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ABSTRACT In ad hoc networks that allow devices to dynamically configure networks via wireless
communication, a secure routing protocol is a technology that guarantees the validity of routing with the use
of cryptographic authentication. The secure DSR with ID-based sequential aggregate signatures (ISDSR) is
a recently introduced secure routing protocol with ‘‘cryptographically compact chain,’’ where each device
signs both the routing information and signatures generated by the previous device without increasing the
size of signatures and the ID information propagated via packets can be utilized as a public key. However,
ISDSR requires communication with a centralized key generation center (KGC), and thus a new device may
experience difficulties in joining the protocol. Moreover, the implementation results of ISDSR have not been
presented. In this work, we present ISDSR+, a new secure routing protocol without a centralized KGC that
uses distributed key generation and the conventional features of ISDSR. ISDSR+ relies on a novel signature
scheme where any node can receive a secret key as long as the number of available KGCs is more than a
certain threshold. In other words, even if several KGCs are unavailable, the remaining available KGCs can
still provide secret keys. We furthermore show promising results of ISDSR+ via a prototype implementation
on Raspberry Pis. The results show the computational time of 0.1 s for both the secret key generation and
the round trip time (RTT) of routing information under reasonable settings. The RTT of ISDSR+ is better
than that of a naive secure routing protocol with RSA signatures.

INDEX TERMS Ad hoc networks, distributed key generation, identity-based sequential aggregate signa-
tures, information security, secure routing protocol.

I. INTRODUCTION
A. BACKGROUND
In ad hoc networks, devices such as smartphones and sen-
sors dynamically configure networks in wireless communi-
cation without any fixed infrastructure. Therefore, mobile
ad hoc networks offer many applications for important and
emergency situations, e.g., infrastructure monitoring sys-
tems, such as railways [1], landslide detection [2], and under-
ground coals [3], and emergency communication systems
during disasters [4]. Furthermore, unmanned aerial vehi-
cles (UAVs) and their flying ad hoc networks (FANETs) have
also attracted attention in the recent years [5], [6].

To communicate with a destination device outside its direct
transmission area in an ad hoc network, a device exchanges
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routing information with other devices via a routing proto-
col, such as AODV [7] and DSR [8], and the packets are
forwarded until they reach the destination device. In several
protocols [7], [8], a routing information is a concatenation of
device identifiers, such as IP address or device name, and
a routing protocol requires each device to include its own
identifier in the routing information it receives.

Despite its attractive advantages, an ad hoc network typ-
ically has weak security because it does not have a fixed
infrastructure and it uses dynamic network configuration,
i.e., decentralized setting. For example, an adversary can for-
ward packets along another direction that does not lead to the
correct destination or loop packets infinitely by manipulat-
ing routing information or injecting fake information. These
threats are based on an attack against a routing protocol and
can often cause serious problems [9]. Such attack can, for
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example, prevent the communication of a disaster-stricken
user who wants to send an emergency call as soon as possible.

1) SECURE ROUTING PROTOCOLS
Secure routing protocols [10]–[12] prevent the attack
described above by guaranteeing the validity of routing
information with the use of cryptographic authentication
schemes, such as digital signatures. The first secure routing
protocol [10] was based on a key management protocol,
while subsequent works [11]–[19] adopted digital signatures
with public verifiability and non-repudiation. When devices
exchange routing information, each device generates a digital
signature for the routing information and then sends both the
signature and the routing information. Then, another device
that receives both the signature and the routing information
can check the validity of these information by verifying the
signature.

The main difficulty in constructing a secure routing proto-
col is guaranteeing both the security and efficiency, even in
large-scale networks. In general, security and efficiency are
traded off against each other. The validity of a whole routing
information from a source to a destination should be guaran-
teed, but the introduction of an individual signature per node
may decrease performance. Moreover, the security of a rout-
ing protocol may not be guaranteed when not all individual
signatures from a source to a destination are sent. In several
routing protocols [11], [12], digital signatures are exchanged
on a part of a whole routing information in networks, but these
protocols were later shown to be insecure [20], [21]. How-
ever, trivially introducing all individual signatures along with
routing information increases packet size in proportion to the
number of nodes, and then a packet may be dropped because
of its ballooning size. Therefore, the tradeoff between secu-
rity and efficiency should be solved to design an adequate
secure routing protocol.

2) OUR MOTIVATION
The secure DSR with ID-based sequential aggregate signa-
tures (ISDSR) [22] has been proposed as a potential solu-
tion to the tradeoff problem described above. ISDSR can
utilize ID information of each device as a public key, always
keep a single short signature independent of the number
of devices, and guarantee the whole routing information
from any source to a destination. In comparison with other
works [12]–[16], [18], [21], [23], ISDSR does not require
either the linear size of signatures with respect to the number
of hops or the use of public key certificates despite the inclu-
sion of all signatures from a source to a destination. These
advantages can be obtained with the use of a state-of-the-art
cryptographic scheme named ID-based sequential aggregate
signatures [24].

However, ISDSR has two disadvantages. First, ISDSR
requires a centralized key generation center (KGC) to
generate a secret key for a requesting node. Even though
ISDSR does not have a fixed infrastructure, a KGC is essen-
tially identical to a fixed infrastructure that a device needs

to communicate with to receive a secret key. This kind of
communication may become a serious problem particularly
during disaster situations, where a device of a user who wants
tomake an emergency call cannot join a protocol dynamically
due to a loss of communication with the KGC. Second,
implementation results of ISDSR with attractive advan-
tages have never been presented. The effects of decreasing
the number of individual signatures and their related infor-
mation on the performance of the protocol have not been
verified. In addition, there are no results that show how the
use of state-of-the-art cryptographic schemes improves the
performance of the protocol. In our previous work [25], we
implemented only the signing algorithm of ISDSR in Java,
which greatly increased computational time for signature
generation even more than the RSA signatures [26] utilized
in the original secure routing protocols [11], [12] with digital
signatures. To deploy ISDSR, better results than the use of
other existing works should be shown.

Unless these two weaknesses are solved, ISDSR remains
incomplete as a secure routing protocol for ad hoc networks.

B. CONTRIBUTIONS
In this work, we present ISDSR+, a new secure routing pro-
tocol without a centralized KGC, and show its performance
via prototype implementation on Raspberry Pis. ISDSR+
is based on a novel signature scheme that allows devices
to obtain secret keys as long as the number of available
KGCs is more than a certain threshold. The key generation
capability of ISDSR+ can be setup in an arbitrary setting,
i.e., the number of KGCs and the threshold number for
the signature scheme can be chosen arbitrarily. Therefore,
ISDSR+ can be considered as a secure routing protocol with-
out any fixed infrastructure. Then, based on implementation
results of experiments on Raspberry Pis, we confirm that
the computational time of ISDSR+ is faster than that of an
RSA-based secure routing protocol, which is a naive-but-
fast construction with liner communication costs. Raspberry
Pi has been utilized as an actual device for executing ad
hoc network protocols, i.e., ISDSR+ and the RSA-based
protocol, in our performance evaluation, and thus the results
can be used as indicators when an application on an ad hoc
network adopts a secure routing protocol utilizing state-of-
the-art cryptographic schemes. We have also published our
codes in GitHub (https://github.com/naotoyanai/isdsr_plus).
The contributions of this work are presented in detail below.

1) ID-BASED SEQUENTIAL AGGREGATE SIGNATURES
WITH DISTRIBUTED KEY GENERATION
The first contribution is the removal of a centralized KGC by
extending the ID-based sequential aggregate signatures [24]
with the introduction of distributed key generation. A device
can receive a secret key as long as it can communicate with
a number of KGCs more than a threshold designated in
advance. In other words, even if several KGCs are unavail-
able, key generation can still be performed with the remain-
ing accessible KGCs. We call this new scheme ID-based
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sequential aggregate signatures with distributed key genera-
tion (IBSAS-DKG). We also show the security analysis of the
digital signature algorithm with distributed key generation in
a formal proof (See Section IV for details).

2) PROTOTYPE IMPLEMENTATION
The second contribution is the evaluation of the performance
of computational time as a round trip time (RTT) by imple-
menting the signature algorithm of ISDSR+ in Java on Rasp-
berry Pis. Our prototype utilizes the JPBC library1 for the
computation of elliptic curves and pairing functions. In com-
parison with our previous implementation [25], the computa-
tional time of the signature algorithm of ISDSR+ is faster by
more than 48 times by refactoring with the C language. For
our distributed key generation, in the 10-out-of-100 setting,
a pair of partial secret key and master public key for a KGC
and a secret key for a user can be computed in approximately
330 milliseconds and 100 milliseconds, respectively. Mean-
while, the ISDSR+ has an RTT of 0.1 seconds, which is
faster than the RSA-based protocol with RTT of 0.24 seconds.
These results show that ISDSR+ can be effectively used in ad
hoc networks under reasonable settings (See Section VI for
details on our experiments and potential performance).

C. POTENTIAL APPLICATIONS
In addition to the possible application of ISDSR+ in infras-
tructure monitoring systems [1]–[4] described in Section I-A,
it may also be used for securing FANETs. According to the
latest survey by Oubbati et al. on FANETs [5], FANETs
are a special class of mobile ad hoc networks and routing
protocols for FANETs are extensions of well-known routing
protocols for ad hoc networks, such as the multipath doppler
routing (MUDOR) [27] based on DSR and the ad hoc routing
protocol for aeronautical MANETs (APRAM) [28] based on
AODV. The security of these protocols can be improved by
combining them with ISDSR+. Likewise, contents sharing
or voice over IP services with UAVs, which are applications
of MUDOR and APRAM according to the recent survey by
Oubabati et al., are also expected to be potential applica-
tions of ISDSR+. The signature verification of ISDSR+ is
slightly heavy, and thus we recommend its use in a situation
where signatures are verified by only a destination device
with powerful computational capability, e.g., a base station
for FANETs (See Section VI and Section VII for details
on the computational performance and application scenarios,
respectively.)

D. PAPER ORGANIZATION
The rest of this paper is organized as follows. Related works
are presented in Section II. The model for ISDSR+, research
goals, and attack model are presented in Section III. The pro-
posed signature scheme, i.e., IBSAS-DKG, and its deploy-
ment to ISDSR+ are discussed in Section IV. Prototype
implementation of ISDSR+ is presented in Section V, and

1http://gas.dia.unisa.it/projects/jpbc/

then experiments via the implementation are discussed in
SectionVI. Analysis and evaluation of ISDSR+ are discussed
in Section VII. Finally, the conclusion and future direction are
presented in Section VIII.

II. RELATED WORKS
In this section, we first describe related works about secure
routing protocols. Then, we describe literature on digital
signatures, distributed key generation, and security analysis
of secure routing protocols.

A. SECURE ROUTING PROTOCOLS
The works by [14], [16], [29] are the closest to our work in
terms of the use of signature schemes for multiple signers,
where the size of signatures is independent of the number
of signers. The motivations of these works are to decrease
communication overheads and guarantee the whole routing
information. However, they need public key infrastructure
while our protocol can achieve infra-less setting. To the best
of our knowledge, the first work that presented a secure
routing protocol with an attractive cryptographic scheme was
the paper in [13]. This protocol and its subsequent work [23]
were based on ID-based cryptography [30], which allows any
user to utilize any string as a public key. Our protocol contains
the advantages of these protocols in addition to the infra-less
setting.

Some works presented non-crypto-based routing protocols
[31]–[34], but their motivation is the detection of invalid
routes and not its prevention. In other words, non-crypto-
based routing protocols may still contain risks when routing
information is manipulated. Manipulation of routing infor-
mation, even for a short period, is a serious problem during
emergency situations, and thus we focus on secure rout-
ing protocols with digital signatures to fully prevent such
manipulation.

As further related works to secure routing protocols,
Ghosh and Datta [17], [19] proposed addressing schemes
with ID-based signatures [35] in a distributed setting, where
each node can assign new nodes with IP address dynam-
ically. Although nodes with secret keys in these protocols
can dynamically assign with IP addresses, setup of initial
nodes is not included. Our proposed protocol can specify the
construction of any node with a secret key.

B. DIGITAL SIGNATURES
Among the existing digital signature schemes, schemes
where signatures are combined into a single short signature
without depending on the number of signers are called multi-
signature schemes [36]. Multi-signature schemes are classi-
fied into two types, i.e., the interactive type [37]–[40], where
signers interact with each other to generate a single signa-
ture, and the sequential type [24], [41], [42], where signers
generate a single signature from a signature-so-far without
interaction. The sequential type is more suitable for secure
routing protocols, which need signature chains to guaran-
tee the validity of routing information received from nodes.
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ID-based schemes are more efficient than other schemes, and
the sequential type in the ID-based cryptography, i.e., the
scheme in [24], is the most suitable scheme for secure routing
protocols.

C. DISTRIBUTED KEY GENERATION
Distributed generation of secret keys is suitable for discrete-
log-based cryptosystems [43] and there are many such
constructions [44]–[46]. The construction of our scheme is
close to the threshold signatures proposed by Boldyreva [37].

Related works on distributed key management protocols
with ID-based cryptography for ad hot networks [47]–[52]
have also been proposed. While ISDSR+ can provide the
same capability of distributed key generation as that of the
protocols in [47]–[49], the protocols in [50]–[52] can provide
key revocation and key update capabilities. Key revocation
and key update capabilities can be introduced in ISDSR+ via
extensions similar to the protocols in [50]–[52].

D. PROVABLE SECURITY OF SECURE
ROUTING PROTOCOLS
Buttyán and Vajda [53] defined a formal security model of
ad hoc networks and their routing protocols and analyzed the
security of several secure routing protocols [11], [54], [55].
The model by Buttyán and Vajda discussed the security
against a single malicious node, and the security was
extended by Ács [15] into a model with multiple malicious
nodes. Their results show that a secure routing protocol is
secure if the digital signature scheme utilized is secure. Kim
and Tsudik [14] extended the results of Ács and presented
a case utilizing a signature scheme for multiple signers. Our
protocol-level security can be guaranteed via the Kim-Tsudik
framework [14] although we omit the details due to space
limitation.

III. ISDSR+

In this section, we describe a system model of ISDSR+.
As described in Section I, ISDSR+ is an extension of the
secure DSR with ID-based sequential aggregate signatures
(ISDSR). In particular, we introduce distributed key gen-
eration in ISDSR+. ISDSR utilizes an ID-based sequential
aggregate signature scheme [24], where each user generates
a single short signature by taking both messages to be signed
and a signature-so-far as input and utilizes any string as its
own public key to guarantee routing information sent via
packets.

A. PROTOCOL OVERVIEW
ISDSR+ consists of distributed key generation, secure
route discovery, and secure route maintenance. Hereinafter,
we assume that each node utilizes its own ID information,
e.g., IP address or device name, as a public key. In the
distributed key generation phase, each node first broadcasts
key request packets (KREQ) including its own ID information
to obtain a secret key. The secret key is computed by multiple
KGCs that received the KREQ and then returned to the

requesting node by key reply packets (KREP). A node com-
municates with only a single KGC, but the secret key is gen-
erated via interaction between multiple KGCs. In the secure
route discovery phase, each node constructs a connection to
a destination node by secure route request packets (SRREQ)
and secure route reply packets (SRREP). In the secure route
maintenance phase, the node finds a disconnection to the
destination by secure route error packets (SRERR). In both
the secure route discovery and the secure route maintenance
phases, packets include signatures for routing information
between a source and its destination. In ISDSR+, each node
that receives these packets from neighbor nodes generates a
signature on the received routing information and then adds
the generated signature to the packet. We describe each phase
in detail below.

1) DISTRIBUTED KEY GENERATION
A node in ISDSR+ needs to obtain a secret key to config-
ure routes to a destination. A node first broadcasts KREQ to
KGCs, and then any KGC that receives KREQ responds to
the node by returning a global parameter and a master public
key for a digital signature scheme. The node communicates
with only the first KGC that replies, and this KGC interacts
with other KGCs to generate a secret key for the node. Even if
several KGCs are unavailable, the remaining KGCs can still
generate a key. Finally, the KGC returns a secret key as KREP.
From the point of view of a node that broadcasts KREQ, it can
obtain a secret key as long as any one of the KGCs is within
its direct transmission area.

FIGURE 1. Distributed key generation (initial phase)-(a).

Figures 1, 2, and 3 show the procedure for generating a
secret key. Figure 1 shows that the node IDA starts to request
key generation to KGCs, and then KGC A responds with the
KREQ. Figure 2 shows that KGCs start interacting with one
another. Even though KGC D is unavailable, KGC A can
generate a secret key with the remaining KGCs, i.e., KGC B
and KGC C, and can return the generated secret key as KREP
in Figure 3.

2) SECURE ROUTE DISCOVERY
Each node that receives SRREQ adds its own identity in the
received routing information and generates a signature for
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FIGURE 2. Distributed key generation (initial phase)-(b).

FIGURE 3. Distributed key generation (initial phase)-(c).

FIGURE 4. Secure route discovery (search phase)-(a).

FIGURE 5. Secure route discovery (search phase)-(b).

a signature algorithm. Then, the node broadcasts SRREQ
including the signature. These steps are iterated until a des-
tination node receives packets. The destination node then
verifies a signature on SRREQvia a verification algorithm for
the underlying signature scheme. If the verification returns
True, the destination node generates SRREP by generating
a signature on the routing information of SRREQ via the
signature algorithm. This SRREP is forwarded to the source
node of SRREQ alongwith the routing information.When the

FIGURE 6. Secure route discovery (search phase)-(c).

FIGURE 7. Secure route discovery (reply phase)-(a).

FIGURE 8. Secure route discovery (reply phase)-(b).

FIGURE 9. Secure route discovery (reply phase)-(c).

source node receives SRREP, the node verifies the received
signature via the verification algorithm. If the verification
returns True, the source node registers the given route in its
memory.

Figures 4–9 show the procedures for establishing a route.
Figures 4–6 show that node IDA starts to search for a route to
the destination node IDD. In Figure 4, the node IDA generates
a signature σIDA via Signing, attaches σIDA to an SRREQ,

VOLUME 7, 2019 74853



H. Kojima et al.: ISDSR+: Improving the Security and Availability of Secure Routing Protocol

and then broadcasts the SRREQ. In Figure 5, the node IDB
receives an SRREQ and generates a signature σIDB containing
σIDA . In Figure 6, the node IDC does the same process as
the node IDB. After the node IDD receives a SRREQ from
IDC , the node IDD verifies the received SRREQ. Figure 7
shows that the node IDD sends a SRREP to reply to the node
IDA. The signature σIDD is generated only by the node IDD.
The node IDC forwards a received packet, as in Figure 8. In
Figure 9, the node IDA receives a packet SRREP and verifies
σIDD via Verification.

3) SECURE ROUTE MAINTENANCE
When any node (we call such node ID for convenience) finds
a disconnection to a neighbor on a route registered in its
source node, ID sends secure route error packets (SRERR)
including a signature generated via Signing to the source.
The intermediate nodes between ID and the source generate a
signature and forward SRERRwhen they receive the packets.
The source node verifies the signature viaVerification taking
the IDs as public keys and removes the route if the verification
returns True.

FIGURE 10. Secure route maintenance-(a).

FIGURE 11. Secure route maintenance-(b).

Figures 10 and 11 represent the procedures for secure route
maintenance. When the node IDC detects a disconnection,
the node IDC generates an SREER. The signature σIDC is

generated by IDC via Signing and IDB generates a new
signature with σIDC in Figure 10. After the node IDA receives
an SRERR, it verifies σIDC via Verification with IDs on the
route. If the verification passes, IDA starts to search for other
routes to the node IDD as shown in Figure 11.

B. REQUIREMENTS AND ASSUMPTIONS
We first discuss assumptions used in the proposed model.
Networks include several KGCs. For example, in mobile ad
hoc networks, base stations can function as KGCs while the
nodes of a client cannot become KGCs. We also note that
there is no restriction in the ratio of the number of KGCs and
the number of nodes of a client in a network. Cryptographic
parameters utilized in a digital signature scheme are shared to
all KGCs in advance. Each device communicates with other
devices wirelessly, and this communication is not encrypted
except during an initial phase for generating secret keys.

We now define system requirements for ISDSR+ as
follows:
• Unforgeability: An attacker cannot maliciously generate
SRREQ, SRREP, and SRERR (We describe the details
in the next paragraph).

• Compactness: The size of signatures for SRREQ,
SRREP, and SRERR is fixed with respect to the number
of hops. Moreover, device-dependent extra information
should not be given in the packets.

• Completeness: All signatures (or their related informa-
tion) have to be given in SRREQ, SRREP, and SRERR
to guarantee the validity of routing information for any
source and any destination.

• Availability: Anyfixed infrastructure should not be used.
Moreover, a key generation function should be available
even if multiple KGCs become unavailable; unless the
number of available KGCs is fewer than a threshold
designated in advance.

Unforgeability is the main requirement for secure routing
protocols. ISDSR [22] satisfiedCompactness,Completeness,
and Unforgeability. In this work, we additionally introduce
Availability as dynamic configuration of networks for ad hoc
networks.

C. ATTACK MODEL
We define an attack model for ISDSR+. In this model, we try
to prevent a forgery of routing information with signatures
against the malicious forwarding of packets. To do this,
we focus on two standpoints, i.e., SRREQ from a source is
unforgeable and both SRREP and SRERR to a destination are
unforgeable. We assume that a source is always honest since
the main motivation of a secure routing protocol is to deliver
packets from a source to a destination.

Our target adversary is an active attacker [55]. First,
we assume the existence of secure channels between hon-
est nodes and KGCs. Precisely, KGCs are fixed before the
routing protocol is started, and a secure channel is required
only by the closest KGC from a node that requests a secret
key. Here, assume that the KGC that a node requests a
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Algorithm 1 Setup
Ensure: Public Parameter para
1: Generate a pairing parameter (p,G,GT , e).
2: P← G
3: Choose hash functions H1,H2 : 0, 1∗ → G and H3 :

0, 1∗→ Z∗p
4: Set para = (p,G,GT , e,P, t, {Hi}i=1,...,3)

secret key from has to be honest.2 Then, the attacker can
eavesdrop, inject, or modify all SRREQ, SRREP, and SRERR
and their signatures for any target node adaptively. Moreover,
the attacker can setup new nodes in networks, and it can com-
promise several KGCs. Here, the number of nodes (including
KGCs) in a network is not restricted while the number of
KGCs compromised by an attacker is assumed to be less than
a threshold designated in advance3. The attacker then owns
all secret keys of the compromised nodes, and it can share the
keys among these nodes. The goal of the attacker is to spoof
or tamper SRREQ, SRREP, and SRERR. Meanwhile, denial
of service attacks and eavesdropping on data sent via the
constructed routes are out of the scope of this work because
our main target is routing.

Finally, we assume that the attacker is not capable of
forging an ID-based sequential aggregate signature scheme
with distributed key generation (IBSAS-DKG) described in
the next section.

IV. IDENTITY-BASED SEQUENTIAL AGGREGATE
SIGNATURES WITH DISTRIBUTED KEY GENERATION
In this section, we propose an ID-based sequential aggregate
signature scheme with distributed key generation (IBSAS-
DKG) scheme as a new building block of a secure routing
protocol. This scheme does not require a centralized KGC
but can keep a cryptographically compact chain, as pre-
sented in a previous ID-based sequential aggregate sig-
nature scheme [24]. We describe only the construction in
Algorithms 1–5, and define syntax of IBSAS-DKG and its
security in Appendix VIII-A and Appendix VIII-B, respec-
tively. Hereinafter, we assume that each node has a unique
index.

A. ALGORITHMS
In this scheme, we utilize bilinear maps and bilinear groups
defined as follows. Let G and GT be groups with a common
prime order p. A bilinear map e : G×G→ GT is a map such
that the following conditions hold:

for all U ,V ∈ G and a, b ∈ Z∗p, e(aU , bV ) = e(U ,V )ab;
for any generator P ∈ G, e(P,P) 6= 1GT , 1GT is an identity

element over GT ; and

2If an attacker can arbitrarily eavesdrop on communication for key gener-
ation, the security can be broken easily.

3If an attacker can compromise all KGCs without restrictions, then the
protocol can be trivially broken.

Algorithm 2 TKeyGen
Require: Public Parameter para, Threshold t , Number n of

Nodes, Set D = [1, n] of Nodes, Index i ∈ D.
Ensure: Master Public Key mpk and Partial Secret Key xi

for i
1: (a1,i,j, a2,i,j)← Zp for all j ∈ [0, t]
2: Set a polynomial function Fi(x) =

∑t
j=0 a1,i,jx

j, where
Fi(0) = a1,i,0

3: Set a polynomial function Gi(x) =
∑t

j=0 a2,i,jx
j, where

Gi(0) = a2,i,0
4: Node i sends Fi(j) and Gi(j) to all j ∈ D\{i}
5: Node i receives Fi(j) and Gi(j) from all j ∈ D\{i}
6: a1,i =

∑
j∈D Fj(i), a2,i =

∑
j∈D Gj(j, i)

7: Node i sends (a1,i,0P, a2,i,0P) to all j ∈ D\{i}
8: Node i receives (a1,j,0P, a2,j,0P) from all j ∈ D\{i}
9: Set xi = (a1,i, a2,i)

10: (a1 P, a2 P) =
(∑

j∈D a1,j,0P,
∑

j∈D a2,j,0P
)
∈ G2

11: mpk = (a1 P, a2 P)

Algorithm 3 UTKeyGen
Require: Public Parameter para, Master Public Key mpk ,

Identity ID ∈ {0, 1}∗, Set � ⊆ D of Nodes such that
|�| ≥ t .

Ensure: Secret Key skID for ID
1: Send ID to all j ∈ �
2: For all j ∈ �, a1,jH1(ID), a2,jH2(ID)
3: Receive

(
a1,jH1(ID), a2,jH2(ID)

)
∈ G2 from all j ∈ �

4: a1H1(ID) =
(∑

j∈� λja1,jH1(ID)
)
∈ G

5: a2H1(ID) =
(∑

j∈� λja2,jH2(ID)
)
∈ G

6: skID = (a1H1(ID), a2H1(ID))

Algorithm 4 Signing
Require: Public Parameter para, Secret Key skIDi , Message

m ∈ {0, 1}∗, Signature σ
Ensure: Signature σ ′

1: Parse σ as (σ1, σ2, σ3)
2: If i = 1, set σ = (0, 0, 0)
3: (r, x)← Z2

p
4: σ ′3 = σ3 + x · P
5: σ ′2 = σ2 + r · P
6: σ ′1← σ1+rσ3+xσ ′2+a2H2(IDi)+H3(IDi||mi)a1H1(IDi)

there is an efficient algorithm that can compute e(U ,V ) for
any U ,V ∈ G.
In this paper, we assume that a discrete logarithm prob-

lem (DLP) in G and GT is hard, and say that G is a bilinear
group if all the conditions described above hold. We call the
parameter (p,G,GT , e) a pairing parameter. Algorithm 1
generates a pairing parameter and hash functions {Hi}i=1,...,3
as global parameters.

Algorithm 2 and Algorithm 3 are the algorithms for dis-
tributed key generation. Algorithm 2 is executed to set up
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Algorithm 5 Verification
Require: Public Parameter para, Master Public Key mpk ,

List ((ID1,m1), . . . , (IDN ,mN )) of Identities and Mes-
sages, Signature σ

Ensure: True or False
1: Parse σ as (σ1, σ2, σ3)
2: Check if all ID1, . . . , IDN are distinct
3: Check e(σ1,P) = e(σ2, σ3) · e

(∑N
i=1H2(IDi), a2 P

)
·

e
(∑N

i=1H3(IDi||mi)H1(IDi), a1 P
)

4: return If both checks are true, True
5: return If not, False

key generation nodes, and Algorithm 3 is executed to cre-
ate a secret key for each user by the key generation nodes
distributively. To instantiate the distributed key generation,
we utilize appropriate coefficients by the Lagrange interpo-
lation, i.e., the Lagrange coefficients, and denote the coef-
ficients for some i by λj =

∏
j∈D

−i
j−i for any set D. In

Algorithm 2, each key generation node generates polynomial
functions (Fi,Gi), where i is an index of the node, and then
computes values for other key generation nodes with their
indexes, i.e., Fi(j) and Gi(j). By exchanging the values for
those computed by the other nodes, each key generation node
can obtain a pair of a partial secret key xi and a common
master public key mpk . When a user creates a secret key,
it sends its own ID information ID to available key generation
nodes, i.e., nodes in a set �, and receives partial information(
a1,jH1(ID), a2,jH2(ID)

)
∈ G2 for the secret key for all j ∈ �.

If the user can receive partial informationmore than threshold
t , it can obtain the secret key skID corresponding to the master
public key mpk .

After receiving a secret key skID, a user ID can execute
Algorithm 4 to generate signatures. In this algorithm, two
random numbers (x, r) are generated and then results of their
scalar multiplications, i.e., x ·P and r ·P, are added to the com-
ponents (σ2, σ3) of the given signature σ . Then, components
related to the secret key and the random numbers are added to
the component σ1. Their resulting signature σ = (σ1, σ2, σ3)
can be verified by features of a bilinear map in Algorithm 5.
We show the correctness, i.e., signatures can be verified

correctly, in Appendix VIII-C. In addition, the security of
the proposed IBSAS-DKG scheme can be proven via formal
proofs, which are shown in Appendix VIII-D.

B. DEPLOYMENT OF IBSAS-DKG IN ISDSR+
In this section, we describe how the IBSAS-DKG scheme is
deployed in ISDSR+.

First, Algorithm 1 and Algorithm 2 are executed prelim-
inarily, i.e., outside of the routing protocol. When any node
needs to obtain a secret key, it sends KREQ to the closest
key generation node as a request for the secret key. Then,
the key generation node starts Algorithm 3. As long as the key
generation node can communicate with other key generation
nodes more than threshold t , a secret key can be generated

for the requesting node. The resulting secret key is returned
to the requesting node as KREP. From the viewpoint of the
requesting node, a secret key can always be obtained as long
as at least one key generation node is accessible.

Next, SRREQ, SRREP, and SRERR are instantiated by
trivially introducing Algorithm 4 in any node except for the
use of a timestamp. In particular, when any node tries to
discover a route to a destination, it generates a signature
using Algorithm 4 with the given signature, where a message
to be signed is a concatenation of the ID of a destination
node, IDs of intermediate nodes, and a timestamp. The node
then forwards the resulting signature instead of the given
signature. When a node wants to confirm the validity for any
given packet, it can execute Algorithm 5 with the ID list and
the signature in that packet.

V. IMPLEMENTATION
In this section, we explain the implementation of three sig-
nature algorithms, i.e., Algorithms 1–5, the signature algo-
rithm of ISDSR implemented in our previous paper [25],
and the RSA signature algorithm. In our previous paper [25],
we implemented the signing algorithm of ISDSR using the
JPBC library, in which elliptic curves and pairing functions
are written in Java. In this work, we use a PBC library4

implemented in C language with a Java wrapper provided by
JPBC to improve the computational time.

ISDSR+, ISDSR, and RSA-based signature algorithms
are implemented in Java as the three applications below.
APPISDSR+−P is implemented with JPBC and uses a Java
wrapper API for the PBC native library provided by JPBC.
The wrapper plays the role of an interface between JPBC and
PBC, and it enables APPISDSR+−P to execute the computation
of elliptic curves and pairing functions with the PBC library.
Next,APPISDSR−J is an implementation of the signature algo-
rithm described in our previous paper [25]. Finally, APPRSA
is an implementation for the RSA-based signature algorithm.
This application is implemented in Java and its signing and
verification functions are executed with the RSA algorithm
API of the Java security package.

These three applications have four functions, i.e., signature
generation, signature verification, packet management, and
sending/receiving packets. The packet management function
transforms an instance of a packet class to a byte array to
send the packet class data as datagram packets or vice versa.
Each application equips an instance of DatagramSocket
class to send and to receive packets. Figure 12 shows a class
diagram of the three applications, where the eight classes are
parts of the whole classes of the applications. We explain the
Node and AbstractAlgorithm classes below.

A. CLASSES FOR A NODE
Node class is designed for one node that equips a com-
munication socket and a signature algorithm and that has
members and methods for sending data, receiving data,

4https://crypto.stanford.edu/pbc/
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FIGURE 12. A class diagram of the applications.

signing, and verification. A member rcv, which is an
instance of the Receiver class, implements a Runnable
interface to run as a receiver thread with a member ds. An
abstract method interpretReceivedPacket(dp) is
called when rcv receives a packet as a DatagramPacket
from ds. The received packet is interpreted through the

method interpretReceivePacket(dp) implemented
in the ISDSRNode class and the RSANode class. The con-
structor method calls generateSignatureAlgorithm
(param) to assign its own signature algorithm to a
member pkitmgr through a method PacketManager.
setAlgorithm(alg). Each method generate
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SignatureAlgorithm(param) of ISDSR+Node,
of ISDSRNode, and of RSANode instantiates an instance of
the signature algorithm, such as the ISDSR+Algorithm,
the ISDSRAlgorithm, and the RSAAlgorithm, respec-
tively. After each constructor finishes, the member
pktmgr has an appropriate instance of the child class of
AbstractAlgorithm.

B. CLASSES FOR A SIGNATURE ALGORITHM
The AbstractAlgorithm class is an abstract class for
implementing concrete signature algorithm classes, i.e., the
ISDSR+Algorithm, the ISDSRAlgorithm, and the
RSAAlgorithm, and has four abstract methods, namely,
setup(int), keyderivation(int), sign(pkt),
and verify(pkt). In the proposed IBSAS-DKG scheme,
i.e., the ISDSR+Algorithm, setup(int) corre-
sponds to Algorithm 1, keyderivation(int) corre-
sponds to Algorithms 2 and 3, sign(pkt) corresponds
to Algorithm 4, and verify(pkt) corresponds to
Algorithm 5. These four methods must be implemented in
each concrete class for signature generation and verification
using its own signature algorithm.

The ISDSR+Algorithm class applies JPBC version
2.0.0 [56] for computing elliptic curves and pairing func-
tions for signature generation and verification of ISDSR+.
JPBC is a port of PBC that performs the mathematical
operations underlying pairing-based cryptosystems directly
in Java. A constructor method of the ISDSR+Algorithm
class instantiates a member pairing to use pairing functions
and executes Algorithms 1–3 to generate keys, including
a master public key, partial secret keys, and a secret key
for each user. The ISDSRAlgorithm class utilizes the
JPBC library in which keyderivation(int) is not dis-
tributed, i.e., random number generation in a well-known
manner. The RSAAlgorithm class uses the RSA algo-
rithm APIs in Java security package, which provides algo-
rithms for signing, verifying, encoding, and decoding. In
a constructor method of RSAAlgorithm, members kp
and sig are generated from methods in the Java security
package.

C. CLASSES FOR A PACKET AND PACKET MANAGEMENT
The Packet class has information to find a route
from the source node to its destination node. The
PacketManager class has two methods, toByte(pkt)
and fromByte(data), to transform a byte array
received by a Node.ds to a Packet class instance
or vice versa. This class has methods for generating a
request packet and a reply packet. When Node class
receives a packet, the Node class calls the method
pktmgr.generateForwardingPacket to generate a
forwarding packet. The method generateForwarding
Packet(pkt,node) generates a forwarding packet using
a member alg to verify signatures in the pkt or to generate
signatures for a new forwarding packet.

VI. EXPERIMENTS
We now evaluate the computational time for distributed key
generation and round trip times (hereinafter RTTs) based on
our implementation described in the previous section. The
execution time of distributed key generation, i.e., KREQ and
KREP, is measured on a Raspberry Pi, which is a device
that can estimate performances of actual applications by
allowing transmissions within real wireless communication,
such as Bluetooth and Near-field Communication (NFC).
Meanwhile, experiments to measure RTTs between nodes,
i.e., SRREQ, SRREP, and SRRER, are conducted to run
APPISDSR+−P, APPISDSR−J , and APPRSA on a Raspberry Pi3.
The experiments are also conducted in an actual environment
including a Raspberry Pi and a desktop PC via LAN con-
nection. In all the experiments described above, we applied
‘‘a.properties’’ in JPBC as parameters to use an elliptic curve
and a pairing function in our application program. Here,
the bit length of an output group GT of a pairing parameter,
i.e., a security level, of ‘‘a.properties’’ is 1024 bits. Although
such a level is weak in a general usage of a pairing parameter,
it is sufficient for secure routing protocols in ad hoc networks.
In particular, we can just keep routes secure during a short
period when packets are trying to reach their destination.

A. EXPERIMENTAL ENVIRONMENT
We conducted experiments with a Raspberry Pi and a desk-
top PC described below. The Raspberry Pi is a Raspberry
Pi3 model B with Ubuntu 14.4 as OS and Java version
of OpenJDK 1.8.1_151. The desktop PC is equipped with
Xeon(R) E5-2667 v3 3.20GHz as CPU and 512 GB memory,
and it has CentOS 7 as OS and Java version of OpenJDK
1.8.1_151. The desktop PC and the Raspberry Pi connect with
a switching hub with a 100Base-T wired LAN.

FIGURE 13. A schematic of the procedure for experiments (distributed
key generation).

FIGURE 14. A schematic of the procedure for experiments (round trip
times).

Figures 13 and 14 show the procedures of an experi-
ment. Hereinafter, we call behaviors of our implemented
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application program on a desktop PC AppDP and those on a
Raspberry Pi3AppRP. In Figure 13, the digits (1)–(6) indicate
AppRP processes. On the other hand, in Figure 14, the digits
(1), (2), (3), and (8) indicate AppDP processes, and the digits
(4)–(7) indicate AppRP processes. We describe the behaviors
of each experiment below.

First, the behaviors of KREQ and KREP in Figure 13 are
described as follows: (1) AppRP is given a value n as the num-
ber of KGCs, and then it generates n instances; (2) AppRP
generates polynomial functions for each instance; (3) All
instances in AppRP distribute values for the polynomial func-
tions with each other; (4) All instances in AppRP generate
a partial secret key; (5) Some instances in AppRP generate
a master public key; and (6) Some instances in AppRP are
given an ID and then generate a secret key for the ID.

The behaviors of SRREQ and SRREP in Figure 14 are
described as follows: (1) AppDP is given a value N as the
number of nodes; (2) AppDP generates a packet including
routing information that contains N ; (3) AppDP sends the
generated packet; (4) AppRP receives a packet; (5) AppRP
verifies signatures in the received packet; (6) After veri-
fication passes, AppRP generates its own signatures from
the contents of the received packet, and then generates a
forwarding packet that includes the signatures and routing
information; (7) AppRP sends the generated packet; and (8)
AppDP receives a packet and verifies the received packet. The
environment described above is common even for SRRER
because computational behaviors for each node is almost the
same as those of SRREQ and SRREP.

Next, we explain how these experiments are conducted.
The experiments in Section VI-B are conducted on a Rasp-
berry Pi without communication between devices even if
there are words ‘‘send’’ and ‘‘receive’’ in Algorithm 2 and
Algorithm 3. These experiments measure the computational
time needed by a real device to generate distributed keys.
Consider for example N with value of 50 and t with value
of 30. The AppRP creates 50 instances as pseudo nodes.
Each pseudo node executes processes from line 1 to line
3 in Algorithm 2 to generate Fi(x), Gi(x), Fi(0), and Gi(0)
as shares. Then, each pseudo node uses shares generated by
other instances to execute line 6 in Algorithm 2 to generate
a1,i and a2,i. Finally, each pseudo node recovers mpk by
executing line 9 to line 11 in Algorithm 2. These pseudo
nodes also execute Algorithm 3 by using a1,j and a2,j from
other pseudo nodes.

The experiments in Section VI-C measure the Round Trip
Times between the AppDP and the AppRP. For example,
when N is 50, the AppDP behaves like the 51st node from a
source node because it needs to generate the SRREQ, which
includes 50 nodes in its routing information. The AppDP cre-
ates 50 instances as pseudo nodes, which are v1, v2, ..., v50,
in an application running on the AppDP. First, v1 generates
SRREQ1 by using its own ID and Algorithm 4. Next, v2
generates SRREQ2 by using its own ID, Algorithm 4, and
SRREQ1. The AppDP can get SRREQ50 by repeating the
processes above until v50. Then, the AppDP can generate

SRREQ by using its own ID, Algorithm 4, and SRREQ50.
Finally, the AppDP can behave like the 51st node from a
source node to broadcast the generated SRREQ. When the
AppDP gains N with value of 60, it generates SRREQ that
contains 61 nodes in its routing information.

B. RESULT OF DISTRIBUTED KEY GENERATION
In this section, we measure computational times for dis-
tributed key generation. All results of the experiments are
averaged over 10 runs of each application. One experiment
represents the case where the AppRP executes both a KREQ
and a KREP. Processes that are identical to a KREQ and a
KREP are represented by (6) in Figure 13. The other digits
represent the case where the AppRP executes threshold key
generation of a partial secret key and a master public key,
i.e., Algorithm 2.

Figures 15 and 16 show the results of threshold key gen-
eration for KGCs and of secret key generation for each user.
In particular, Figure 15 show the results of the experiments
where the AppRP executed processes (1)–(5) in Figure 13,
and Figure 16 show those where the AppDP executed process
(6) in Figure 13. The horizontal axis represents threshold
values t , and the lines represent different numbers of KGCs n.
The computational time of generating amaster key is linear

in proportion to t and n as shown in Figure 15, whereas
the computational time of generating secret key for a user
is quadratic with respect to t as shown in Figure 16. For
example, as shown in Figure 15, the computational time
of threshold key generation for KGCs can be estimated at
(0.25 ∗ n + 8) ∗ t milliseconds in the current environment.
On the other hand, the results in Figure 16 are independent of
n, and the computational time of secret key generation for a
user can be estimated at (0.09 ∗ t + 1.1) ∗ t milliseconds.

FIGURE 15. Computational time for distributed key generation:
(a) Master key (Algorithm 2).

Using the estimation described above in a case where
t = 10 and n = 100, the computational time of threshold key
generation for KGCs can be estimated to be 330milliseconds,
which is identical to Figure 15. Moreover, the computational
time of secret key generation for a user can be estimated to
be 19 milliseconds, which is identical to Figure 16.
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FIGURE 16. Computational time for distributed key generation: (b) User
key (Algorithm 3).

C. ROUND TRIP TIME
In this section, we measure round trip times (RTTs) for
the route discovery step. All results of the experiments are
averaged over 100 runs of each application. One experiment
represents the case where the AppRP forwards an SRREQ,
which is generated by the received SRREQ without verifi-
cation. Processes that forward an SRREQ are represented by
(4), (6), and (7) in Figure 14. Here, the AppRP does not verify
a received packet before the AppRP generates a forwarding
SRREQ. The other experiment represents the case where
the AppRP replies an SRREP, which is generated by the
received SRREQ with verification. Processes that reply the
SRREP are represented by (4)–(7) on theAppRP in Figure 14.
This experiment indicates that the AppRP is the destination
node of the received packet. The AppRP needs to verify
the received packet to guarantee routing information in the
received packet.

Figures 17–20 show the results when we applied the
parameter file ‘‘a.properties’’ to both the APPISDSR+−P and
the APPISDSR−J . Meanwhile, the APPRSA needs the key
length as a parameter, and we use 1024 bits, which provides
the same security level as that of ISDSR+, for the results
in Figures 21 and 22. We also note that the results are also
useful for SRRER because its behaviors are almost the same
as described above.

FIGURE 17. RTT of APPISDSR+−P (PBC) in ISDSR+ against the number of
nodes without verification.

FIGURE 18. RTT of APPISDSR+−P (PBC) in ISDSR+ against the number of
nodes with verification.

FIGURE 19. RTT of APPISDSR−J (JPBC) in ISDSR against the number of
nodes without verification.

FIGURE 20. RTT of APPISDSR−J (JPBC) in ISDSR against the number of
nodes with verification.

1) CASE: FORWARDING SRREQ
Figures 17, 19, and 21 show results of the experiments where
the AppRP executed processes (4), (6), and (7) in Figure 14.
The received SRREQ is not verified before generating a for-
warded SRREQ. The horizontal axis represents the number of
nodes, i.e., the number of nodes in packets sent by the AppDP.
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Figure 17 shows the results of APPISDSR+−P, which was
computed in the PBC library in C language. Figure 19 shows
the results of the APPISDSR−J , which uses JPBC in the gen-
eration and verification of signatures.

The RTTs in Figures 17 and 19 are approximately
0.1 seconds and 0.24 seconds, respectively. These results
show that the RTTs of ISDSR+ are not dependent on the
number of nodes and that the RTTs of the APPISDSR+−P are
faster than those of the APPISDSR−J . Figure 21 shows the
results of the APPRSA, in which the key length is 1024 bits.
Compared with Figure 17, the RTTs in Figure 21 increase
when the number of nodes increases. However, the RTTs
in Figure 17 are similar at approximately 0.1 seconds even
when the number of nodes increases. Based on these results,
we can see that ISDSR+ with the PBC library in C language
is superior to the RSA-based signature algorithm.

FIGURE 21. RTT of APPRSA against the number of nodes without
verification.

2) CASE: REPLYING SRREP
In this case, we assume that the AppRP is the destination
node of a received SRREQ. The AppRP has to verify the
received SRREQ to guarantee routing information stored in
the SRREQ. Then, the AppRP sends the generated SRREP to
reply to the source node in the SRREQ. Figures 18, 20, and 22
show the RTTs when the AppRP executes processes (4)–(7)
in Figure 14. In Figure 20, we conducted the experiment
until 10 nodes because the computational time of APPISDSR−J
is significantly large. Using our proposed implementation,
the RTT of APPISDSR+−P is at least ten times faster than
that of APPISDSR−J . In particular, the RTT of APPISDSR+−P
increases by approximately 0.05 seconds with every addi-
tional node while that of APPISDSR−J increases by approx-
imately 0.8 seconds. On the other hand, although The RTT
in Figure 22 increases with the number of nodes, the largest
RTT is approximately 0.3 seconds.

D. FURTHER POTENTIAL PERFORMANCE
For distributed key generation, a case with a small threshold
t and a large number n of whole KGCs is better in a general
sense of the availability. The computational time of threshold

FIGURE 22. RTT of APPRSA against the number of nodes with verification.

key generation for KGCs, i.e., Algorithm 2, can be normally
separated from configuration of routes from a source to a
destination. The computational time of secret key generation
for each user, i.e., Algorithm 3, is independent of the number
n of KGCs as shown in Section VI-B. We can hence adopt
an arbitrary pair of a large n and a small t . For instance,
in a case where t = 5 and n = 10000, a master key for
a KGC and a secret key for a user can be computed within
approximately 12.4 seconds and 8 milliseconds, respectively.
If we use, for example, NFC with its maximum transmis-
sion speed of 424 kbit/s or Bluetooth with 24 Mbit/s in the
connection between each device and KGCs and 100BASE-T
LAN in the connection between the KGCs, transmission of
a secret key from the KGCs to a device would take less than
15 milliseconds.

The experiments in this paper were conducted on a highly
reliable network environment with low latency and low
packet drop rate. In this environment, the packets were
received completely even when the length of data in a data-
gram packet was very large. In a practical case where the
density of nodes is high, collisions occur easily in the datalink
layer. In the datalink layer, the number of frames is large
when a packet size is large. A packet sent by the APPRSA
needs more frames than that of the APPISDSR+ in the datalink
layer because of its packet size. If the frame drop rates of
the APPRSA and the APPISDSR+ are the same, then the packet
drop rate of the APPISDSR+ is lower than that of the APPRSA.
Although the APPRSA is superior to the APPISDSR based on
their RTTs, the APPRSA does not work well in unreliable
networks because of its large packet size.

We also performed refactoring on our previous imple-
mentation to introduce preprocessors for elliptic curve
computations in Algorithm 4. Algorithm 4 has six steps,
and the steps after step 4 require elliptic curve com-
putations, e.g., x · P and r · P. The variable P and
a1 are preprocessed using the API of the JPBC named
jpbc.element.getElementPowPreProcessing()
at the same time when the ISDSRAlgorithm class is
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FIGURE 23. Total node capacity for utilizing ISDSR+.

instantiated. The refactoring makes the signing process of
ISDSR+ faster.

VII. DISCUSSION
In this section, we briefly discuss how ISDSR+ can achieve
requirements described in Section III-B and show potential
applications of ISDSR+.

A. ACHIEVEMENT OF REQUIREMENTS
The four requirements described in Section III-B rely on
features of IBSAS-DKG. In particular, given its signature
compression and the use of IDs for public keys, the compact-
ness and the completeness can be achieved by the guarantee
of routing information from any source to any destination.
Moreover, by proving the security of IBSAS-DKG and com-
bining it with the Kim-Tsudik framework [14] described in
Section II and utilizing a timestamp against replay attacks that
reuse valid signatures, the unforgeability of ISDSR+ can be
achieved.

Finally, the availability can be achieved by introducing
distributed key generation with arbitrary (t, n) setting. Specif-
ically, adopting a large n and a small t enables any device to
join the protocol anytime and anywhere. Moreover, any user
can receive a secret key by connecting to any KGC within its
direct transmission area. We thus conclude that our proposed
ISDSR+ can achieve the requirements.

B. NODE CAPACITY AND NUMBER OF KEYS
In this section, we evaluate node capacity for ISDSR+. In
particular, we evaluate the size of a memory for each node in
terms of the total capacity for utilizing ISDSR+, the capacity
for constructing routes in SRREQ and SRREP, the capacity
for storing keys, and the capacity during distributed key
generation.

The total capacity refers to all the information utilized
in ISDSR+, including a secret key, public keys for other
nodes to check the validity of packets such as SRREQ, route
information constructed by SRREQ and SRREP, and partial
information received from each KGC during the distributed
key generation, i.e., a1,jH1(ID) and a2,jH2(ID).

FIGURE 24. Node capacity for constructing routes.

FIGURE 25. Node capacity for storing keys.

The other terms are subsets of total capacity. The capacity
for constructing routes in SRREQ and SRREP refers to the
information utilized in constructing routes, including a secret
key, public keys for other nodes, and route information con-
structed by SRREQ and SRREP. The capacity for storing keys
refers to the size of both a secret key and public keys received
from other nodes in SRREQ and SRREP. Finally, the capacity
during distributed key generation refers to the total size of
the partial information during the distributed key generation,
including all the partial information received from each KGC.

Figures 23–26 show the results described above. As can
be seen in Figures 24 and 25, the node capacity for ISDSR+
is constant; i.e., the capacity is dependent only on the IDs
included in SRREQ and SRREP. As can be seen in Figures 23
and 26, the node capacity for ISDSR+ is linear because
the data depend on the number of KGCs in distributed key
generation. We note that even if there are 50 KGCs, ISDSR+
is more efficient and effective than the RSA-based proto-
col. However, ISDSR+ needs a larger memory size than
ISDSR because of the distributed key generation.

The discussion on number of keys handles by nodes can
be inferred from the discussion on node capacity because
keys are necessary for signature verification. ISDSR+ pro-
vides only a single master public key with size of 480 bits,
consisting of three elements with size of 160 bits each. The
key for verifying the signature of a node is identical to the
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FIGURE 26. Node capacity during distributed key generation.

ID information of the node, eliminating extra information
included in the routing protocol. This setting of ISDSR+ is
the same as in ISDSR. On the other hand, the RSA-based
protocol needs 1048-bit key per node and therefore requires
more keys and node capacity than ISDSR+.

C. APPLICATIONS OF ISDSR+
We focus on the RTTs of the applications. By applying
the PBC library to the APPISDSR+−P, the RTTs of the
APPISDSR+−P become shorter than those of the APPRSA as
long as there are no verification cases. We consider that the
signature verification should be executed on a specific desti-
nation, e.g., the sink node in sensor networks or a base station
in FANETs because they have computational resources that
outperform other nodes. For example, the railway monitoring
system [1] is a bridge health monitoring system that involves
collection of data from wireless sensors installed on a bridge
to a remote server for damage identification in the bridge. In
this system, a remote server typically has high computational
power and can therefore verify packets sent by other sensors.

Another application is content sharing system based
on UAVs. As described in Section I-C, according to
Oubbati et al. [5], several routing protocols [27], [28] for
FANETs are based on routing protocols for well-known ad
hoc networks and utilized for providing contents to a user. In
these applications, UAVs find routes to an access point of a
user in conjunction with a request of contents from the user,
and then the destination is the access point of the user, who
typically owns sufficient computational power.

D. LIMITATIONS
We now describe the limitations of the current results.
First, ISDSR+ needs trusted setup for KGCs via the TKey-
Gen algorithm. There are several theoretical works [57], [58]
without any trusted setup for KGCs, and the deployment of
such untrusted setup to ISDSR+ remains an open problem.
Another limitation regarding our distributed key generation

is that KGCs are fixed before routing protocols. When the
number of available KGCs for generation of a secret key of a
user, i.e., the use of Algorithm 3, is less than a threshold t ,

the current ISDSR+ algorithms cannot provide the secret
key. These limitations can be solved by introducing evolving
secret sharing [59], [60], where a set of parties with secret
is not known in advance and could potentially be infinite,
in key generation of Algorithm 2. We leave the construction
of algorithms via the evolving secret sharing as an open
problem.

Another limitation is security against attacks in the
physical layer, i.e., jamming attacks. According to the state-
of-the-art work in [61], a jamming attack is possible with
smartphones and does not require special devices. Sev-
eral recent works [62]–[64] have proposed data transmission
mechanisms that are secure against jamming attacks in the
physical layer. The security of ISDSR+ against jamming
attacks is not included in our work. Nevertheless, this kind
of attack affects distributed key generation and construction
of routes, and thus overcoming attacks in the physical aspect
is desirable and will be investigated in future works.

VIII. CONCLUSION
In this paper, we proposed a new protocol ISDSR+ by intro-
ducing distributed key generation in ISDSR and implement-
ing APPISDSR+ and APPRSA on a Raspberry Pi3. Compared
with ISDSR, ISDSR+ does not require a centralized KGC
and therefore achieves infra-less setting.

Our main building blocks include a novel signature scheme
named IBSAS-DKG, which supports the features of ISDSR+
as described in Section III. We also conducted experiments
to measure RTTs. The experiments were classified into
without verification and with verification after receiving a
packet. In the case of without verification, all results of the
APPISDSR+−P were superior to those of the APPRSA.

Finally, as presented in section VII, our experimental envi-
ronment is more reliable in terms of frame loss rate compared
with an environment in practice. Therefore, as future work,
we will conduct experiments in an environment that is not
highly reliable by using mininet [65] or mininet-wifi [66]. In
that case, we will measure the packet delivery ratio between
a source node and a destination node. Another future work
is the introduction of evolving secret sharing [59], [60] in
the distributed key generation of ISDSR+ to overcome the
limitations described in Section VII.

APPENDIX
FORMAL DISCUSSION OF IBSAS-DKG
A. SYNTAX
In this section, we define the syntax of an IBSAS-DKG
scheme and its correctness.

1) DEFINITIONS OF ALGORITHMS
The algorithms of an IBSAS-DKG scheme are defined as
follows. Here, let a message space and an identity space be
M and ID, respectively. We assume that each KGC owns a
unique index i ∈ N, where N is a set of integers, and a set
of KGCs is then defined as a subset of N. We also denote by
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D ⊆ N any subset of KGCs which own partial secret keys
corresponding to a master public key.

Setup: Given a security parameter 1κ , output a public
parameter para.
TKeyGen: Given security parameters (t, n) ∈ N2, para,

a set D ⊆ N of n KGCs, and an index i ∈ D, via interaction
with all j ∈ D\{i}, output a pair (xi,mpk) of a partial secret
key msk as a private output for i and a master public key as a
common output for D.
UTKeyGen:Given para,mpk, ID and a set� ⊆ D, output

a secret key skID corresponding to ID.
Sign: Given para, a secret key skIDi , IDi, a message mi ∈

M to be signed, a set L = {(mj, IDj)}
i−1
j=1 of pairs of signed

messages and their identities, and an aggregate signature σ ,
return a new aggregate signature σ ′ on a new set L ′ = L ∪
{(mi, IDi)} or ⊥ to indicate an error.

Verify: Given para,mpk , a set L = {(mj, IDj}ij=1 of pairs
of signed messages and their identities, and an aggregate
signature σ , output True or False.

2) CORRECTNESS
The correctness of the IBSAS-DKG scheme described above
is defined as follows.
Definition 1 (Correctness): For all para← Setup(1κ ), all

(t, n) ∈ N2, all IDi ∈ ID, all mi ∈M, all � ⊆ D ⊆ N such
that |D| = n and |�| ≥ t hold, all L ⊆ M × ID, and all
(xj,mpk) ← TKeyGen(t, n, para,D, j) where j ∈ D holds,
the following condition holds:

True = Verify


para,mpk,L ′,

Sign


para,

UTKeyGen
(
para, mpk,
IDi, �

)
,

IDi,mi,L, σ


 ,

where L ′ = L ∪ {(mi, IDi)}. We say that an IBSAS-DKG
scheme is correct if the condition described above holds.

B. SECURITY DEFINITIONS
In this section, we define security of an IBSAS-DKG scheme.
In particular, we define unforgeability of signatures and
robustness of distributed key generation as properties of an
IBSAS-DKG scheme. The first property is necessary for
preventing a signature forgery via received signatures. On
the other hand, the second property can prevent an adversary
corrupting several KGCs less than a threshold from obtaining
the capability of key generation. These two properties are
important for the underlying purpose of an IBSAS-DKG
scheme, i.e., guaranteeing the validity of routing information
and key generation without a fixed infrastructure.

1) UNFORGEABILITY
We define the unforgeability of an IBSAS-DKG scheme via
the following game between a challenger C and an adver-
sary A. Namely, an advantage of A can be obtained with a
probability that C outputs accept in the game. Hereinafter,
we denote by x(i) a value of the i-th query for all x.

Initial Phase: The challenger C generates a public param-
eter para← Setup(1κ ), and chooses integers (t, n) ∈ N2 and
a set D ⊆ Nn of n KGCs. Next, C generates (xi,mpk) ←
TKeyGen(t, n, para,D, i) for all i ∈ D. C then runs A with
(t, n, para,mpk,D) as input.

Corrupt Query: A sends any index i(h) ∈ D to C, and C
returns a partial secret key xi(h) for the given index i(h).
KeyDer Query: A sends any string

(
ID(h), � ⊆ D

)
to C,

and C returns a secret key skID(h) for ID(h).
SignQuery:A generates a signing query (para,mpk,m(h),

ID(h),L, σ ). Given the query, C returns a signature σ .
Output After qc iterations of the Corrupt Query, qk

iterations of the KeyDer Query, and qs iterations of the
Sign Query, A outputs a forgery (L∗, σ ∗), where L =
{(ID∗i ,m

∗
i )}

N
i=1 where N ∈ N and the following conditions

hold: the Verify algorithm outputs True; qc < t holds; there
is exactly one ID∗i∗ such that ID∗i∗ /∈ {ID

(h)
i }

qk
h=1 holds for the

KeyDer Query; for the ID∗i∗ , a tuple of (m∗i∗ , ID
∗
i∗ ,L

∗

i∗−1 =

{(ID∗j ,m
∗
j )}

i∗−1
j=1 ) has never been queried to the Sign Query;

and all ID∗ ∈ L∗ are distinct. If all the conditions hold, then
C outputs accept . Otherwise, C outputs reject .
Definition 2: We say that an IBSAS-DKG scheme is

(t, n, qc, qk , qs, qh,N , ε)-unforgeable if there is no prob-
abilistic polynomial-time adversary A who forges with
(t, n, qc, qk , qs, qh,N , ε). Here, we say that A forges the
scheme with (t, n, qc, qk , qs, qh,N , ε) if a challenger C out-
puts accept, in the security game described above, with a
probability greater than ε on a threshold t and a number n of
KGCs. Here, A can generate at most qc corruption queries,
at most qk key derivation queries, at most qs signing queries,
and at most qh random oracle queries, and N is the number
of signers in the A’s output and queries.

2) ROBUSTNESS
We define the robustness via the following simulation
between a real scheme and an ideal scheme for an adver-
sary A. Specifically, a challenger C executes either the algo-
rithms defined in Section A or algorithms without threshold
computations. Then, the robustness is defined as follows:
Definition 3: We say that an IBSAS-DKG scheme is robust

if for all mpk there are KeyGen and UKeyGen whose dis-
tributions are identical for any probabilistic polynomial-time
algorithmA to TKeyGen andUTKeyGen, respectively. Here,
A can corrupt up to t − 1 signers in order to obtain t − 1
partial secret keys.

C. CORRECTNESS OF THE SCHEME
In this section, we briefly show that our scheme in Section IV
is correct in the meaning of A2. In particular, we first check
if a secret key generated by the UTKeyGen algorithm is
identical to a part of the Verify algorithm, and then show that
theVerify algorithm outputs True via the resultant secret key.
Theorem 1: The proposed scheme is correct.
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Proof: First, for any ID and its related secret key, the fol-
lowing equations hold via the Lagrange interpolation:

e

∑
j∈�

(λjα1,jH1(ID)),P

 = e (a1 H1(ID)),P)

= e (H1(ID)), a1 P) ,

e

∑
j∈�

(λjα2,jH2(ID)),P

 = e (a2 H2(ID)),P)

= e (H2(ID)), a2 P) .

For the Verify algorithm, the verification equation can be
written as follows: for any i, n(≥ i) ∈ Z2:

e(σ1,P)
?
= e

(
rxP+

∑N
i=1 a2H2(IDi)

+
∑N

i=1H3(IDi||mi)a1H1(IDi)
,P
)

= e(rxP,P) · e

(
N∑
i=1

a2H2(IDi),P

)

× e

(
N∑
i=1

H3(IDi||mi)a1H1(IDi),P

)

= e (xP, rP ) · e

(
N∑
i=1

H2(IDi), a2 P

)

× e

(
N∑
i=1

H3(IDi||m)H1(IDi), a1 P

)
.

The computation step described above is identical to the veri-
fication equation on theVerify algorithm. The algorithm then
returns True. The proposed scheme is thus correct because the
two conditions described in Section A2. �

D. SECURITY ANALYSIS OF IBSAS-DKG
We analyze the security of the proposed scheme by formal
proofs. We first prove that the scheme is unforgeable under
the security assumptions named ID-based sequential aggre-
gate signature computational Diffie-Hellman (IBSAS-CDH)
assumption [24] defined below. Next, We prove that the
scheme is robust in the sense of the definitions in Section B.
Definition 4 ((q, ε)-IBSAS-CDH Assumption in G): We

define an IBSAS-CDH problem with a security parame-
ter 1k as follows: for a pairing parameter (p,G,GT , e)
and a given tuple (P, a1P, a2P, b1P, b2P) with uni-
formly random (a1, a2, b1, b2) ← Z4

p as input
compute (rxP+a1 b1P+ma2 b2P, rP, xP) for uniformly
random (r, x) ← Zp under accessing to an oracle
OIBSAS−CDH
P,a1P,a2P,b1P,b2P

that takes m ∈ Zp as input and returns
(rxP+a1 b1P+ma2 b2P, rP , xP) for randomly generated
numbers (r, x) ← Z2

p, where an element m involved in each
query must be different from the element m involved in the
final output. We say that a (q, ε)-IBSAS-CDH assumption in
G holds if there is no probabilistic polynomial-time algorithm
that can solve the IBSAS-CDH problem with a probability
greater than ε. Here, the algorithm can generate at most q
queries to the oracle.

Theorem 2: Suppose that Hi for i ∈ [1, 3] is mod-
eled as a random oracle. The proposed scheme is
(t, n, qc, qj, qk , qs, qr , qh1 , qh2 , qh3 ,N , ε)-unforgeable under
the (q, ε′)-IBSAS-CDH assumption in G, where q ≤ qs,

ε′ ≥ ε

(
1−

qc + 1
n

)
1

e(N (qs + 1)+ qk + 1)
,

e is the base of the natural logarithm.
Proof: Given (p,G,GT , e,P, a1P, a2P, b1P, b2P) and

access to an oracleOIBSAS−CDH
P,a1P,a2P,b1P,b2P

, B sets (p,G,GT , e,P)
as para and (a1 P, a2P) as mpk . Next, B sets ID[−,−,−],
D[−,−,−,−,−],H1[−,−,−],H2[−,−,−] andH3[−,−]
as an ID-list, D-list, a H1-list, a H2-list, and a H3-list,
respectively. Then, B guesses some index i∗ ∈ [1, n]. For
i ∈ [1, n]\{i∗}, B chooses polynomial functions Fi(x) and
Gi(x) with the degree t , and computes a1,i, a2,i, a1,i,0P and
a2,i,0P. B then computes a1,i∗,0P = a1 P−

∑
i∈[1,n]\{i∗} a1,i,0

and a2,i∗,0P = a2 P −
∑

i∈[1,n]\{i∗} a2,i,0 as a partial secret
key xi. Next, B registers (IDi,Fi(x),Gi(x), a1,i, a2,i) in the
D-list for i ∈ [1, n]\{i∗}, and registers (IDi∗ ,−,−,−,−)
in the D-list for i∗. B sets D = [1, n], and runs A
with (p,G,GT , e,P, a1P, a2P, b1P, b2P,D) in the following
manner. Here, B utilize a random coin B ∈ {0, 1} with a
probability ε to set 1, and we finally determine ε to complete
the proof:
H1Query (ID(h)

i ):This oracle simulation is associatedwith
the H2 Query. If (ID(h)

i ) has been registered in the H2 list, B
retrieves Bi from the list. Otherwise, B sets Bi = 1 with the
probability ε or Bi = 0 with the probability 1 − ε. Next,
B generates αi ← Z∗p, and then sets H1(ID(h)) = αiP for
Bi = 1 or H1(ID(h)) = αiP + b1 P for Bi = 0. B registers
(ID(h)

i , αi,Bi) in theH1-list, and returns the H1(ID(h)).
H2Query (ID(h)

i ):This oracle simulation is associatedwith
the H1 Query. If (ID(h)

i ) has been registered in the H1 list, B
retrieves Bi from the list. Otherwise, B sets Bi = 1 with the
probability ε or Bi = 0 with the probability 1 − ε. Next,
B generates βi ← Z∗p, and then sets H2(ID(h)) = βiP for
Bi = 1 or H2(ID(h)) = βiP + b2 P for Bi = 0. B registers
(ID(h)

i , βi,Bi) in theH2-list, and returns the H2(ID(h)).
H3 Query (ID(h)

i ‖ m
(h)
i ): B generates δi ← Z∗p and sets

H3(ID
(h)
i ‖ m

(h)
i ) = δi. B then registers (ID(h)

i ‖ m
(h)
i , δi) in

theH3-list, and returns the H3(ID
(h)
i ‖ m

(h)
i ).

Corrupt Query (i(h)): B first checks if i(h) = i∗. If so, B
aborts the process. Otherwise, B retrieves a partial secret key
xi = (a1,i, a2,i) from the D-list, and returns xi.

KeyDerQuery
(
ID(h), � ⊆ D

)
:B checks if ID(h) has been

registered in the H1-list and the H2-list. If not, B executes H1
Query and H2 Query. Next, B checks if Bi = 0 on the lists
for ID(h). If so, B aborts the process. If not, i.e., B1 = 1, B
computes skID(h) = (αia1P, βia2 P). This skID(h) can be writ-
ten as a1H1(ID(h)) = αia1P and a2H2(ID(h)) = βia2 P from
the H1-list and the H2-list, respectively. Finally, B registers(
ID(h), a1H1(ID(h)), a2H2(ID(h))

)
in the ID-list, and returns

a secret key skID(h) .

VOLUME 7, 2019 74865



H. Kojima et al.: ISDSR+: Improving the Security and Availability of Secure Routing Protocol

Sign Query (para,mpk,m(h)
i , ID

(h)
i ,L, σ ): B checks if

Bi = 1 for ID(h)
i . If so, B executes KeyDer Query and

then generates a signature in the same manner as that of the
original Sign algorithm. This distribution is exactly identical
to that of the original algorithm except for the use of random
oracles because B can know a secret key.
Otherwise, i.e., Bi = 1 for ID(h)

i , B checks if L contains IDj
for j ∈ [1, i− 1] such that Bj = 0 holds on the H1-list and the
H2-list. B aborts the process if so. Otherwise, B discards the
given σ , and retrieves δi for ID

(h)
i ‖ m

(h)
i from the H3-list. B

then receives (rxP+a1 b1P+δia2 b2P, rP , xP) by accessing
to the oracle OIBSAS−CDH

P,a1P,a2P,b1P,b2P
with δi as input. B computes

rxP+a1 b1P+δia2 b2P+
∑i

j=1
(
αja1P+ δjβja2 P

)
as σ1 by

retrieving αj and βj for all j ∈ [1, i] from the H1-list and the
H2-list.B also sets σ2 = rP and σ3 = xP. This σ1 can be writ-
ten as rxP +

∑i
j=1

(
a1H1(IDj)+ a2 H3(IDj ‖ mj)H2(IDj)

)
from simulation of each list. The signature σ = (σ1, σ2, σ3)
is accepted on the verification algorithm, and thus its distri-
bution in the simulation described above is indistinguishable
for A. B returns a signature σ = (σ1, σ2, σ3).
Output: After the simulation described above, A outputs

a forgery (L∗, σ ∗) where there exists exactly a single ID∗j∗ ,
whose secret key has never been queried to KeyDer Query,
from the definition of the forgery. B checks if, for ID∗j∗ , Bj∗ =
0 holds on theH1-list and theH2-list and, for other ID∗j ∈ L

∗,
Bj∗ = 1 holds. If the statement is false, B aborts the process.
Otherwise, the signature can be written as follows because
the verification holds:

σ1 = rxP+ a1 b1P+ δj∗a2 b2P+
n∑
i=1

(a1αiP+ δia2βiP) .

B can hence extract a solution to the problem by following
computation:

σ ′ = σ1 −

n∑
i=1

(α1 a1P+ δiβia2P)

= rxP+ a1 b1 P+ δj∗a2 b2 P,

where δj∗ is a value which has never been queried to the ora-
cle. The tuple of (σ ′, σ2, σ3) is a solution to the IBSAS-CDH
problem.

To complete the proof, we analyze a success probability ε′

of B. In addition to a success probability ε of A, there are
five cases where B aborts the process; the first case abortC
is in the Corrupt Query where a partial secret key for i∗ has
been queried; the second case abortK is in theKeyDerQuery
where a secret key with Bi = 0 in the H1-list or the H2-list
has been queried; the third case abortS is in the Sign Query
where there are multiple identities with Bi = 0 in the H1-list
or the H2-list for any i; and, the firth case abortout is in the
Output where the statement about Bj∗ is false. The success
probability can be then estimated as follows:

ε′ = ε · Pr[
qc∧
j=1

¬abortC ] · Pr[
qk∧
j=1

¬abortK ]

×Pr[¬abortS ] · Pr[¬abortout ]

≥ ε ·

(
n− 1
n
·
(n− 1)− 1
n− 1

· · ·
(n− qc)− 1
(n− qc)

)
·
(
εqk
)

×

(
εNqs

)
·

(
ε(N−1)(1− ε)

)
≥ ε ·

(
(n− qc)− 1

n

)
· εqk+Nqs+N−1(1− ε)

≥ ε ·

(
1−

qc + 1
n

)
· εqk+N (qs+1)(1− ε).

The variable ε is finally determined in order to optimize
the probability described above. Here, let f (ε) be a function
εz(1− ε) where z = qk +N (qs+1). Then, f (ε) is maximized
at εopt := z

z+1 according to the derived function. That is,
the following inequation can be obtained for the function f (ε).

f (εopt ) =
(

z
z+ 1

)a (
1−

z
z+ 1

)
=

(
1+

1
z

)−z ( 1
z+ 1

)
≥ e−1

(
1

z+ 1

)
,

where e is the base of the natural logarithm. The success
probability ε′ is then bounded as follows:

ε′ ≥ ε ·

(
1−

qc + 1
n

)
·

(
1

e(qk + N (qs + 1)+ 1)

)
.

The probability is polynomially bounded.
�

Theorem 3: The proposed scheme is robust.
Proof: In this proof, we show existence of two algo-

rithms, KeyGen and UKeyGen, whose distributions are
indistinguishable from TKeyGen and UTKeyGen, which
have threshold setting. The algorithms are constructed as
follows:

KeyGen: Given para, generate (a1, a2)← Z2
p as msk and

compute (a1 P, a2 P) ∈ G2 as mpk .
UKeyGen: Given (para,mpk, ID,msk), generate skID =

(a1H1(IDi), a2H2(IDi)).
For KeyGen, mpk = (a1 P, a2 P) is uniformly dis-

tributed as long as msk = (a1, a2) is uniform-randomly
generated. On the other hand, for TKeyGen, mpk =

(
∑

j∈D a1,j,0P,
∑

j∈D a2,j,0P) ∈ G2 and msk = (a1 =∑
IDi∈D a1,i,0, a2 =

∑
IDi∈D a2,i,0) ∈ Z2

p) are
uniform-randomly generated if there exists at least a single
node which honestly generates a partial secret key. Thus,
these distributions are indistinguishable.

Next, for UKeyGen, if at least t partial secret keys are
collected, the output skID = (a1H1(IDi), a2H2(IDi)) com-
puted with the Lagrange interpolation is indistinguishable
from that of UTKeyGen because their outputs are exactly
identical. Furthermore, if there exists at least a single node
which honestly generates a partial secret key, mpk and msk
are uniform-randomly generated. Thus, these distributions
are indistinguishable.

Finally, we briefly note that the algorithms described above
is uncomputable for an adversary. In particular, computations
for KeyGen and UKeyGen correspond to a discrete loga-
rithm problem and CDH problems. Although we omit the
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details, the algebraic structures are almost identical to that
of the BLS signatures [67] which are provably secure. �
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