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ABSTRACT A taxi stand can effectively regulate the behavior of taxi picking up passengers, reduce
empty-run rate, and provide a convenient and orderly waiting environment for the public. However,
the unreasonable setting of the existing taxi stands in most cities leads to an extremely low utilization rate
and a waste of public space resources. This paper presents a novel three-stage strategy to address the taxi
stands location problem (TSLP) incrementally. First, taxi demands hotspots are mined from a massive taxi
Global Positioning System (GPS) data with GIS platform, and the optimal area for taxi stands siting in
the following stages is determined. Then, the spatial interaction between taxi demands and taxi stands is
explored to generate demand subsections and stand candidates along both the sides of the road. At last,
a taxi stand location model (TSLM) is developed to minimize the total cost, which contains the access cost
of passengers and the construction cost of taxi stands. The genetic algorithm-based procedure is adopted
for TSLM optimization. A case study conducted in China verifies the effectiveness of the location strategy
and investigate the impact of the maximum acceptable distance for passengers on TSLP. The experimental
results describe the number and layout of taxi stand under a different demand coverage, which indicates that
the proposed approach is beneficial to provide scientific reference for the municipal department in taxi stand
site decisions and make a tradeoff between the interests of planners and users.

INDEX TERMS Taxi stand, location strategy, spatial-temporal demand, GPS big data, genetic algorithm.

I. INTRODUCTION
Taxi is an important part of urban transport, which has always
been favored by people for its unique convenience and com-
fort since the 19th century [1]. In recent years, taxi services
such as telephone booking and online booking have become
more and more popular, but in most countries and regions,
such as China, the main operatingmode of taxis is still hailing
along the roadside. In this traditional mode, taxis head to
places with heavy traffic in searching for customers, which
could aggravate traffic congestion and air pollution problems
[2], [3]. In addition, the empirical cruise mode keeps pas-
sengers and drivers in a state of information isolation. There
is always a mismatch between demand and supply for taxis
in time and space, leading to high empty-run rate and low
operating efficiency [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Hua Fang.

Taxi stand (TS) can provide taxis and passengers with a
more secure and effective mode of interactive service, which
has the characteristics of identifiable, orderly, efficient and
quick [5]. Generally, it is not practical to set up taxi stands
in every area where passengers may appear, and it will lead
to the loss of flexibility and convenience of taxis. In practice,
the location choice of TS mainly depends on the experience
of the traffic manager or the feedback from some drivers
and passengers. The lack of scientific and rigorous decision-
making criteria leads to a low utilization, and some even exist
in name only. Therefore, it is significant to solve the taxi stand
location problem (TSLP) in a scientific way. Urban planners
need to know where to locate TSs to maximize utilization
and other considered objectives. To answer this question, two
major problems need to be solved: taxi demand analysis and
location optimization modeling.

The analysis of taxi demand with spatial-temporal infor-
mation aims to mining the taxi travel hotspots, which is
the premise of accurately identifying the optimal candidate
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location for taxi stands siting. Due to the limitations of data
collection methods, early studies on the spatial distribution
of urban travel hotspots are mainly based on land use type
data, vehicle information collected by fixed detectors, and
other survey data [6]. In recent years, a large number of
taxis in urban areas have been equipped with Global Posi-
tioning System (GPS) to track and dispatch vehicles [7].
Compared with data from traditional surveys, mass GPS
data with high geographical resolution are more accurate,
objective, cost-effective, and accessible [8]. They provide a
rich information source for describing residents’ daily mobil-
ity, which has been widely used to mine information for
the field of urban taxi transportation [9], [10], such as taxi
service strategies uncovering [11], taxi driving directions
recommend [12], travel purpose inferring [13], [14], etc.
Moreira-Matias et al. [15] used GPS data of a taxi company in
Porto, Portugal to predict the spatial and temporal distribution
of taxi passenger demand in the short term. Ferreira et al. [16]
proposed a model that can be used for users to visually query
the taxi journey and the origin and destination location, and
studied the mobility in the city. Bischoff et al. [17] analyzed
the taxi travel behavior and taxi supply in Berlin on week-
days and weekends using a large amount of taxi GPS data.
Tang et al. [18] extracted travel information from taxi GPS
data in Harbin, China, analyzed the distribution of the origin
and destination, and studied the searching behavior of drivers
in pick-up locations.

Analysis of taxi trajectory data also provides a new per-
spective for researchers on improving taxi operation effi-
ciency. Many researchers have applied real-time GPS data
on exploring the behavior patterns of taxi drivers and
passengers [19], [20], establishing the arrival probability
model of passengers and empty taxis [21], and developing a
recommendation system to provide taxi drivers with possible
places and routes to pick up passengers quickly and suggest
places where passengers can take a taxi rapidly [22]–[24].
Moreira-Matias et al. [25] combined the spatial-temporal
distribution of taxi demand with the state of the road net-
work, and recommended taxi drivers to taxi stands with the
least waiting time in real time. Wong et al. [4] established
a decision model for empty taxi drivers and analyzed their
preferences in traveling towards taxi stands and waiting for
customers at taxi stands. To some degree, previous research
work can reduce the vacancy rate of taxis. However, the irra-
tionality of TSs locations may lead to the invalid recommen-
dation results.

Facility location is a reflection of human demands. TS is a
kind of transportation service infrastructure, which reflects
the taxi travel demand. In order to satisfy these demands
of geographical distribution, a great deal of literature have
adopted the location approaches to solve the problem of
facility location [26]. In view of different practical prob-
lems, considering different demands and objectives, quite
a few location models have been proposed such as
the p-Median [27], p-Center [27], the maximum coverage
location problem (MCLP) [28], the flow capture location

model (FCLM) [29] and the flow refueling location
model (FRLM) [30]. These models have been successfully
employed in the siting optimization of transportation service
infrastructure, their applications involve the siting of conven-
tional and alternative refueling facilities [31]–[33], charging
stations for electric vehicles [34]–[36], park-and-ride facili-
ties [37]–[39], bike-sharing stations [40]–[42], etc.

In terms of taxi industry operation and service, there are
few previous studies existing on the location research of TS.
To date, the closest research is by Ocalir et al. [1], who
develop a decision support system for taxi stand location
decision. They assessed the existing taxi stands in parts
of 99 traffic zones located in Ankara to decide whether give
any more permission for new ones. In essence, the system
evaluates the number of TSs in a certain region of the city on
a macro level, rather than optimizes the specific location of
TSs in a region.

FIGURE 1. The flow chart of this paper.

This research intends to fill in the blank of the TSLP
through a hierarchical methodology, which optimizes taxi
stand not only in quantity but also in layout. In this paper,
we study the location selection of taxi stands from the per-
spective of exploring the spatial-temporal dynamic attributes
possessed in taxi demands and its spatial interaction with taxi
stands. A three-stage location strategy is proposed using taxi
GPS big data to solve the TSLP incrementally. The research
flow chart is demonstrated in Fig. 1. The contributions of
our work lie in the following aspects. First, in order to seek
the appropriate setting environment of TSs, we extract the
actual travel demands from taxi GPS big data and explore
the distribution regularity in time and space dimension to
identify the hotspots with high demands accurately. Second,
we describe the spatial interaction between taxi demands
and taxi stands. On this basis, travel demand subsections
and candidate taxi stands are generated on both sides of
the road in a staggered arrangement. Third, we design a
taxi stand location model (TSLM) to solve the TSLP that
achieve the objective of minimizing the access cost for
passengers and the construction cost. Considering the het-
erogeneity of passenger behaviors, the concepts of demand
coverage and maximum acceptable walking distance are
introduced in the model to optimize the selection of the
locations. To verify the validity of the proposed strategy and
TSLM, a case study is conducted. The results show that the
approach presented could be effectively applied to TSLP in
metropolitan.
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The remainder of this paper is organized as follows.
Section II describes the research methods for TSLP,
including three-stage location strategy and optimization
algorithm. In section III, a case study is conducted to
accomplish the acquisition of experimental parameters and
demonstrate the effectiveness of our methodology. Section IV
concludes the paper.

II. METHODOLOGY
In this section, a three-stage location strategy is proposed to
explore taxi stands site step-by-step. In stage 1, we identified
which areas of the city need to be set up for taxi stands.
In stage 2, the streets in these areas are divided into taxi travel
subsections, and a candidate taxi stand is generated in each
subsection. In stage 3, the optimal setting location for taxi
stands is selected from all the candidate points.

TABLE 1. Taxi demands data description.

A. STAGE 1 – TAXI DEMANDS EXTRACTION AND
TRAVEL HOTSPOTS IDENTIFICATION
There are several fields contained in GPS records, such as
taxi id, timestamp (associated positioning time), taxi loca-
tion (longitude, latitude), status (occupied/vacant), vehicle
speed, et al. As shown in Table.1, only the taxi demand data,
i.e., the information indicating taxis picking up or dropping
off passengers is of interest in this work. To meet travel
demands, taxis pick up passengers at the origin, then follow
the driving route to the destination and drop off passengers.
In this process, the field of status changes from<0> to<1>
after the passenger gets on, and remains <1> constant until
the passenger gets off. Generally, the point in state <1> is
regarded as the pick-up location when the state shifts from
<0> to <1>, and the point in state <0> is regarded as
the drop-off location when the state shifts from <1> to
<0>. Accordingly, the pick-up and drop-off data sets which
represent the actual travel demands of taxi can be expressed
as R1(0→ 1) = {t, s, (x, y)} and R0(1→ 0) = {t, s, (x, y)},
where t is timestamp, s is status, and (x, y) denotes the
taxi location. After the processing and map matching of the
raw taxi GPS data, these taxi demands with spatial–temporal
information are extracted for the hotspots identifying.

Defining hotspots that reflect the intensive taxi travel is an
essential foundation for TSs siting. In this research, a GIS
platform is used to spatially analyze the potential setting areas
of TSs, combining with the time-varying law of taxi demands

and the geographical conditions of location factors. The ker-
nel density analysis by GIS can reflect the distance decay
effect in the geographical space distribution well, which is in
line with the diffusive characteristics of the influence of urban
facilities such as TSs on surrounding locations. The general
form of the kernel density estimation (KDE) is expressed as:

λ(x, y) =
1
πr2

n∑
i=1

k
(
dis
r

)
(1)

where λ(x, y) is the estimated density value at location
S(x, y), n is the total number of event points,r is the search
bandwidth, dis is the distance between event point i and
location S, and k is the kernel function. In KDE, each event
point i is covered by a smooth surface. As shown in Fig. 2,
the kernel function value of each point is calculated according
to the distance to the center point S. All the surfaces value
superimposed on the reference point are summed to obtain
the density estimate for the distribution of event points. The
visualization operation system on GIS platform allows us to
present the distribution of taxi travel hotspots on city map by
an intuitive way, and help to make the mining process easier.

FIGURE 2. Diagram of kernel density method.

B. STAGE 2 – DEMAND SUBSECTIONS PARTITION
AND CANDIDATE SITES GENERATION
Taxi stands provide serves for the public and taxi drivers.
In reality, passengers appear randomly on the streets, which
makes the location of roadside taxi stands in the road network
special, i.e., the opposite and staggered distribution along
both sides of the road. In order to determine the reasonable
taxi stands candidate points, we cluster the taxi demands
into travel subsections and generate the candidate points of
TSs at the centroid of each subsection, which is illustrated
in Fig. 3. In this paper, the direction to the east or south
is defined as clockwise (CW), and to the west or north as
counterclockwise (CCW).

Firstly, we determine a certain length of segmentation
(L = 2r) to divide the roads in the setting area into adjacent
grids (see Fig. 3a). Meanwhile, the taxi demands (Qi) within
the range of each grid, i.e. the number of taxi pick-up points,
is extracted and calculated.
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FIGURE 3. Generation of demand subsections and candidate points.

FIGURE 4. The judgment principle of taxi demand location based on the
GPS trajectory.

Unless the vehicle happens to be parked at an intersec-
tion or other areas with turning conditions, the taxi will
continue to drive in the same direction after picking up pas-
sengers at the side of the road, as shown in Fig. 4. Formally,
we define the driving direction after a taxi demand is ser-
viced as:

Dtd = [R1(1→ 1)− R1(0→ 1)]

= [{ti+1, si+1, (xi+1, yi+1)} − {ti, si, (xi, yi)}]

= [{1t,1s, (1x,1y)}] (2)

where R1(1 → 1) denotes the GPS points of taxi demand
at time ti+1, 1t is sampling interval, and (1x,1y) is the
difference between two tracing points. Therefore, the posi-
tive or negative values of 1x and 1y indicate the orientation
of passengers, based on which we can obtain the exact loca-
tion of each passenger on both sides of the road middle line.

Secondly, along the road middle line, we split the initial
grids into left and right travel subsections (see Fig. 3b), and
set up a candidate taxi stand at the centroid of each subsection.
According to the driving direction (Dtd ), the taxi demands in
the right travel subsections are calculated as qRi , while those
in the left can be expressed as Qi − qRi .
Thirdly, considering the setting pattern of TSs staggered

along both sides of the road, we move the subsections on one
side of the road (e.g., the left subsections in CW) from the

original positions along the same direction (e.g., in CW) by a
distance of half the splitting length (r). As shown in Fig. 3c,
the taxi demands qLi are updated by:

qLi =
1
2

(
Qi − qRi

)
+
1
2

(
Qi+1 − qRi+1

)
(i = 1, 2, · · · ,N )

(3)

Finally, due to the displacement of the subsections, uncov-
ered taxi demands will be allocated to the neighborhood
nearest on the same side. Fig. 3d displays the final distribution
of taxi stand candidates, where the right side is represented by
cpRi and the left side is represented by cpLi .
The distance matrix of demand subsections and taxi stands

can be represented as D = [dij] , where dij denotes the
distance from the subsection i to the candidates j calculated
based on three spatial location relationships between them.

(1) Same subsection: Assuming that taxi demands are
uniformly distributed in a straight line on both sides of the
candidate point, the distance dij is given by (4), where qi is
the taxi demands in subsection i.

dij =
r

qi/2

(
1+ 2+ · · · qi2

)
qi/2

=
r
qi
+
r
2

(4)

(2) Same side of the road, different subsections: The
distance dij equals to the metropolitan metric between the
centroids of subsections approximately, as given by:

dij =< xi, yi > − < xj, yj > (5)

(3) Different sides of the road, different subsections: The
distance dij is based on the addition of (5) and the street width
ds, which can be expressed as:

dij =< xi, yi > − < xj, yj > +ds (6)

C. STAGE 3 – LOCATION MODEL OF TAXI STAND
The TSLM aims to minimize both the total access costs of
passengers and the total construction costs of taxi stands. The
former sub-objective is measured by the total travel distances
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that passengers walk from their origins to the taxi stands.
The concept of passengers’ unit time value is introduced to
transform travel distance or time into access cost for the
consistency of the overall optimization objective. The shorter
the travel distances, the less the access costs, and the higher is
the travel convenience. To simplify the TSLP, the following
reasonable hypothesis conditions are given in this paper:

• Due to complex actual situations such as building shield-
ing, the distances from demand points to taxi stands
is calculated according to the metropolitan metric and
pavement width rather than the Euclidean metric.

• Regardless of the passenger’s travel direction, passen-
gers choose their destinations according to their distance
from taxi stands.

• Taxis arrive at taxi stands to serve passengers continu-
ously without interruption during rush hour.

• Passengers in the same travel demand point choose go
to the same taxi stand.

In this paper, the parameters and notations to be used in the
optimization model are summarized as follows:

I Set of travel demand points
J Set of candidate points for taxi stands (J ⊆ I )
T Time buckets
pj Parking spaces at taxi stand j
Pbbj Maximum service capacity of parking space per

hour in taxi stand j
DA Maximum acceptable walking distance for passen-

gers
dij Distance of between demand point i and candidate

point j
qit Taxi demand at travel demand point i in time t
cj Construction cost of candidate taxi stand j
cp Unit time value of passengers
vp Passenger walking speed
Xj Binary variable, which equals 1 if a taxi stand is

located in point j and 0 otherwise
Yij Binary variable, which equals 1 if demand point i

is served by taxi stand j and 0 otherwise

The taxi stand location model (TSLM) can be formulated
as follows:

Minimize: C = λ · cp ·
∑
t∈T

∑
i∈I

∑
j∈J

Yij · dij · qit +
∑
j∈J

cj · Xj

(7)
Subject to:

∑
j∈J

Yij = 1 ∀i ∈ I (8)

Yij ≤ Xj ∀i ∈ I , j ∈ J (9)
Xj ≤ pj ∀j ∈ J (10)∑
i∈I

qitYij ≤ Pbbj pj ∀j ∈ J , t ∈ T (11)∑
j∈J

dijYij ≤ DA ∀i ∈ I (12)

Xj = {0, 1}j ∈ J (13)
Yij = {0, 1} ∀i ∈ I , j ∈ J (14)

where λ is the inverse of pedestrian average walking speed vp,
which is introduced to transformwalking distance into access
time. The objective function (7) is to minimize the total cost
containing the total access cost of passengers and the total
construction cost of taxi stands. Constraint (8) guarantees
all passengers can be covered by the service of taxi stands.
Constraint (9) requires that passengers choose to take a taxi
at point j only when a taxi stand is located at candidate point j.
Constraint (10) specifies that a taxi stand is located only when
there are passengers to take a taxi there. Constraint (11) indi-
cates that the total number of passengers that choose to take a
taxi in section j cannot exceed the maximum service capacity
of taxi stand j within any time period. Constraint (12) repre-
sents that passengers at the demand point i choose to take a
taxi at candidate stop j only when the distance between point i
and point j cannot exceed the maximum acceptable walking
distance for passengers. Constraint (13) and (14) impose
integer conditions on binary decision variables Xj and Yij.
In the TSLP, the walking distance between taxi stands

and demand points is an extremely crucial factor. Although
the maximum acceptable walking distance for passengers is
preset to ensure the travel service level and travel desire of
passengers, in practice, however, different passengers have
different acceptance for the same service level. In the above
model, passengers identified as covered by the service are
likely not to go to taxi stand, and we don’t have to provide
services for those passengers who are in low taxi demand,
have high requirements for service level and service cost.
Consequently, we introduce the concept of demand coverage
Dc, which is estimated as the ratio of the travel demand
covered by taxi stands to the total demand. Constraint (8) are
replaced by the following constraint (16) and (17) to exclude a
certain proportion of passengers from the coverage target, and
avoid the model to solve the TSLP from a single perspective
of full coverage.

A more general form of TSLM can be expressed as:

Minimize: C = λ · cp ·
∑
t∈T

∑
i∈I

∑
j∈J

Yij · dij · qit +
∑
j∈J

cj · Xj

(15)

Subject to: (10)− (16),∑
j∈J

Yij ≤ 1 ∀i ∈ I (16)

∑
t∈T

∑
i∈I

∑
j∈J

qitYij ≥ Dc
∑
t∈T

∑
i∈I

qit (17)

Here, constraints (16) means that passengers can choose
not to go to the taxi stands, if they choose to go, they can only
go to the same point. Constraints (17) ensures that passengers
with a proportion of total demand can obtain service.

D. THE HEURISTIC ALGORITHM
Location problems are difficult to solve due to the inher-
ent complexity of NP-hard [43]. In the past decades, many
solution approaches have been developed for facility location
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problems, among which the heuristic algorithm is the most
promising one. Genetic Algorithms (GA), originally formu-
lated by Holland (1975) [44], is a most widely used heuristic
algorithm and has been applied to many complex location
problems successfully. In this paper, we use a genetic algo-
rithm to solve the TSLP. GA is an optimization method for
searching global optimal solution by simulating the biologi-
cal evolution process of natural selection and genetic mech-
anism, completing the iterative search process of optimal
solution through five basic steps of population generation,
fitness evaluation, selection, crossover and mutation [45].

For the TSLP, the chromosome of the location scheme
are encoded by binary coding, in which the code length of
the genome is used to describe the number of candidate taxi
stands, and the binary variable on each code position is used
to represents whether the candidate location is selected to set
up a taxi stand. An initial population is generated randomly
to represent the initial location schemes. The fitness function
of each individual is calculated by inverse transformation of
the objective function of TSLM (7). The roulette wheel [45]
is adopted as the selection strategy. We use the single-point
crossover to generate new individuals and replace individual
genes with a single-point mutation. If the termination condi-
tion is satisfied, the algorithm terminates; otherwise, continue
to repeat the evolutionary process. The termination condition
of evolution is that the loop reaches the maximum number of
iterations or the objective function value has no improvement
over a fixed number of iterations.

III. CASE STUDY
The taxi GPS data used in this paper are collected from about
7,200 taxis in a city, China. The data start from 0 a.m. to
24 p.m. in a week in June 2015. The data collection time
interval is generally around 20s. Through a series of data
preprocessing, more than 150 million valid data are obtained.
The data sets representing travel demands and directions are
extracted under the environment of the database Microsoft
SQL Server 2008.

A. IDENTIFYING TAXI TRAVEL HOTSPOTS
Fig. 5 shows the daily variation pattern of taxi demands.
Within a week, the highest and the lowest demands for taxi
is 309,881 on Friday and 198,168 on Sunday respectively.
With ArcGIS10.2, the spatial analysis was conducted on the
24-hour data set of Friday, and the visualization results were
shown in Fig. 6.

Fig. 6a indicates the hotspots distribution of taxi pick-
up points. There are 6 hotspots identified, of which the
No.1-5 belong to the railway station or coach station, and
the No.6 is located in the most prosperous business circle.
Fig. 6b displays the hotspots distribution of taxi drop-off
points. Compare with Fig. 5a, the number of the hotspots
decreases relatively. Due to the disparity of the drop-off
points, the No.3 and No.4 area shown in Fig. 6a no longer
appear. However, the locations of 4 hotspots in Fig. 6b overlap
with that of the pick-up hotspots.

FIGURE 5. Daily variation of taxi demands.

The No.1-5 areas with large-scale people gathering and
distributing are usually equipped with taxi stands to satisfy
passengers’ travel demands. These hotspots present a point
radiation state, which does not meet the research conditions
of roadside taxi stands. Inversely, the No.6 covers multiple
streets with heavy traffic and exhibits a network state, which
is suitable for the demand construction area of TSs. Hence,
the No.6 hotspot is selected as the research area for taxi stands
siting in following work.

TABLE 2. Statistical indicators of the survey.

B. PARAMETERS CALCULATION
1) TAXI DEMANDS GENERATION
Fig. 7 depicts the road network structure of the hotspot No.6,
covering 3,619 taxi trips on Friday. Generally, the distance
between taxi stand and the signal intersection should be more
than or equal to 50 meters. Thus, we take r = 50 to generate
48 demand subsections and candidate points, including 24 on
the right and 18 on the left in CW.Note that taxi demand refers
to the number of passengers rather than taxi trips in our work.
To this end, an artificial survey was conducted in a week
of June 2018 in Red-flag street business circle, Changchun
city, China. The scale of the survey site selected is similar
to the No.6 hotspot studied in this paper. The data collection
time is 3 hours during the daily taxi travel peak, and the
related statistical variables are shown in Table.2. According
to the analysis results of the survey, the average passengers
per taxi trip n = 2 is used in the calculation of taxi demands
in each subsections. Then we have the taxi demand of each
subsection qi = N t

i · n, where N
t
i is the number of taxi trips

occurred in each subsection i.
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FIGURE 6. The distribution of taxi travel hotpots within the urban area. (a) Pick-up points. (b) Drop-off points.

FIGURE 7. The road network structure of hotspot NO.6.

2) ECONOMIC INDEX DETERMINATION
Since different countries and regions hold different opinions
on the number of parking spaces in taxi stands, we assume
pj = 2 for all candidate sites to simplify the TSLP. According
to the actual investigation, the length of a taxi shelter is about
4 meters and the construction cost is about 1500 yuan per
meter. In order to create a good waiting environment for the
public and guide them to make effective use of taxi stands,
we allocate corresponding taxi shelter for each parking space.
Thus, cj = 12, 000 yuan is employed in the TSLM.
The free walking speed of pedestrians vp is set as 1m/s in

our research. The travelers’ value of time (VOT) is related
to their income: the VOT of taking a bus or car is estimated

as 50% of a traveler’ gross wage rate, and the walking and
waiting time is 1.8 times of riding time [46]. Draw on the
method of Zhu et al. [47], we assume that the averagemonthly
gross wage rate of passengers is 20,000 yuan, the working
time is 20 days a month and 8 hours a day, then we have
cp = 112.5 yuan per hour.

3) MAXIMUM SERVICE CAPACITY OF TAXI STAND
Assuming that the geometric size of TS is appropriate,
the maximum number of taxis served per hour per parking
space T bbj can be calculated by:

Tbbj = 3600
(
g
/
C
)/[

tc +
(
g
/
C
)
td + za · cv · td

]
(18)

where g/C is the effective green time in each signal cycle
(the roadside taxi stand is 1.0), tc is the time interval between
two consecutive taxis (unit: second), Za is the unilateral test
quantity corresponding to the probability of queuing at a taxi
stand, and cv is the deviation coefficient of residence time.
The mean residence time td is given by:

td = te + n · ta + n · tb + tl + toc (19)

where te and tl respectively represent the time taken for a taxi
to enter and leave the parking space, ta and tb respectively
denote the alighting and the boarding time for a passenger,
toc is the time to open and close door. In this paper, partial
values were obtained through the investigation experiment in
section III, and relevant parameter setting is given in Table.3.

TABLE 3. The parameters setting.

Based upon (18) and (19), the maximum service capacity
of taxi stand Pbbj = n · T bbj . If necessary, we recommend
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FIGURE 8. The spatial distribution of taxi stands with different demand coverage Dc. (a) Dc = 100%. (b) Dc = 80%.

a more appropriate numerical value for related parameter
relying on the actual conditions in different cities and regions.
However, this is not the focus of our research, and the current
method using the parameters derived from specifications and
actual survey is sufficient for us to obtain the appropriate
results for solving TSLM.

TABLE 4. The optimal results of the TSLM with different demand
coverage.

C. MODEL ESTIMATION AND ANALYSIS
According to relevant document [48], we set the maximum
acceptable walking distance for passengers DA to 300m.
The optimization results of the TSLM with different demand
coverage Dc are summarized in Table.4. It indicates that a
better solution can be obtained by excluding 20% of the taxi
demands from the coverage target. As the demand coverage
decreases from 100% to 80%, the total costs decreases from

137518.68 yuan with 10 taxi stands to 91354.80 yuan with
6 stands. Meanwhile, the total walking distances for passen-
gers increase from 565118.58m to 624348.52m and the aver-
age walking distance also increase from 78.08 m to 106.64 m,
which is due to the longer route to a stand with a fewer
number of taxi stands. It should be noted that the decrease of
taxi stands brings on an economy in the construction costs,
the increase of walking distances leads to an addition in the
access costs, while the total costs is actually reduced. This is
mainly because the unit construction expenses of taxi stands
is relatively large, which has a great impact on the objective
function value. This also verifies that in order to minimize
the total costs, taxi stands should be constructed as few as
possible to reduce the construction costs on the premise of
ensuring the demand coverage.

The spatial distribution of taxi stands is displayed in Fig. 8,
the 10 construction points with Dc = 100% is located in
subsection R2, L4, L5, L7, L11, L13, R19, R20 and R21 and
R24, while the 6 construction points with Dc = 80% is
located in subsection R4, R6, L10, L12, R19, L16.

Comparing Fig. 8a with Fig. 8b, we can find that the
full coverage scenario requires an additional taxi stand on
four roads of Road-1, 3, 5, 6 to serve the travel demands
of all subsections. Fig. 9 depicts the coverage results of taxi
demands in each subsections, which illustrates that passen-
gers will take a taxi at their own subsections where taxi
stands will be constructed. In 80% coverage scenario, taxi
demands of subsections R8, L7, R13, L11, R14 and R24 can
not be covered by taxi service, as the distances between their
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FIGURE 9. The coverage results of taxi demands in each subsections.

locations and the nearest taxi stands exceed the maximum
acceptable range. In such cases, passengers can choose to take
buses or subways, drive private cars or walk to areas without
taxi parking restrictions and other alternative trips modes to
achieve travel.

FIGURE 10. The impact of maximum acceptable walking distance DA for
passengers on TSLP.

D. IMPACT OF MAXIMUM ACCEPTABLE
WALKING DISTANCE
Furthermore, we also explore the impact of maximum accept-
able walking distance DA for passengers on TSLP under the
identical demand coverage Dc = 100%, which is shown
in Fig. 10. The relationship curve between DA and total
cost shows a monotonic decreasing trend, suggesting that the
larger the DA is, the better the objective value is. However,
the monotone decline in changing rate of the curve indicates
that the increase in themaximum acceptable walking distance
reduces the marginal benefit. In the process of DA increasing
from 100 m to 500 m, the total cost saved is 126768.68,
80252.01, 43098.14, and 16432.71 yuan correspondingly,
and the reduced number of taxi stands is 11, 7, 4 and 2
respectively.

The total walking distance increases from 275463.40 m to
967349.04 m with the increase of DA, which is consistent
with our intuition. The smaller DA states that passengers are
reluctant to travel a long way to take a taxi. Therefore, it is
necessary to set more TSs close to the taxi demands, which
increases the construction costs. The larger DA indicates

that passengers can accept a longer distance to take a ride.
Therefore, there are more choices to decide where to locate
TSs. In order to minimize the total cost, fewer TSs should be
set up, which induces an increase of total walking distances.
These comparison results verify that maximum acceptable
walking distance has a significant impact on the location
selection and demand coverage of TSs.

IV. CONCLUSION
This paper proposed a three-stage location strategy to address
the taxi stands location problem (TSLP) in urban, which
can determine appropriate construction locations, rather than
merely evaluate a rational quantity. In stage1, we prepro-
cessed massive taxi GPS data and extracted ‘‘0’’ and ‘‘1’’
data sets representing the pick-up and drop-off location. With
the spatial-temporal analysis of demand data, the taxi travel
hotspots were identified as the potential settings areas for
taxi stand (TS). In stage2, subsections representing travel
demands were staggered on the road network based on the
spatial interaction between taxi demands and taxi stands.
The center of each subsection serves as the candidates for
TSs. In stage3, a taxi stand location model (TSLM) was
established to minimize the construction cost and the access
cost for passengers. The case analysis results in China proves
the validity of the location strategy we proposed. The optimal
construction scheme under different demand coverage can be
obtained by solving the TSLM, which can effectively balance
the interests of the government and the public and support
the site decision of TS in urban. In addition, the impact of
the maximum walking distance passengers can accept on the
location selection of TSs is also discussed.

The contribution of our study lies in the three-stage loca-
tion strategy for the TSLP. Prior to this study, almost no
research on the exact location selection of TSs were present.
This paper attempts to develop a scientific basis for decision
makers to evaluate the location choices of TSs in cities with
the help of hotspot analysis and location modeling. Neverthe-
less, there are two main limitations in our research. Firstly,
passengers in the same subsection are restricted to go to
the same TS. In practice, under the influence of travel time,
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travel distance, travel direction and personal attributes of the
traveler, passengers in the same point may choose to go to
different TSs. Hence, it is necessary to model the passenger’s
choice behavior for TSs in the future. Secondly, there is no
clear specification and standard to provide reasonable sug-
gestions for the setting separation distance of TSs at present.
Therefore, the length range we choose in the division of
subsections remains to be further discussed in future research
work.
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