bkzk ])

)
(ij)

)
+λ1‖X k‖1

s.t. X k ≥ 0, αk ≥ 0,
K∑
k=1

αk = 1 (15)

The sparse coding algorithm derived in Section III-B is uti-
lized to solve (15). After obtaining the sparse coefficients xk

and zk , the observation likelihood for each particles can be
derived as

p(oit |s
i
t ) ∝ exp

(
K∑
k=1

αk

(
η‖Dkxk‖1 − ‖Bkzk‖1

))
(16)
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FIGURE 3. Frame-by-Frame Quantitative Comparison of 11 trackers on 8 challenging videos in terms of overlapping rate. The vertical axis indicates the
overlapping rate and the horizontal axis is the frame index. (a) BusScale1. (b) MinibusNig. (c) Motorbike. (d) Minibus1. (a) Tricycle. (b) Exposure2.
(c) BlueCar. (d) Exposure4.

where sit denote the i-th particle in the t-th frame. The obser-
vation likelihood ensure that the the target particle should
be the one which can be well represented by the learned
multi-modality feature templates and is poorly represented by
the background, which means a good discrimination between
the target and the background can be achieved.

B. MODEL INITIALIZATION AND UPDATING
The bounding box of the tracked target is initialized manually
according to the annotation data. To initialize the tracking
model, we randomly sample 20 image patches which have
small shift from the target position in the first frame as the
positive examples, and 100 image patches as the negative
examples. The reliability weights are initialized to be the
same, i.e. 0.5.

Since the object appearance will change during the track-
ing process, and it would also encounter some appearance
variation, the tracking model should be properly updated.
Inspired by the online learningmodel [103], our model updat-
ing should preserve some historical appearance information
of the tracked target to alleviate the risk of drifting. Therefore,
we introduce the forgetting factor r to combine the historical
information with the target appearance in current frame. After
obtaining the tracking result in t-th frame, we update the U k

i
and V k

i which can be regarded as the sufficient statistics as
follows:

(U k
i )
t
← r(U k

i )
t−1
+ (wki )

t ((xk )t )((xk )t )T (17)

(V k
i )
t
← r(V k

i )
t−1
+ (wki )

t ((xk )t )((yki,·)
t ) (18)

where (yk )t denote the target sample in t-th frame of k−th
modality, (xk )t is the sparse codes of the target sample of of
different modalities, (U k

i )
t and (V k

i )
t denote U k

i and V k
i in

t-th frame. Depend on the degree of changes of the target
appearance, following the idea of [102] the model updating
is performed every 3 or 5 frames.

V. EXPERIMENTS
This section first introduces the experimental settings, and
then presents the experimental results.

A. EXPERIMENTAL SETTINGS
Fifteen RGB-infrared video pairs which are captured by
infrared and visible cameras are adopted to evaluate the
tracking performance. These videos cover large appearance
variations such as occlusion, large scale changes and poor
illumination conditions. To make sure hat the tracked object
appears at the same position in each video frame of infrared
and RGB modalities, video frame alignment and registration
have been applied on these videos. Totally 10methods are run
for comparison. They are STC [104], CT [105], MIL [106],
L1 [80], JSR [92], CN [107], KCF [108], MEEM [109],
RPT [110], STUCK [111]. The JSR and L1 methods are
developed for RGB-infrared tracking, while the other meth-
ods are originally developed for tracking in RGB modality.
Following the implementation as introduced in [83], we can
implement themulti-modality version of these trackers. Some
of the tracking results for these multi-modality trackers on
these videos data can be obtained from [83].
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The θ , λ1, and η is set to 0.01, 0.01 and 5, respectively.
The forgetting parameter r for model updating is set to 0.99.
In each frame, to sample the target candidates, 600 particles
is generated within the framework of particle filtering.

B. EXPERIMENTAL RESULTS
We use two metrics i.e. overlapping rate and success rate to
quantitatively evaluate the tracking performance. We define
the overlapping rate as area(B1

⋂
B2)

area(B1
⋃
B2)

where B1 and B2 are the
bounding box generated by the tracker and the groundtruth.
A tracking success is counted if the overlapping rate mea-
sured from the tracking result in a video frame is greater
than 0.5. The percentage of video frames in which the
tracking success happens is regarded as success rate. The
results of the compared trackers and our proposed method
in terms of overlapping rate and success rate can be found
in Tables 1 and 2. In summary, the quantitative results
recorded in Tables 1 and 2 show that the proposed tracker
obtains the best accuracy among all the compared trackers
in the fifteen RGB-infrared videos. The performance of the
proposed tracker stays in the rank of top 3 in 14 videos in
terms of success rate and in 11 videos in terms of overlapping
rate. Specifically, as shown in Figure 2 the proposed tracker
is more able to handle to some large variations, such as occlu-
sion (e.g. Exposure2#28, FastCar2#26), thermal crossover
(e.g. Gathering#256, cluttered background (e.g. BlueCar,
BusScale) This is because the proposed model can explic-
itly decontaminate the training samples during the template
learning process, which make it more robust to outlier caused
by large appearance variation. In addition, the adaptively
determined reliability weight enables more reliable modality
contribute more in appearance modeling. The adaptive inte-
gration of RGB modality make it less sensitive to the issues
of thermal crossover in infrared tracking.

Figure 3 show some qualitative comparison of the over-
lapping rate of the compared trackers in a frame-by-frame
manner. It can be found that the proposed tracker achieves
a relatively higher overlapping rate in general.

VI. CONCLUSION
In this paper, we propose an online multi-modality feature
template learning model for infrared tracking with RGB
information. By integrating multi-modality feature learning
and fusion, feature decontamination, and modality reliability
evaluation into a unified optimization framework, the pro-
posed infrared tracker can achieve a better tracking results.
To reduce the computational complexity, we further derive
the simplified but simplified forms of the learning and the
corresponding optimization algorithm. Comparison experi-
mental results with other 10 trackers shows the effectiveness
of the proposed tracker.

Since the proposed algorithm can not run in real time,
one of our future work will be focus on how to improve
the tracking efficiency. There are two directions which can
be further explored. First, we can develop more efficient

optimization algorithms to obtain the optimal solution.
Second, we can exploit more scientific computation tech-
niques (e.g paralleled computing) with advanced hardware
(e.g. GPU) to increase the efficiency.
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